北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计

时间:2019-05-12 23:17:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计》。

第一篇:北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计

大良环城小学 数学科组 第12册教案

新课标北师大版六年级下册数学全册教案

第一单元

圆柱与圆锥

单元教学内容:

面的旋转

圆柱的表面积

圆柱的体积

圆锥的体积

单元教学目标:

1、结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。

2、从多种角度探索圆柱和圆锥的特征。

3、探索圆柱表面积的计算方法,发展空间观念。

4、经历圆柱和圆锥体积计算方法的探索过程,体会“类比”的思想。

5、在解决实际问题中用活所学知识,感受数学与生活的联系。

单元教材分析:

学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元主要通过五个活动,引导学生学习面的旋转(圆柱和圆锥的认识)、圆柱的表面积、圆柱的体积、圆锥的体积等内容,并参与实践活动。本单元教材编写力图体现以下主要特点:

1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。

2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖

大良环城小学 数学科组 第12册教案

着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。

3.引导学生经历圆柱和圆锥体积计算方法的探索过程,体会类比等数学思想方法类比是一种重要的数学思想方法,是合情推理时常用的方法。教材重视类比、转化等数学思想方法的渗透。在“圆柱的体积”教学时,教材引导学生经历“类比猜想—验证说明”的探索过程。由于圆柱和长方体、正方体都是直柱体,而且长方体与正方体的体积都等于“底面积×高”,由此可以产生猜想:圆柱的体积计算方法也可能是“底面积×高”。在形成猜想后,教材再引导学生“验证说明”自己的猜想。在“圆锥的体积”教学时,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程。另外,教材还注意转化、化曲为直等思想方法的渗透,如在验证说明“圆柱的体积=底面积×高”时,引导学生把圆柱切割拼成近似的长方体进行研究,体现了化曲为直的思想方法。

4.在解决实际问题中巩固所学知识,感受数学与生活的联系圆柱和圆锥的知识在生活中有着较为广泛的应用,教材在编排练习时,选择了来自于现实生活的问题,引导学生灵活运用所学知识解决问题。如学习“圆柱的表面积”时,鼓励学生计算薯片盒的包装纸的大小、通风管需要的铁皮的面积、压路机压路的面积等,由于实际情形变化比较多,需要学生根据实际情况灵活地选择有关数据进行计算。在学习“圆柱和圆锥的体积”后,教材鼓励学生计算水桶的容积、圆木的体积、圆锥形小麦堆的体积、铅锤的质量等。这些实际问题的解决,将使学生巩固对所学知识的理解,体会数学知识在生活中的广泛应用,丰富对现实空间的认识,逐步形成学好数学的情感和态度。

课时安排:12课时

大良环城小学 数学科组 第12册教案

教学内容:面的旋转

教学目标:

1.通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。

2.通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。

3.通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。教学重点:

1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。

2、通过观察,初步了解圆柱和圆锥的组成及其特点。教学难点:

通过观察,初步了解圆柱和圆锥的组成及其特点。教学用具:

各种面、圆柱和圆锥模型 教学过程: 一.活动一

如图:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?

学生根据发现的现象(彩

带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线

二.活动二

观察下面各图,你发现了什么?

学生发现:

风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形 学生体验:线动成面

大良环城小学 数学科组 第12册教案

三.活动三

如图:用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。

1、学生实际动手操作,然后根据想象的图形连线

1——1(圆柱)

2——3(球)

3——4(圆锥)

4——2(圆台)

2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名请学生说。

小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。

四.找一找

请你找一找我们学过的立体图形

五.说一说

圆柱与圆锥有什么特点?和小组的同学互相说一说

圆柱:有两个面是大小相同的圆,有另一个面是曲面。圆锥:它是由一个圆和一个曲面组成的。

六.认一认

圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。

大良环城小学 数学科组 第12册教案

圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(教师画出平面图进行讲解。并在图上标出各部分的名称。)

七.练一练

1.找一找,下图中哪些部分的形状是圆柱或者圆锥?

再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。

2.下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。

3.想一想,连一连

4.应用题

八.板书

九.随堂反思

大良环城小学 数学科组 第12册教案

教学内容:圆柱的表面积

第一课时

教学目标:

1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系

2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。教学重点:

使学生认识圆柱侧面展开图的多样性。教学难点:

学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教学用具:

课件、圆柱体的瓶子、剪子 教学过程:

一、创设情境,引起兴趣。

拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

二、自主探究,发现问题。研究圆柱侧面积

1、独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

2、观察对比:观察展开的图形各部分与圆柱体有什么关系?

3、小组交流:能用已有的知识计算它的面积吗?

4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,圆柱的侧面积=底面周长×高

S 侧 == C × h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己

大良环城小学 数学科组 第12册教案

喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

研究圆柱表面积

1、现在请大家试着求出这个圆柱体茶叶罐用料多少。

学生测量,计算表面积。

2、圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

3、动画:圆柱体表面展开过程

三、实际应用

1、解决书上的例题

2、填空

圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

3、要求一个圆柱的表面积,一般需要知道哪些条件()

4、教材第六页试一试。

四、板书

圆柱体的表面积

大良环城小学 数学科组 第12册教案

圆柱的侧面积 = 底面周长×高 → S侧=ch

长方形 面积 = 长

× 宽

圆柱的表面积 = 圆柱的侧面积+底面积×2

五、随堂反思:

大良环城小学 数学科组 第12册教案

第二课时

教学目标:

1、进一步理解圆柱体侧面积和表面积的含义。

2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。

教学过程 :

一、基本练习

说说计算方法

二、实际应用

求压路的面积是求什么?

说自己的想法,独立解答。

大良环城小学 数学科组 第12册教案

三、实践活动

四、课后反思

大良环城小学 数学科组 第12册教案

第三课时

教学目标:

1、进一步理解圆柱体侧面积和表面积的含义。

2、掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学重点:掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。教学难点:圆柱表面积的实际应用。

教学过程 :

一、实际应用 1、2、3、二、随堂反思

大良环城小学 数学科组 第12册教案

教学内容:圆柱的体积

第一课时

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。教学重点:

圆柱体体积的计算 教学难点:

圆柱体体积公式的推导 教学用具:

圆柱体学具、课件 教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些? 4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。(有条件的可分小组进行)(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底

大良环城小学 数学科组 第12册教案

面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:(板书:V=Sh)(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

练习册练习

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些

大良环城小学 数学科组 第12册教案

长方体)得出了圆柱体的体积计算公式V=Sh。

五、板书:

六、随堂反思:

大良环城小学 数学科组 第12册教案

第二课时

教学目标:

1.进一步理解和掌握圆柱的体积计算公式,并能应用到实际解决问题中。2. 培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:

理解和掌握圆柱的体积计算公式。教学难点 :

圆柱体积计算公式的推导。教学过程:

一、基本练习

二、实际应用

说解题思路

大良环城小学 数学科组 第12册教案

说说你的解题思路

这道题的注意的地方:单位的统一

说说哪个体积大?为什么?

上升的2厘米是什么

分别说说表面积和体积的计算方法。

三、实践活动

大良环城小学 数学科组 第12册教案

四、课后反思

圆锥的体积

第一课时

教学目标:

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点

圆锥体体积计算公式的推导过程. 教学难点

正确理解圆锥体积计算公式. 教学过程:

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

大良环城小学 数学科组 第12册教案

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验 学生汇报实验结果

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

„„

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

大良环城小学 数学科组 第12册教案

(二)算一算

学生独立计算,集体订正.

说说解题方法

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、课后反思

大良环城小学 数学科组 第12册教案

第二课时

教学目标:

1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。

2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。

3、进一步熟悉圆锥的体积计算

教学难点: 圆锥的体积计算 教学重点: 圆锥的体积计算 教学过程:

一、基本练习

圆锥体积计算公式

相邻两个面积单位之间的进率是多少? 相邻两个体积单位之间的进率是多少?

二、实际应用

大良环城小学 数学科组 第12册教案

占地面积是求得什么?

三、实践活动

四、课后反思

大良环城小学 数学科组 第12册教案

第二篇:(北师大版)六年级数学下册 圆柱和圆锥-圆柱与圆锥教学设计

圆柱的体积

课时 3

节次 1

时间 教学内容: 教材第10~12页圆柱的体积公式,例

1、例2和“练一练”,练习二第1~5题。教学要求:

知识与技能:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历类比猜想——验证说明探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。过程与方法:

1、通过观察,认识圆柱并掌握它的特征,建立空间观念。

2、培养学生的空间观念及有序的观察、分析、比较、概括的能力。

3、培养学生的迁移类推能力和动手操作能力。情感态度与价值观:

1、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

2、使学生感悟到美源于生活,显示对美的追求,提高审美意识。教学重点难点:

圆柱体积计算公式的推导过程并能正确应用。教具、学具准备:

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具 教学过程:

一、铺垫孕伏:

1.求下面各圆的面积(回答)。

(1)r=1厘米;

(2)d=4分米;

(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、自主研究:

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的()体。这个长方体的底面积与圆柱体的底面积(),这个长方体的高与圆柱体的高()。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:

板书:圆柱的体积=底面积×高,用字母表示:板书:V=Sh

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4、教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

0.9米=90厘米

24×90=2160(立方厘米)

5、做试一试1、2题。两人板演,全班齐练。

6、“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

第12页练一练。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。板书设计: 圆柱的体积

长方体的体积=底面积×高

圆柱的体积 =底面积×高

V =

S × h

作业设计:

一、选择题

1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.

