(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计

时间:2019-05-13 01:57:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计》。

第一篇:(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计

《圆锥的体积》

【学习目标】

1、通过探索与发现,推导出圆锥体积的计算方法,并能解决简单的实际问题。

2、经历探索圆锥有关知识的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,体会数学知识的产生过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。重点:

圆锥体积的推导过程 难点

正确理解圆锥体积计算公式. 【预习指导】

一、已学知识回顾

(1)圆柱的体积公式是什么?

课件出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高. 【预习指导】(教材P11-P12页)知识点一:圆锥体积的计算公式

(一)想一想,论一论:(思考一分钟,然后将你的想法与大家分享)圆锥是由

两部分组成的。怎样计算圆锥的体积呢?请你猜想圆锥体积的计算方法。(提示:本书当中所讲的圆锥都是直圆锥。)

我的猜想:

(二)想一想,论一论:(思考一分钟,然后将你的想法与大家分享)你有什么办法验证自己的猜想呢?

实验准备材料:

实验操作过程:

实验操作结论:

【课中探究】

1、想一想,论一论:(思考一分钟,然后将你的想法与大家分享)推导圆锥体积公式

(1)通过实验可知:

(2)归纳总结:圆锥的体积=

,如果用V表示圆锥的体积,S表 示圆锥的底面积,表示高,那么圆锥的提及的计算公式,V=

(提示:计算圆锥的体积时不要忘记乘1/3)

2、想一想,论一论:(思考一分钟,然后将你的想法与大家分享)

解题思路:

答:

【当堂检测】

1、2、一堆圆锥形沙堆,底面周长是62.8米,高石6米,这堆沙子有多少立方米?

3、一堆圆锥形沙堆,它的占地面积为12平方米,高是1.5米,每立方米沙重 1.7吨。用载重为2吨的汽车把这堆沙运走,几次才能运完?

【拓展延伸】

一个长8厘米,宽5厘米、高4厘米的长方体的体积与一个圆锥的体积相 等,圆锥高15厘米,它的底面积是多少平方厘米?

【作业布置】 课后练一练

第二篇:(北师大版)六年级数学下册 圆柱和圆锥-圆柱与圆锥教学设计

圆柱的体积

课时 3

节次 1

时间 教学内容: 教材第10~12页圆柱的体积公式,例

1、例2和“练一练”,练习二第1~5题。教学要求:

知识与技能:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历类比猜想——验证说明探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。过程与方法:

1、通过观察,认识圆柱并掌握它的特征,建立空间观念。

2、培养学生的空间观念及有序的观察、分析、比较、概括的能力。

3、培养学生的迁移类推能力和动手操作能力。情感态度与价值观:

1、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

2、使学生感悟到美源于生活,显示对美的追求,提高审美意识。教学重点难点:

圆柱体积计算公式的推导过程并能正确应用。教具、学具准备:

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具 教学过程:

一、铺垫孕伏:

1.求下面各圆的面积(回答)。

(1)r=1厘米;

(2)d=4分米;

(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、自主研究:

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的()体。这个长方体的底面积与圆柱体的底面积(),这个长方体的高与圆柱体的高()。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:

板书:圆柱的体积=底面积×高,用字母表示:板书:V=Sh

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4、教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

0.9米=90厘米

24×90=2160(立方厘米)

5、做试一试1、2题。两人板演,全班齐练。

6、“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

第12页练一练。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。板书设计: 圆柱的体积

长方体的体积=底面积×高

圆柱的体积 =底面积×高

V =

S × h