2②

4③6

④8

2.体积单位和面积单位相比较,().

①体积单位大

②面积单位大

③一样大

④不能相比

3.等底等高的圆柱体、正方体、长方体的体积相比较,().

①正方体体积大

②长方体体积大

③圆柱体体积大

④一样大

二、填空题

1.0.9平方米=()平方分米

2.3立方米5立方分米=()立方米

3.4.5立方分米=()立方分米()立方厘米

4.一个棱长为4厘米的正方体,它的表面积是().

5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().

6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是(),表面积是(),体积是().

7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().

8.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.

三、应用题:

1.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是多少?体积是多少?

2.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是多少?

3.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是多少?

4.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是多少平方厘米?

5.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

6.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

圆柱体容积的计算

课时 3

节次2

时间 教学内容:圆柱体容积的计算方法 教学目标:

知识与能力:使学生能够运用公式正确地计算圆柱的体积和容积,初步学会用转化的数学思想和方法,解决实际问题的能力

过程与方法:通过自主探究、练习,进一步巩固容积的计算方法。情感态度与价值观:渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积和容积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。教学准备:课件,圆柱体。

教学过程:

一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。求下面圆柱的体积。

(1)底面积是12平方分米,高5分米。(2)底面直径10厘米,高6厘米。(3)底面周长6.28分米,高4分米。

二、解决实际问题

1、出示:一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

(1)学生读题,回答问题:题目为什么告诉我们从里面量?怎样计算?(2)学生尝试练习,一生板演。(3)班内交流,订正。

2、小结:怎样计算物体的容积?

三、巩固练习:

1、一个圆柱形粮囤,高2.5米,底面周长12.56米。如果每立方米稻谷重600千克,这个粮囤大约能装稻谷多少千克? 两人扮演,全班练习。

2、做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

先交流算法,再练习,师根据情况予以指导。作业设计:

一、判断题

1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2 .()

2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()

3.所有圆的直径都相等.()

4.一张长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.()

5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.()

二、应用题

1、把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?

2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?

5.把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土?

6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.

7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

圆柱体体积和表面积的综合运用

课时 3

节次3

时间 教学目标:

1、通过综合练习,使学生进一步掌握有关圆柱的表面积和体积的计算。

2、能运用公式解决有关实际问题,加深对知识的理解。

3、提高和培养学生的观察、实践的能力。

教学重点:掌握有关圆柱的表面积和体积的计算,会综合运用。教学难点:运用所学的知识解决生活中的实际问题。练习过程:

一、揭示课题

圆柱体表面积和体积的综合练习。(板书)

二、基本练习

1、一个圆柱体侧面积是50.24平方厘米,底面积是12.56平方厘米,它的表面积是多少平方厘米?

2、一个圆柱体底面半径是10厘米,高20厘米,它的表面积是多少平方厘米?体积是多少立方厘米?

3、一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

4、一个圆柱体的体积是10立方分米,底面积是2.5平方分米,它的高是多少分米?

5、一个圆柱的底面周长是12.56分米,高是3米,它的体积是多少立方分米? 学生独立完成,师根据情况指导。

三、延伸练习:

1、把一个棱长是6分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?

2、一根长2米的圆木,截成两段后,表面积增加了24平方厘米,这根圆木原来的体积是多少?

3、一个底面直径是6厘米的茶杯里,装有7厘米高的水,放入一块小石头,水面上升到10厘米,这个石头的体积是多少立方厘米?

4、把一张长62.8厘米,宽31.4厘米的长方形硬纸片,卷成一个圆柱形纸筒,它的体积是多少?

5、一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的体积是多少立方厘米?

学生讨论交流以上练习的解题思路,师根据情况予以点拨。作业设计: 完成以上练习。

圆锥的体积

课时 3

节次1

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过实验得出圆锥体积计算公式,并会运用公式正确计算

过程与方法:引导学生经历圆锥体积计算的探索过程,体会类比等数学思想方法教材。情感态度与价值观:通过观察、操作,培养学生的动手实验能力。

教学重点:通过实验得出圆锥的体积计算公式,并会用公式计算圆锥的体积。教学难点:探索圆锥体积公式的推导过程。

教学准备:圆锥体、圆柱体模型容器、沙子、水。教学过程:

一、复习:

说一说圆柱体的体积计算方法,回忆已学过的立体图形的体积计算方法。

二、探究新知

导入:今年风调雨顺,许多农民家的小麦都获得了丰收,(投影出示p11图):小丽家有一大堆小麦,它像我们学过的什么图形?谁能猜猜这堆小麦体积是多少?

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来验证大家刚才的猜想,探究圆锥体积的计算方法。

教师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验。

3、汇报实验结果:

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。结论3:等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。公式:V = 1/3Sh

(二)算一算:如果小麦堆的底面半径为2米,高为1.5米。你能计算出小麦堆的体积吗?

学生在练习本上独立完成,集体订正。

三、巩固练习

1、试一试(p12)(一人板演,全班齐练)

2、判断对错,并说明理由.

(1)圆柱的体积相当于圆锥体积的3倍.()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1

3.求圆锥的体积:

底面半径是4厘米,高是5厘米。

底面直径是12厘米,高是4厘米。

底面周长是12.56分米,高是6分米。

4、应用题:

(1)一圆锥形的沙堆,底面直径是6米,高1.8米,它的体积是多少?学生口答计算方法。(2)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重油35千克,这堆小麦大约有多少千克?(得数保留整千克)

(3)一圆锥形的沙堆,底面周长是6.28米,高1.2米。若把它在宽5米的公路上铺2厘米厚,能铺多长?

引导学生理解题意,试做,师根据情况点拨。

四、小结:

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的三分之一。V=1/3sh 作业设计:

课本12---13页练一练1----7题。

圆锥的体积练习课

课时 3

节次2

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:引导学生经历圆锥体积计算的过程,体会类比等数学思想。

情感态度与价值观:通过练习,培养学生解决问题的能力和培养学生将所学知识运用和服务于生活的能力。

教学重点:熟练运用圆锥体的体积公式解决实际问题,教学难点:理解圆柱与圆锥的关系。

教学准备:圆锥体、圆柱体模型容器、课件。教学过程:

一、复习铺垫、内化知识。

1、圆锥体的体积公式是什么?我们是如何推导的?

2、圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(出示课件)

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、求下列圆锥体的体积。(口答算式)(1)底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米.高12厘米。

4.一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?

5.一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?

6.一个圆柱形油桶,底面半径是1.4分米,高5分米,做这样一个油桶需要多少铁皮?这个圆柱形油桶可以盛汽油多少升?(得数保留一位小数)4、5、6三人板演,全班齐练。然后教师根据学生练习中存在的问题,集体评讲。

三、丰富拓展、延伸练习。

1、拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2、讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

(3)圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

(4)一个圆柱体的体积和底面积与一个圆锥体分别相等,圆柱体的高是圆锥体高的()

(5)一个圆柱和一个圆锥的底面积相等,圆柱的体积是圆锥体积的2倍,圆柱的高是圆锥的高的()。

(6)用边长是1厘米的正方形围成一个圆柱体,它的体积是()

3、交流讨论结果,师根据情况点拨。

四、全课总结,内化知识。

1、提问:(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

作业设计:

一、填空

1. 等底等高的圆柱和圆锥,圆柱的体积是圆锥的(),圆锥的体积是圆柱的(),圆柱的体积比圆锥大(),圆锥的体积比圆柱小()。

2.一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,那么,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3.等底等高的圆柱和圆锥,圆柱的体积比圆锥大10立方米,圆柱的体积是(),圆锥的体积是()。

二、应用题

(1)一个圆锥和一个圆柱等底等高,圆柱比圆锥的体积大48立方分米,求圆柱和圆锥的体积各是多少?

(2)把一个底面周长是25.12分米,高是9分米的圆柱木料削成一个最大的圆锥体,这个圆锥的体积是多少分米?

(3)将一个棱长为6分米的正方体木块切削成 一个最大的圆锥体,应削去多少木料?

(4)一个圆锥和一个圆柱等体积等高,已知圆柱的底面周长是12.56分米,圆锥的底面积是多少?

(5)一个直角三角形的三条边分别为3厘米、4厘米、5厘米,沿它的一条直角边为轴旋转一周,可得什么图形?体积最小是多少?体积最大是多少?

圆锥的体积练习课

课时 3

节次 3

时间 教学内容:圆锥的体积深化练习教学目标:

知识与能力:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:学生经历圆锥体积的计算、比较、分析过程,进一步理解圆柱与圆锥的关系。情感态度与价值观:培养学生学习数学的兴趣,以及将所学知识运用和服务于生活的能力。教学重点:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。教学难点:进一步理解圆柱与圆锥的关系。教学准备:课件。教学过程: 课件出示

一、基本练习:

1、一个圆柱的底面积是12.56平方分米,高6分米,与它等底等高的圆锥的体积是多少?

2、一个圆柱的底面直径是8厘米,高5厘米,与它等底等高的圆锥的体积是多少? 一个圆锥的底面周长是9.42米,高1米,圆锥的体积是多少?

二、引导练习:

出示例题: 将一个体积为42.39立方分米的圆柱形零件熔铸成一个底面直径为12分米的圆锥体零件,圆锥的高是多少?

学生先讨论交流,然后师引导提问:

1、要求圆锥的高,必须知道哪些条件?

2、引导学生画出思路图:圆锥的高——体积、底面积

体积-------圆柱的体积

底面积-------底面直径

圆锥的高=体积×3÷底面积

3、学生独立解答。

三、深化练习:

出示例题: 一个长方体木块,长55厘米,宽40厘米,高30厘米,将其加工成一个最大的圆锥体木块,圆锥的体积是多少?

1、学生试做。

2、学生交流做法。

3、师点拨,重点引导理解加工成最大的圆锥体的底面直径和高。

四、巩固练习

一圆锥形的底面半径和高都 等于正方体的棱长,已知正方体的体积是30立方厘米,圆锥的体积是多少?

学生板演,全班练习。作业设计:

一、填空

1.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

2. 等底等高的圆柱和圆锥,如果先在圆锥容器中注满水,水面高12厘米,再全部倒入圆柱形容器中,水面高()厘米;如果先在圆柱容器中注满水,再把水倒入圆锥形容器直到注满,这时圆柱形容器中的水面高()厘米。

1.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。

2.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)

3.一个圆锥形的小麦堆,底面周长是 12.56米,高是2.7米,把这些小麦放到圆柱形的粮囤中去,恰好占这粮囤容积的78.5%。已知粮囤底面的周长是9.42米,求这个粮囤的高。(保留两位小数)

4、圆柱的体积是圆锥的2倍,圆柱的高与圆锥的高的比是2:5,圆锥的底面积与圆柱的底面积的比是多少? 圆锥的体积练习

5、将一个底面半径是4分米,高6分米的圆柱体零件熔铸成一个底面直径为4分米的圆锥形零件,求圆锥零件的高是多少分米?

练习一

课时 2

节次1

时间 教学内容:圆柱与圆锥的整理与复习教学目标:

知识与能力:使学生较为系统的掌握圆柱和圆锥的基础知识,进一步理解圆柱与圆锥的关系,能正确的解答有关问题。

过程与方法:学生经历系统整理的过程,提高自己的逻辑思维能力和空间想象力。情感态度与价值观:培养学生认真反思的好习惯。教学重点:运用所学知识解决实际问题。教学难点:深入理解圆柱与圆锥的关系。教学准备: 课件

教学方法:自主探究,合作交流。教学过程:

一、基本练习

1、回答下列问题:

(1)圆柱圆椎各有什么特征? 圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。

圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。

(2)怎样求圆柱的侧面积?怎样求圆柱的表面积?公式呢?生口答。(3)怎样求圆柱的体积?怎样求圆锥的体积?公式是呢?生口答。

(4)圆柱与圆锥之间有什么关系?(圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

二、完成课本练习一1-----6题。第1题:学生独立完成。

第2、3题:学生板演,集体订正。

第4题:让学生说一说求几个面的面积,在独立完成。第5题:学生独立完成。

第6题:引导学生先理清题中的信息和思路,在独立完成。

三、交流收获:你本节有什么收获? 板书设计 圆柱与圆锥

圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。侧面积 = 底面周长×高

表面积 = 侧面积+底面积×2 圆柱:v = sh

圆锥:

v =1/3sh 作业设计 一.填空

(1)一个圆锥体积是与它等底等高的圆柱体积的();(2)圆柱的体积相当于和它等底等高的圆锥体积的();

(3)把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的(),相当于圆锥体积的()。

(4)仔细观察,圆柱的体积是圆锥的的3倍的是()。(单位:cm)

二、1、一个圆柱形水池,直径是20米,深2米 ① 这个水池的占地面积是多少?

② 在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

2、一个圆柱形罐头盒,底面直径6厘米,高10厘米 ① 做这个罐头盒至少要用多少铁皮?

② 这个罐头盒上的包装纸的面积是多少平方厘米?

3、一个圆锥形的石子堆,底面周长25.12米,高3米,每立方米石子重2吨。如果用一辆载重4吨的汽车来运这些石子,至少需运多少次才能运完?

4、一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?

5、一个圆柱形木块切成四块(如图1),表面积增加48平方厘米;切成三块(如图2),表面积增加了50.24平方厘米。若削成一个最大的圆锥体(如图3),体积减少了多少立方厘米?

练习一

课时2

节次 2

时间 教学内容:北师大小学数学第十二册第14-17页

练习一 教学目标: 知识与能力:.1.复习圆柱、圆锥体积的计算公式,加深学生对立体形体之间内在联系的认识,使学生对所学的知识进一步系统化和概括化。2.通过实际操作,培养学生的实际能。过程与方法:学生通过练习、实际操作,对所学的知识进一步系统化和概括化。情感态度与价值观:使学生在解决实际问题中感受数学与生活的密切联系 教学重点::体积计算公式的运用。

教学难点:运用所学的知识解决生活中的实际问题。教学准备:课件

教学方法:学生练习,师点拨。教学过程: 出示课件:

一、针对性练习。

1、一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体()

2、把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是()

3、圆柱的体积是和它等底等高的圆锥体积的()

4、圆锥的体积是和它等底等高的圆柱体积的()

5、圆柱的体积比和它等底等高的圆锥体积多()

6、圆锥的体积比和它等底等高圆柱的体积少()学生独立完成,师根据情况点拨。

二、完成课本练习一7-----思考题。第7题:生独立完成。

第8题:师引导学生观察两个圆柱,再试着说出体积之比。用两种方法说明:一种是举例:设大圆的底面半径和小圆的底面半径,计算出两个圆柱的体积,再求体积比;另一种用计算公式来说明:大圆的底面半径为R,小圆的底面半径为r,大圆柱与小圆柱的体积之比是:(ΠR ²×18):(πr ²×18)=R ²:r ²=9:4。通过计算说明,在高一定的情况下,两个圆柱的体积比等于两个半径的平方比。第9题:本题有两种解法,让学生试做,然后交流不同的方法。第10题:先让学生说说思考方法在做。

第11题:本题是“等积变形”题,学生试做,再点拨。

第12题:本题是一个组合图形,学生试做,师根据情况点拨。

你知道吗?本栏目是向学生介绍沙漏,让学生讨论后试着解答,师点拨。

三、课堂小结:

通过练习,你有什么收获?全班交流。作业设计:

一、填空

1、一个直角三角形,两条直角边分别为3厘米和6厘米,以短直角边为轴旋转一周,可以得到一个()体,它的体积是()立方厘米

2、把一根9分米的圆柱形钢材截成两段后,表面积比原来增加了2.4平方分米,这根圆柱形钢材原来的体积是()立方分米

3、(课件显示)一个铁皮制成的底面直径为20厘米,高10厘米的圆柱形的礼品盒,捆扎时,底面成十字形,打结处用去绳子18厘米,共需塑料绳()厘米,做一个礼品盒至少要用()铁皮,这个礼品盒大约装()立方厘米的礼品。

二、判断题:

A.电线杆上下两个底都是圆,所以电线杆是圆柱。()

B.一段圆柱形木材,削成一个最大的圆锥体,削去的部分是原体积的1/3()C.圆柱的底面半径扩大2倍,高也同时扩大2倍,圆柱体积就扩大8倍。()(用手势进行判断,并说明理由)三.选择题:

1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。

A 0.3

B 10

C 3

D 6

2、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是()分米.A 0.4

B 3.6

C 1.2

D 0.6

3、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深()米.A 2

B 3

C 0.6

D 5 四.求下组合体的体积:(单位:厘米)

五.应用题:

1、一个圆锥形沙滩,低面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?

2、一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克?

3、一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克?

4、把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?

实践活动

课时

节次

时间 教学内容:教材17页实践活动。教学目标:

知识与能力:通过“用长方形卷圆柱形”的探索活动,鼓励学生应用所学知识解决实际问题。过程与方法:经历探索规律的过程,体会变量之间的关系。情感态度与价值观:培养学生学习数学的兴趣。教学重点:圆柱表面积和体积的应用。教学难点:体会变量之间的关系。

教学准备:学生每人准备4张长方形纸:长16厘米,宽4厘米。

教学方法:实验法。教学过程:

一、回答问题:

圆柱的表面积和体积公式各是什么?

二、实践活动:

活动一:拿出两张长方形纸,一张以宽为高,一张以长为高,分别卷成一个圆柱体。猜一猜:两个圆柱体的体积一样大吗? 算一算:两个圆柱体的体积一样大吗? 学生列式解答,交流计算方法。

通过计算,得出结论:一张以宽为高卷成的圆柱体的体积大。

活动二:再拿出两张长方形纸,分别按教材的步骤做成两个圆柱体。两个圆柱体的底面半径和高各是多少?

计算它们的体积各是多少?(小组合作计算)

得出结论:同样大小的纸,底面周长越大,体积越大。活动

三、汇总四个圆柱有关数据,填写教材表格,你发现了什规律?

交流发现,得出结论:当侧面积一定时,越是细长的圆柱体积越小,越是粗矮的圆柱体积越大。课后探讨:

再找两张纸,按照不同的方式剪一剪,卷一卷,得到不同的圆柱形。探讨:活动三的结论还成立吗?要求记录实验数据,写出计算过程)

第三篇:圆柱与圆锥单元教案北师大版小学六年级数学下册

圆柱与圆锥单元教案 北师大版小学六年级数学下册

第一课时

教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。

教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。教学重点:使学生认识圆柱的特征。

教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。教学过程:

一、复习

我们已经认识了长方体和正方体。

谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?

谁能说一说我们学习了长方体和正方体的哪些知识?

二、新授

教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。

1、初步印象

教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?(圆柱是由2个圆,1个曲面围成的。)

2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?

3、交流和汇报

(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。

4、举例说明进一步明确特征

教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)

5、运用知识进行判断

下面哪些图形是圆柱?哪些不是?说明理由。

6、制作圆柱

三、练习

1、运用知识进行判断

下面哪些图形是圆柱?哪些不是?说明理由。第二课时(重点课时)

教学目标:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。教具准备:圆柱形的物体,圆柱侧面的展开图。

教学重点:运用侧面积公式、表面积公式进行计算。教学难点:侧面积公式的推导过程。教学过程:

一、复习

1.指名学生说出圆柱的特征。2.质疑

怎样推倒圆柱的侧面积呢?

二、导入新课

教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示(略)

讨论:这个展开后的长方形与圆柱有什么关系?

(这个长方形的长等于圆柱的周长,长方形的宽等于圆柱的高)

说说:圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

三、新课

1.推导圆柱的侧面积公式。2.教学例1。用投影出示例1。(1)独立完成(2)质疑、个别指导 3.小结。

要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。4.理解圆柱表面积的含义。

教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成? 通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。

教师指着圆柱的展开图,“那么,圆柱的表面积是什么?”

指名学生回答,使大家明确:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

板书:圆柱的表面积=圆柱侧面积+两个底面的面积 5.教学例2。出示例2的题目。

教师:这道题已知什么?求什么?

学生:已知圆柱的高和底面半径,求表面积。教师:要求圆柱的表面积,应该先求什么?后求什么? 使学生明白;要先求圆柱侧面积和底面积,后求表面积。教师:我们可以根据已知条件画出这个圆柱。随后教师出示一圆柱模型,将数据标在图上。教师:现在我们把这个圆柱展开。出示展开图,如下:

让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少?圆柱的侧面积怎样计算?圆柱的底面积应该怎样求?”

指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。

然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。做完后,集体订正。6.教学例3。出示例3。

教师:这道题已知什么?求什么?

学生:已知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。教师;要计算做这个水桶需要多少铁皮,应该分哪几步? 学生分组计算、集体交流汇报 7.小结。

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积。

四、巩固练习1.做第5页3题 学生独立完成 2.运用

一个没有盖的圆柱形状的水桶,高是45厘米,底面半径是22厘米,做这样一个水桶,至少需要用多少材料?

五、作业 书5页2、4题

第三课时

教学目标:通过圆柱切分和拚合的练习,使学生进一步加深对圆柱的特征认识,掌握圆柱体表面积变化的规律。

教学重点:通过学生动手操作,积极思考,提高空间的想象能力。

教学难点:提高学生的空间想象能力。

教学过程:

一、复习

回忆圆柱体的特征、侧面积、表面积的求法。

二、习题练习

1、选择正确答案

(1)一个圆柱木棒,底面直径2厘米,高3厘米,如果沿地面直径纵剖后,表面积之和增加()厘米。A 6 b 12 c 24 d 48(2)把圆柱的钢材沿平行地面的方向截成三段,表面积之和增加12平方厘米,钢材的第面积应是()a 6 b 4 c 3 d 2

2、讨论并解答

一个圆柱木块,高减少1厘米后,表面积就减少了6.28平方厘米,这个圆柱的底面积是多少平方厘米?

3、测量黄瓜表面积实践作业练习

三、作业;数学书 6页 7 8 9题

四、课后反思:

第四课时

教学目标:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式;使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。

教学重点:能够正确计算圆柱体体积

教学难点:圆柱体体积公式的推导过程。

教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。

教学过程:

一、复习

1.圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)2.长方体的体积怎样计算?

学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

板书:长方体的体积=底面积×高

3.拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么圆柱有几个底面?有多少条高?

二、导入新课

教师:请大家想一想,在学习圆的面积时,我们是怎样把圆变成已学过的图形再计算面积的?

先让学生回忆,同桌的相互说说。

然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

让学生相互讨论,思考应怎样进行转化。

指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开教师应该给予表扬。

教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。板书课题:圆柱的体积

三、新课

1.圆柱体积计算公式的推导。圆的面积是怎样推导出来的?

圆柱体积计算公式的推导又会怎样呢?(看模型,联想长方体)推导其体积计算公式

板书:圆柱的体积=底面积×高

教师:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积计算公式: V=Sh 2.教学例1 出示例1(1)教师指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?

通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。(2)用投影出示下面几种解答方案,让学生判断哪个是正确的? ① V=Sh=50×2.l=105 答:它的体积是105立方厘米。②2.1米=110厘米。V=Sh=50×210=10500

答:它的体积是1050O立方厘米。③50平方厘米=0.5立方米

V=Sh=0.5×2.1=1.05答:它的体积是1.05立方米。④50平方厘米=0.005平方米 V=Sh=0.005×2.1=0.0105立方米 答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单i对不正确的第①、③种解答要说说错在什么地方。

五、作业:数学书 9页 2、3、4、第五课时

教学目标:使学生进一步熟练掌握求圆柱的表面积和体积的方法,并能根据实际情况运用公式解决一些实际问题。教学重点:灵活运用公式解决问题 教学过程:

一、揭示课题

二、基本练习

1、练习二 1题 回忆计算公式,并逐个计算。

2、选择:(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)

(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)

(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)

(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)

三、深化练习

1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?

2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?

3、投影练习(略)

四、课堂作业

练习二 5、6、7、8 题

第六课时

教学目标:使学生进一步熟练掌握求圆柱的表面积和体积的方法,并能根据实际情况运用公式解决一些实际问题。教学重点:灵活运用公式解决问题 教学过程:

一、判断:

1、求长方体、正方体、圆柱体的体积都可以用底面积乘高的计算方法。

2、圆柱体的底面扩大3倍,高扩大2倍,体积扩大6倍

3、当一个圆柱体的底面周长和高相等时,沿着高线将圆柱体切开,这时这个侧面展开是一个正方形。

二、求圆柱体的体积和表面积(略)

三、投影(图)

四、解答应用题

五、作业:9、10、11、12 第七课时

设计思想:让学生在自由的空间学习,通过动手操作,亲身感受,在自主交流过程中,培养学生的空间观念,并认识圆锥的高、侧面,底面。

教学目标:培养学生空间观念,建立立体图形意识,认识圆锥 教学重点:认识圆锥的特征 教学难点:空间观念的培养。教具学具:

教具:(1)铅笔、卷笔刀(2)圆锥体、圆 柱体教具各1个(3)大三角板一个

学具:(1)圆锥体实物(2)纸做的圆锥体、圆柱体模型各1个(3)小刀、绳子、直尺、剪刀

一、导入新课

1、出示一支圆柱形铅笔,问:这是什么形体?你能说说圆柱体各部分的名称和它的特征吗? 生述

2、问:把这支铅笔横截成两段,各是什么形体?

猜一猜,把它放进卷笔刀卷一卷,会出现什么形体?生述完后师操作,出现一个圆锥体。这就是我们这堂课要学习的内容,板书课题:圆锥的认识。看了课题后,你想学习什么?

二、讲授新课:

放手寻找圆锥体各部分名称。(1)联系实际举例。

师问:日常生活中,你见过哪些物体是圆锥形的?(2)引导观察特征 取出圆锥体学具,问:

我们要进一步认识圆锥,可以用哪些方法?(看一看,摸一摸)请大家看一看,摸一摸圆锥,你发现了什么?说给同桌听。让一生上来指,回答后师板书: 顶点:1个 侧面(曲面)面:2个 底面(圆)同桌互指互说一遍。认识圆锥的高

(1)显示两个圆锥一个高、一个低,问:观察这两个圆锥,你发现了什么?(高、低不同)是由圆柱的什么决定的?

下面我们来研究圆锥的高。你想知道什么?(什么是圆锥的高?圆锥有几条高?在哪里?怎么画等)请同学们带着这些问题来自学课本。

(2)讨论交流 A.什么是圆锥的高?

B.①拿出一个捏成圆锥体的橡皮泥,这条高在圆锥的哪里?看见吗?指母线,这条是不是圆锥的高? ②利用手中的工具,四人小组合作找出圆锥的高.(工具:小刀、绳子)③交流汇报:

生汇报用小刀把圆锥切开,师问:切时要注意什么?这样切可以吗?显示斜切的过程,为什么?(和底面不垂直)这样切可以吗?显示沿着底面直径的平行线切的过程,为什么?(没有从顶点出发,找不到圆心)拉时要注意什么?(跟底面直径垂直)

C.通过操作,你能再来用自己的话说说什么是圆锥的高?圆锥的高有几条?为什么? D.在下发的练习纸上的立体图上画高,标上字母h。

3、测量圆锥的高

(1)我们在一个可切开的圆锥体上找到了它的高,那么在一些不可切的物体上怎样找到它的高,并知道高是多少呢?同桌互相商量一下,利用手中的工具,互相配合着试试看,量出圆锥体学具的高,有困难的可以看书本。(2)操作

(3)汇报测量的步骤及测量结果。

师问:其实,同学们手中的圆锥高度都是一样的,为什么测量结果不太一致呢?你认为测量时要注意什么?

(圆锥平板必须放平、刻度处理、尺子必须竖直等)

4、认识圆锥侧面展开图 让学生把圆锥体学具侧面剪开,问:侧面展开是什么形状?(扇形)

5、想象,对圆柱有一个完整的认识。

出示直角三角板:握住一个角的顶点旋转一周,会形成一个什么形体?三角形的三条边分别是圆锥体的什么?

三、巩固练习

1、找一找,哪些图形是圆锥体,哪些物体是由圆锥体和其它物体组成的?

2、判断

(1)圆锥有无数条高()(2)圆锥的底面是一个椭圆()

(3)圆锥的侧面是一个曲面,展开后是一个扇形()(4)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高()

3、同桌交流说说圆柱和圆锥的特征,并比较它们的相同点和不同点。指名回答后,整理入下表:

四、总结

这节课我们学习了什么?除了上面表中的一些内容外,你还学到了什么知识?你还学到了什么本领?你还想了解有关圆锥的哪些知识? 五:作业:到生活中去找更多的圆锥形状的物体。

六、板书: 圆锥的认识

课堂反思:学生的学习气氛比较活跃,能够在愉快的环境中学习探究新知,思维比较敏捷,达到了预期效果。第八课时

教学目标:培养学生自主探究的精神,在生活中发现数学问题,推导出圆锥体积公式并能利用公式解决问题。教学重点:利用圆锥公式解决问题 教学难点:圆锥公式的推导过程。

一、发现问题:

昨天我们已经共同认识了一种新的立体图形——圆锥。想一想:

你怎样才能知道这个圆锥的体积呢?(出示实心圆锥实物)下面,咱们就共同来研究一下圆锥体积的计算公式。(板书课题)

二、探索问题:

为了便于同学们研究,老师这儿有一些圆锥,以小组为单位选择一个最喜欢的拿回去。根据我们以往研究几何形体的经验,你打算怎样研究圆锥的体积呢?(转化是我们学习、研究数学,尤其是几何形体的一种重要思想。)

看来,我们这样实验下去是不能得出圆锥体积的计算公式的。圆锥与圆柱在体积上存在的不同关系是由什么决定的?

在学生的交流中,逐步完善圆锥体积的计算公式。

三、解决问题

下面就应用我们自己总结出来的圆锥体积的计算公式,计算一下实验中应用的这个圆锥的体积。(底面积=80平方厘米,高=12厘米)(出示投影)出示与圆锥等底等高的圆柱体,它的体积是多少?

有了圆锥体积的计算公式,要想知道这个圆锥形大沙堆的体积,你应该怎么办?(动画演示)你能举出其他有关求圆锥体积的题目吗? 教师举例:(出示投影)

1、一个圆锥的体积是40立方厘米,圆柱的体积是多少?

2、一个圆柱的体积是120立方厘米,与它等底等高的圆锥的体积是多少?

四、全课总结:

通过对圆锥体积的研究,你的最大收获是什么?

其实,世间万物都是普遍联系的,在学习、研究过程中,只要我们抓住事物之间的本质联系,大胆探索、勇于实践,成功就会永远属于我们。

五、作业:数学书 14页 2、3、4题

第八课时

教学目标:通过练习,使学生进一步掌握圆锥体积的计算。教学重点:能够让学生进一步掌握圆锥体积的计算。教学过程:

一、复习:

提问:

1、圆锥的体积公式是什么?

2、填空

(1)一个圆锥体积是与它等底等高的圆柱体积的();(2)圆柱的体积相当于和它等底等高的圆锥体积的();

(3)把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的(),相当于圆锥体积的()。

二、课堂练习

1、求圆锥体积

(1)底面积是12平方厘米,高是6厘米(2)底面半径是6厘米,高是4厘米(3)底面直径是10厘米,高是12厘米

(4)底面周长是18.84厘米,高是3.5厘米。

2、计算容积

(1)一个圆锥形沙滩,低面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?

(2)一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克?

作业:5、6、7

第九课时 教学目标:

1、能在老师指导下,进行单元知识整理。加深理解和掌握圆柱和圆锥体积计算公式的推导,联系前面所学有关内容,形成有关体积计算的知识结构。

2、会应用公式熟练进行计算,独立解决一些实际问题。掌握一定的问题解决策略。3、通过本课教学,培养学生主动学习的良好品质,开发学生智力,发展创造思维。教学重点:会应用公式熟练进行计算,独立解决一些实际问题。教学过程:

一、进行知识整理。

回忆公式

二、针对性练习。

一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体()把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是()圆柱的体积是和它等底等高的圆锥体积的()圆锥的体积是和它等底等高的圆柱体积的()圆柱的体积比和它等底等高的圆锥体积多()圆锥的体积比和它等底等高圆柱的体积少()三.选择题:

1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。A 0.3 B 10 C 3 D 6

2、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是()分米.A 0.4 B 3.6 C 1.2 D 0.6

4、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深()米.A 2 B 3 C 0.6 D 5 四.求下组合体的体积:(单位:厘米)(7分)

五.应用题:(第(1)8分,其它每题7分,共29分)1.一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克? 2.把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?

第四篇:2015新版人教版六年级数学下册 第三单元 《圆柱与圆锥》教学设计范文

第三单元 圆柱与圆锥

【教学目标】

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决相关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型的活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。使学生经历探索知识的过程,培养学生自主解决问题的能力。

【重点难点】

1.认识并掌握圆柱和圆锥的形体特征,掌握圆柱表面积和体积、圆锥体积的计算方法及推导过程。

2.利用所学的知识解决实际问题。

【教学指导】

1.加强数学知识与实际生活的联系,提高学生运用所学知识解决实际问题的能力。

本单元内容加强了与生活的联系,也为教师组织教学提供了思路。因此教学时应注意加强与实际生活的联系,重视运用所学知识解决实际问题的意识与能力的训练。如,在认识圆柱和圆锥之前,可以让学生收集、整理生活中圆柱、圆锥的实例和信息材料,以便在课堂中交流。认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形物品,让大家欣赏或使用,这样既可激发学生的学习兴趣,又可提高学生运用数学为生活服务的意识和能力。

2.让学生经历探索知识的过程,培养学生自主解决问题的能力。

本单元加强了对图形特征、计算方法的探究。为此,在教学时,应放手让学生经历探索的过程,在观察、操作、推理、想象过程中掌握知识、发展空间观念。如圆锥体积的教学,教材首先创设了一个问题情境“如何知道像铅锤这样的物体的体积?”引导学生探索,并给出提示:圆锥的体积与圆柱的体积有没有关系。在教学时,教师应大胆放手让学生探究,注意提供给学生积极思考,充分参与探索活动的时间和空间。如圆锥的体积等于与它等底等高的圆柱体积的三分之一,应让学生在经历试验探究的过程中获取,以改变只按教材说明进行演示得出结论的做法。

【课时安排】建议共分10课时:

1.圆柱

6课时 2.圆锥

3课时 整理和复习

1课时 【知识结构】

1.圆柱

第1课时 圆柱的认识

【教学内容】

圆柱的认识(教材第17~20页)。【教学目标】

1.使学生了解圆柱的特征,认识圆柱的底面及其直径和半径,圆柱的高、侧面及圆柱的展开图。

2.通过观察,认识圆柱并掌握它的特征,建立空间观念。3.培养学生的观察能力,增强从实物抽象到几何图形的能力。【重点难点】

1.理解并掌握圆柱的特征,建立空间观念。

2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形),理解长方形(侧面展开图)的长和宽与圆柱的底面周长和高的关系。

【情景导入】

师:今天我给大家带来一位朋友,你们知道它是谁吗?(师拿起圆柱体模型,让学生一起说出它的名字。)

师:在一年级我们就看见过它,却没有深刻认识它,想不想进一步认识它? 师:好,那么我们这节课就来认识一下圆柱,一起走近它,看看它究竟有什么奥秘。

(教师板书课题:圆柱的认识。)【新课讲授】 1.初步感知圆柱。

(1)大家找一找我们生活的周围有哪些圆柱形的物体,谁能说一说?(师指名回答)

(2)教师展示课件中常见的圆柱形物体。

(3)教师:这些物体有哪些共同的特点?大家也可以拿出自己手中的圆柱形物体看一看,摸一摸。

(4)教师又拿出几个不是圆柱,接近圆柱形物体,然后问:它们是圆柱吗?为什么?那么什么样的物体才是真正的圆柱?

学生回答后,教师强调:圆柱一定是直直的,上下一样粗细。2.教学例1。(1)认识圆柱的面。

分组活动,每人拿一个圆柱,摸一摸它的面。学生互相交流自己的感觉。启发学生自主探究圆柱的特征。

教师:圆柱一共有几个面?用手摸上、下底,看一看有什么特点?再摸一摸侧面,有什么感觉,它是一个什么面? 学生:3个面;形状相同,都是圆形,面积相等;曲面。

教师小结:圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱的侧面是一个曲面。

教师在黑板上画出圆柱图,并把上下底面、侧面标出来。(2)认识圆柱的高。

①教师出示高、矮不同的圆柱体提问:哪个圆柱高,哪个圆柱矮? 想一想:圆柱的高矮与圆柱的两个底面之间有什么关系? 引导学生思考得出:圆柱的高矮与圆柱的底面无关。

②如何测量圆柱的高?小组讨论,找出测量方法。然后请一名学生展示自己的测量方法。

师问:他的测量方法好吗?有没有需要改进的地方?让学生各抒己见。教师演示正确的测量方法。并强调:在测量中一定要注意圆柱要水平放置,刻度尺也要水平放置。

(3)教师出示准备好的长方形纸片。

教师:同学们和我一起快速转动纸片,看一看转出来的是什么形状。组织学生操作后,汇报结果。

3.教学例2。

(1)请同学们摸一摸你们的圆柱体的侧面,猜想一下,如果把侧面展开后会是什么形状?(2)组织学生分小组操作:剪开侧面,再展开。

(3)教师:你们有什么发现?会有几种情况出现?小组之间可以相互交流。圆柱的侧面展开可能是长方形、正方形、平行四边形。教师同时用课件展示三种不同的圆柱侧面展开图,让学生系统直观的感受展开图。

(4)大家再认真观察展开图的长和宽并和圆柱相比较,此时的长相当于圆柱的什么?宽呢?学生观察并思考。教师用课件将长方形还原并再打开。

让学生经过比较、分析概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。

(5)引导学生思考:什么情况下圆柱的侧面展开图是正方形?

引导学生回答:圆柱的底面周长与高相等时,圆柱的侧面展开图是正方形。同时教师用课件展示一遍。

【课堂作业】

1.完成教材第18、19页的“做一做”。

组织学生先独立做一做,再在小组中相互交流。2.完成教材第20页练习三的第1、2、3题。

第1题要让学生仔细观察并准确地说出图中哪些地方或物体的哪一部分是圆柱。

第2题指名说。

第3题学生判断后,要让学生说理由。还可以让学生想一想,如果把第2、3个图形围起来,会出现什么情况? 答案:

2.第1题:手电筒的筒身、柱子、哑铃的把手和两端都是圆柱。第2题:长方体 正方体 圆柱

第3题:第一个图 理由:将圆柱展开,长方形的长应等于底面圆的周长。【课堂小结】

通过这节课的学习,你有哪些收获? 组织学生畅谈学习的收获。【课后作业】

完成练习册中本课时的练习。

第2课时 圆柱的表面积(1)

【教学内容】

圆柱的表面积(1)(教材第21页例3)。【教学目标】

1.理解圆柱的表面积的意义。

2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

【重点难点】

1.掌握圆柱的侧面积和表面积的计算方法。

2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。【教学准备】

多媒体课件和圆柱体模型。

【复习导入】 1.复习引入。

指名学生说出圆柱的特征。2.口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?(2)长方形的面积怎样计算? 板书:长方形的面积=长×宽。【新课讲授】

1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。师:圆柱的侧面展开是一个什么图形? 生:长方形。

师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

2.教学例3。

(1)圆柱的表面积的含义。

教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

(2)计算圆柱的表面积。

①师:圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

答案:628cm2 【课堂作业】

完成教材第23页练习四的第2~6题。

第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

第5题,对于有困难或争议大的,可用实物或模型直观演示。第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。答案:

第2题:3.14×1.2×2=7.536(m2)第3题:3.14×1.5×2.5=11.775(m2)第4题:3.14×3×2+3.14×(3÷2)2=25.905(m2)

第6题:长方体:800cm正方体:216dm2

圆柱:533.8cm2 【课堂小结】

通过这节课的学习,你有哪些收获? 【课后作业】

完成练习册中本课时的练习。

第2课时 圆柱的表面积(1)

第3课时 圆柱的表面积(2)

【教学内容】

圆柱的表面积(2)(教材第22页例4)【教学目标】

能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。【重点难点】

运用圆柱的表面积公式解决问题。【教学准备】

多媒体课件和圆柱体模型。

【复习导入】

前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么? 指名学生回答。板书:

圆柱的表面积=圆柱的侧面积+两个底面面积 圆柱的侧面积=圆柱的底面周长×高 【新课讲授】 教学例4。

(1)出示例4。学生读题,明确已知条件:已知圆柱的高和底面直径,求表面积。

(2)求厨师帽所用的材料,需要注意:厨师帽没有下底面,说明它只有一个底面。

(3)指定两名学生板演,其他学生独立进行计算。教师巡视,注意看学生所算最后的得数是否正确。

指导学生做完后集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整十平方厘米,省略的个位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。(4)巩固练习。

①教材第22页“做一做”第1题。组织学生独立完成。

②教材第22页第2题。请三名学生板演,其余同学做在草稿本上。答案:①第22页“做一做”第1题:1.12m2,100.48dm2 ②第22页“做一做”第2题:376.8cm2 【课堂作业】

完成教材第23~24页练习四的第7~12题。

第7、8题,学生独立作业,老师巡视,个别不会的加以指导。

第9题,提醒学生注意是上下底面分别留出了78.5cm2的口,应减去的部分是78.5×2=157(cm2)。

第10题,先让学生明确计算步骤,再分步列出算式,最后计算水桶的用料。第11题,教师应先用教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体的表面积与圆柱的侧面积之和减去圆柱的一个底面积。提醒学生注意根据要求将计算结果化成以平方米为单位的数,并根据实际情况保留近似数。

第12题,是已知圆柱的侧面积和底面半径,求圆柱的高,部分学生有困难。教师辅导时可以提示学生列方程解答。

答案:

第8题:花布:3.14×18×80=4521.6(cm2)黄布:3.14×(18÷2)2×2=508.68(cm2)

第9题:3.14×20×30+3.14×(20÷2)2×2-78.5×2=2355(cm2)第10题:3.14×(12×

33)×12+3.14×(12×÷2)2=402.705(dm2)44第11题:(1)12×12×2+16×12×4+3.14×12×55-3.14×(12÷2)2 =3015.36cm2≈0.31(m2)(2)50×0.31×30=465(元)

第12题:188.4÷(2×3.14×2)=15(dm)【课堂小结】

通过这节课的学习,你有哪些收获? 【课后作业】 完成练习册中本课时的练习。

第3课时 圆柱的表面积(2)圆柱的表面积=圆柱的侧面积+两个底面面积

实际用料>计算用料 “进一法”→近似数

第4课时 圆柱的体积(1)

【教学内容】

圆柱的体积(教材第25页例5)。【教学目标】

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

【重点难点】

1.掌握圆柱的体积公式,并能运用其解决简单实际问题。2.理解圆柱体积公式的推导过程。【教学准备】

推导圆柱体积公式的圆柱教具一套。

【复习导入】 1.口头回答。

(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?

教师板书:圆柱的体积(1)。【新课讲授】

1.教学圆柱体积公式的推导。(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。(3)启发学生思考、讨论:

①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。

②通过刚才的实验你发现了什么?

教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想: ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

(6)推导圆柱的体积公式。

①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。

教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

教师板书:

2.教学补充例题。

(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。它的体积是多少?

(2)指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?

学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。(3)出示下面几种解答方案,让学生判断哪个是正确的。①50×2.1=105(cm3)答:它的体积是105cm3。②2.1m=210cm

50×210=10500(cm3)答:它的体积是10500cm3。

③50cm2=0.5m

20.5×2.1=1.05(m3)答:它的体积是1.05m3。④50cm2=0.005m2 0.005×2.1=0.0105(m3)答:它的体积是0.0105m3。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。

(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?

教师板书:V=πr2h。【课堂作业】

教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

答案:“做一做”:1.6750(cm3)2.7.85m3 第1题:(从左往右)3.14×52×2=157(cm3)3.14×(4÷2)2×12=150.72(cm3)3.14×(8÷2)2×8=401.92(cm3)【课堂小结】

通过这节课的学习,你有什么收获?你有什么感受? 【课后作业】

完成练习册中本课时的练习。

第4课时 圆柱的体积(1)

第5课时 圆柱的体积(2)

【教学内容】 圆柱的体积(2)【教学目标】

能运用圆柱的体积计算公式解决简单的实际问题。【重点难点】

容积计算和体积计算的异同,体积计算公式的灵活运用。【教学准备】 教具。

【复习导入】 口头回答。

教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h 【新课讲授】 1.教学例6。

(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。

(2)学生尝试完成例6。①杯子的底面积:

3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)(3)比较一下补充例题和例6有哪些相同的地方和不同的地方? 学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。

2.教学补充例题。(1)出示补充例题:教材第26页“做一做”第1题。

(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。

(3)教师评讲本题。【课堂作业】

教材第26页“做一做”第2题,第28页练习五第3、4题。

第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。

第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。答案:“做一做”:

2. 3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)

第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)第4题:80÷16=5(cm)【课堂小结】

通过这节课的学习,你有什么收获和感受? 【课后作业】

完成练习册中本课时的练习。

第5课时 圆柱的体积(2)圆柱的体积=底面积×高

V=Sh=πr2h

第6课时解决问题

【教学内容】

解决问题。(教材第27页内容)【教学目标】

利用圆柱的相关知识解决问题。【重点难点】

求不规则圆柱体的体积。【教学准备】

多媒体课件、矿泉水瓶。

前面我们已经学习了圆柱的体积求法,今天我们来学习它的更多应用。

【情景导入】

我们之前在推导圆柱的体积公式时,是把它转化成近似的长方体,找到这个长方体与圆柱各部分的联系,由长方体的体积公式推导出了圆柱的体积公式。那么不规则圆柱的体积要怎么求呢?

今天老师带来了一个矿泉水瓶,它的标签没有了,要怎么通过计算得出它的容积呢?

【新课讲授】 1.教学例7。

2.学生读题,明确已知条件及问题。

学生:这个瓶子不是一个完整的圆柱,无法直接计算容积。教师:所以,我们要看看,能不能将这个瓶子转化成圆柱呢?

3.拿出水瓶,装上一部分水,按照例题中的方法做出讲解。引导学生思考。解题思路:

(1)瓶子里水的体积倒置后没变,水的体积加上18cm高圆柱的体积就是瓶子的容积。

(2)也就是把瓶子的容积转化成了两个圆柱的容积。【课堂作业】

完成教材第27页“做一做”。这类题的解题关键是明确瓶子正放和倒放时空余部分的容积是相等的。

答案:3.14×(6÷2)2×10=282.6(cm3)=282.6mL。【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第6课时 解决问题

1.转化成圆柱。

2.瓶子容积=圆柱1+圆柱2。

2.圆锥

第1课时 圆锥的认识

【教学内容】

圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、2题)。【教学目标】

1.认识圆锥,掌握它的各部分名称及特征。2.认识圆锥的高,掌握测量圆锥的高的方法。

3.通过观察圆锥建立空间观念,培养学生的观察能力,以及从实物抽象到几何的能力。

【重点难点】

认识圆锥的高及高的测量方法。【教学准备】

圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,米(或沙子),三角板,长方形,半圆形硬纸片。

【情景导入】

“魔术”导入,引出课题。

1.出示一个圆柱,用这个圆柱外壳套住一个圆锥。教师:这是一个圆柱,谁能说说它有什么特征? 学生回答。

2.教师:现在老师用一块布把这个圆柱遮住(边说边演示)。如果这个圆柱的上底面慢慢的缩到圆心时,那么圆柱将变成怎样的呢?你能试着描述一下吗?

学生回答。

3.教师:现在看一看,老师能不能把这个圆柱变成你们说的那样。教师喊一、二、三,揭开遮在圆柱上面的布,露出一个圆锥。教师:像你们说的一样吗? 学生回答。

4.教师:看到这个课题,你想知道什么呢? 【新课讲授】 1.初步感知。

电脑出示圆锥实物图。

教师:观察上面这些物体的形状有什么共同点?教师利用课件动画光点的闪烁,闪动实物图的轮廓,移走实物的模样,剩下图形的轮廓,抽象出圆锥的几何图形。

教师:这样的图形叫圆锥。在我们生活的周围,你们知道哪些物体是圆锥形的? 2.认识圆锥及各部分的名称。

(1)引导学生认真对照图形和模型观察。

请一名学生上台指出哪是圆锥的底面,哪是圆锥的侧面。

师:我们已经知道了圆锥的底面和侧面,大家围绕下面几个问题同桌之间共同探讨。

①圆锥有几个底面?是什么形状的?

②用手摸一摸圆锥的侧面,你发现了什么?

③用手摸一摸圆锥的顶点,你有什么感觉?组织学生先独立思考,再在小组中相互交流,然后汇报。教师根据学生的汇报结果小结:圆锥有一个底面,是圆形的,有一个侧面,它是一个曲面,有一个顶点。

(2)怎样画圆锥的平面图呢?

示范:先画一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆的,最后标出顶点、底面、圆心、底面半径r。(师在黑板上画出来)学生试着在自己的练习本上画。(3)认识圆锥的高。

师:圆锥的高在哪里?圆锥的高有几条?先让学生小组讨论交流汇报,然后全班讨论。

教师:圆锥的高就是指从圆锥的顶点到底面圆心的距离。(师在黑板上画出来)那么它有几条高一看就知道了。(1条)

(4)测量圆锥的高。

教师:由于圆锥的高在圆锥的里面,我们不能直接测量它的长度,怎样测量圆锥的高呢?

组织学生小组合作,交流汇报。课件演示测量过程,教师叙述: ①把圆锥的底面放平;②用一块木板水平的放在圆锥的顶点上面; ③竖直地量出平板和底面之间的距离。同桌相互配合,动手测量手中圆锥的高。教师:谁来展示一下你的方法,有其它的方法吗? 教师:如果是圆锥形的沙堆和粮堆,又怎样测量它的高呢?(学生合作实验,并相互交流)(5)大家喜欢制作玩具吗?下面我们一起制作一个玩具,好吗?拿出你准备的三角形、长方形硬纸片,快速转动,看一看它们是什么形状?(学生操作演示,小组内互相演示)

【课堂作业】

1.完成教材第32页的“做一做”。2.完成教材第35页练习六第1、2题。答案:

1.做一做:提示:亲自动手测量出圆锥的底面直径和高。

2.第1题:蒙古包由圆柱和圆锥组成;墨水瓶由2个长方体和1个圆柱组成;建筑物由圆柱、圆锥、长方体组成。

【课堂小结】

通过这节课的学习,你有哪些收获?让学生畅所欲言后,教师再加以小结。【课后作业】

完成练习册中本课时的练习。

第1课时 圆锥的认识

圆锥的底面是个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。

第2课时 圆锥的体积(1)

【教学内容】

圆锥的体积(1)(教材第33页例2)。【教学目标】

1.参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

2.培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

【重点难点】

圆锥体积公式的推导过程。【教学准备】

同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

【情景导入】

1.复习旧知,作出铺垫。

(1)教师用电脑出示一个透明的圆锥。

教师:同学们仔细观察,圆锥有哪些主要特征呢?(2)复习高的概念。A.什么叫做圆锥的高?

B.请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

2.创设情境,引发猜想。

(1)电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

(2)引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

【新课讲授】 自主探究,操作实验

下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

(1)小组实验。

A.学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

B.同组的学生做完实验后,进行交流,并把实验结果写在黑板上。(2)全班交流。①组织收集信息。

学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上: A.圆柱的体积正好等于圆锥体积的3倍。B.圆柱的体积不是圆锥体积的3倍。C.圆柱的体积正好等于圆锥体积的8倍。D.圆柱的体积正好等于圆锥体积的5倍。E.圆柱的体积是等底等高圆锥体积的3倍。F.圆锥的体积是等底等高圆柱体积的。3②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

1圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验

3用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的Sh表示什么?1为什么要乘?要求圆锥体积需要知道几个条件?

3(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

【课堂作业】

完成教材第34页“做一做”第1题。

先组织学生在练习本上算一算,然后指名汇报。答案:13×19×12=76(cm3)【课堂小结】

教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。【课后作业】

1.完成练习册中本课时的练习。2.教材第35页第3、4、5题。

答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3Sh计算出该物体的体积。

第4题:(1)25.12

(2)423.9 第5题:(1)×

(2)√

(3)×

第2课时 圆锥的体积(1)

第3课时 圆锥的体积(2)

【教学内容】

圆锥的体积(教材第34页例3)。【教学目标】

进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。【重点难点】

圆锥体积公式的实际应用。【教学准备】 多媒体课件。

【情景导入】

前面的课程中我们一起经历了圆锥体积公式的推导过程。有同学能说一说么?

指名学生回答。

11板书:V圆锥=V圆柱=Sh 33【新课讲授】 1.教学例3。

(1)组织学生阅读题目,理解题意。(2)组织学生独立思考,尝试解答。

(3)组织学生交流反馈,结合学生发言,教师板书: 沙堆底面积:

3.14×(4÷2)2=3.14×4=12.56(m2)沙堆的体积:1/3×12.56×1.2=0.4×12.56=5.024≈5.02(m3)答:这堆沙子的体积大约是5.02m3。2.教学补充例题。

例:在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4m,高是1.5m,每立方米小麦约重735kg,这堆小麦大约有多少千克? 教师先引导学生读题,弄清题意。组织学生在小组中合作完成,并在全班交流。

4答案:13×3.14×()2×1.5×735=4615.8(kg)

2【课堂作业】

完成教材第34页“做一做”第2题。

先组织同学们在练习本上演算,教师集体订正。答案:

13.14×(4÷2)2×5××7.8=163.28≈163g

3【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第3课时 圆锥的体积(2)

沙堆底面积:3.14×(4÷2)2=3.14×4=12.56(m2)1沙堆的体积:×12.56×1.2=0.4×12.56=5.024≈5.02(m3)

3答:这堆沙子的体积大约是5.02m3。

整理和复习

【教学内容】

整理和复习(教材第37页内容)。【教学目标】

1.进一步认识圆锥和圆柱的特征,巩固圆柱的侧面积和表面积的计算方法,掌握圆柱和圆锥的体积计算公式。

2.使学生能运用有关知识灵活地解决一些实际问题,经历知识的回顾整理过程,形成科学的学习方法。

3.体验掌握数学知识的成功喜悦,激发学习兴趣,培养善于归纳总结、自我激励的良好习惯。

【重点难点】

掌握圆柱和圆锥的体积计算公式。【教学准备】

把学生每十人分一小组,投影片。

【回顾导入】

教师:同学们,经过这一段时间的学习,我们认识了两种新的图形——圆柱和圆锥。回忆一下,我们学习了圆柱和圆锥的哪些知识呢?

引导学生回顾思考,并在小组中议一议,也可以翻书看一看。每个小组委派一人代表回答。教师引导有次序地归纳。

【复习讲授】

(一)复习圆柱。1.圆柱的特征。

(1)圆柱的形体特征有哪些?学生归纳,教师板书:圆柱是立体图形,有上、下两个面,叫做底面,它们是完全相同的两个圆。两个底面之间的距离叫做高。侧面是一个曲面。

(2)做第37页第1题:指出几个图形中哪些是圆柱。要求学生在小组中互相说一说每类图形的名称和特征。

答案:

第1、2、6是圆柱,3、4、5是圆锥。2.圆柱的侧面积和表面积。

(1)出示画有圆柱的表面展开图的投影片。先让学生观察,指名其中一小组的学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)

(2)表面积是由哪几部分组成的?

学生归纳,教师板书:表面积=圆柱的侧面积+底面的面积×2。(3)完成第37页第2题中求圆柱表面积的部分。先组织学生独立完成,再说说是怎样算的。答案:(从上到下)282.6dm2

10.676m2

3140cm2 3.圆柱的体积。

(1)圆柱的体积怎样计算?计算公式是怎样推导出来的?圆柱体积计算的字母公式是什么?

教师板书:底面积×高;把圆柱切割开,拼成近似的长方体,使圆柱的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱的体积=底面积×高,即V=Sh。

(2)做第37页第2题中关于圆柱体积的部分。答案: 从上到下依次为:314dm3

2.198m3

6280cm3 4.学生独立完成第37页第3题。提示:先思考“用多少布料”是求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积后再计算。

教师指名说一说,然后指名板演,集体订正。答案:

3.14×10×20+3.14×(10÷2)2×2=785(cm2)

3.14×(10÷2)2×20=1570(cm3)=1570(ml)=1.57(L)(二)复习圆锥。1.圆锥的特征。

圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)

2.圆锥的体积。

(1)怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?这个计算公式是怎样得到的?

1教师板书:用底面积×高,再除以3,即V=Sh;通过实验得到的,圆锥体

3的体积等于和它等底等高的圆柱体体积的三分之一。

(2)做第37页第2题中有关圆锥体积的部分。答案:从上到下依次为:10.048dm3

1.1775m3 【课堂作业】

做练习七的第1题。学生独立判断,小组讨论订正。答案:12.56×5×4÷3.14×422=20(dm)【课堂小结】

通过这节课的学习活动,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第五篇:圆柱与圆锥教学设计

人教版小学数学六年级下册圆柱与圆锥体积复习及练习教学目标

1、知识技能:

(1)通过练习,使学生进一步掌握圆柱和圆锥体积的基本计算方法。

(2)加深对等底等高的圆柱和圆锥体积之间的关系的理解。(3)通过练习学会灵活运用所学的知识解决一些实际问题。

2、过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。

3、情感、态度与价值观:

(1)结合练习发展学生的空间观念、培养分析、解决问题的能力,以及良好的思维品质。

(2)使学生在学习活动中获得成功的体验,建立自信心。教学重难点

教学重点:运用圆柱和圆锥体积计算方法,灵活地解决实际问题。教学难点:对等底等高的圆柱和圆锥体积之间的关系的理解 教法:引导法、谈话法。

学法:合作讨论法、练习法、归纳法。

准备:多媒体课件、圆柱、圆锥教具、学具、检测练习教学过程

一、直接导入,揭示课题

上课开始,多媒体课件出示圆柱体、圆锥体形状的物体,唤起学生已有的知识记忆,揭示本节课的学习任务。

板书课题:圆柱圆锥的体积

二、独立思考,交流合作(1)回顾:

1、圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算公式是怎样推导来的?

2、圆锥的体积计算公式是什么?又是怎样推导出来的呢?

3、等底等高的圆柱和圆锥体积之间关系?(2)练习:准确判断

设计意图:根据刚才回顾圆柱圆锥体积之间的关系,来利用他们之间的关系做相应的联系,进一步巩固知识。(3)思考

1、知道圆柱的体积和高怎样求底?知道圆柱的体积和底怎样求高?

2、知道圆锥的体积和高怎样求底?知道圆锥的体积和底怎样求高?

三、实际应用,解决问题 练习:

1、一个圆锥形漏斗,容积是314立方厘米,它的底面积是94.2平方厘米,它的高是多少厘米?(组织学生独立审题解答,师集中校正)

2、求下面图形的体积。(图中单位:厘米)强调用不同的方法解答 学以致用:

1、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重740千克,这堆小麦多少吨?

思考:

a、要求这堆小麦有多少吨?必需知道什么条件? b、要求体积,必需知道什么?

c、说说解题步骤(指名两名学生板演,其余练习本完成,师点评讲解)

2、一个圆柱形玻璃容器的底面直径是20厘米,现在把一块石块放入容器里的水中,水面上升了2厘米。这块石块的体积是多少?(时间少可留作业)

提高练习

一根圆柱形木材长20分米,把它截成4个相等的圆柱体.表面积增加了18.84平方分米.截后每段圆柱体积是多少立方分米?(小组交流,然后汇报练习)

四、课堂小结

“通过这节课的学习,你有什么收获?或者还有哪些疑问?”引导学生对本节课所学内容进行小结。(解答有关圆柱圆锥的体积实际问题应该注意哪些方面?)

五、作业实践

1、一个体积为90立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的 体积是()立方厘米。

2、圆柱体的底面半径扩大3倍,高不变,体积扩大()

3、把一个底面半径为4分米,高3分米的圆柱形钢材,熔成一个半径为6分米的圆锥形,能熔多高?

六、教学反思

下载北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计word格式文档
下载北师大版小学六年级数学第一单元《圆柱与圆锥》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆柱与圆锥教学设计

    圆柱与圆锥教学设计 (一) 指导思想与理论依据: 数学课程标准中明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”......

    《圆柱与圆锥》教学设计

    教学目标:1、梳理圆柱与圆锥的特征、面积、体积计算公式,能灵活地根据问题情境,选择合理的方法进行计算。2、沟通立体图形之间的内在联系,构建图形网格,使所学知识进一步条理化......

    六年级数学下册“圆柱与圆锥”作业设计

    六年级数学下册“圆柱与圆锥”作业设计 第一课时面的旋转 填空题 1、快速旋转一面底边是直角的三角形小旗就会看到一个()。 2、圆柱有两个面是()的圆,有一个面是()。 3、从圆柱的()到......

    小学数学圆柱圆锥

    【导学】一圆柱的侧面积 【知识点】 (一)圆柱的特征(如右图). 1、圆柱的认识. 2、圆柱各部分的名称. 圆柱的上、下两个面叫做底面,它们是面积相等的两个圆.两底面之间的距离叫做高.......

    (北师大版)六年级数学下册 圆柱和圆锥- 面的旋转教学设计

    一 圆柱与圆锥面的旋转 一、填一填 1.快速旋转一面底面是直角的三角形小旗就会看到一个( )。 2.圆柱有两个面是的圆,有一个面是。 3.把圆柱的侧面展开,得到一个。侧面展开图的长......

    (北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计

    《圆锥的体积》 【学习目标】 1、通过探索与发现,推导出圆锥体积的计算方法,并能解决简单的实际问题。 2、经历探索圆锥有关知识的过程,进一步发展空间观念。 3、在观察与实验......

    北师大版六年级下册数学圆柱、圆锥练习题

    北师大版六年级下册数学圆柱、圆锥练习题1、一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米.2、圆柱体育圆锥体的底面积相等,圆柱体的高是圆锥体的高的1/6......

    六年级数学圆柱、圆锥和球

    第二单元:圆柱、圆锥和球 教学内容:圆柱的认识。 教学目标: 1.使学生认识圆柱,掌握圆柱的特征。 2.使学生认识圆柱的底面、侧面和高。 教学过程: 1.复习引新。 我们以前学过的正方体......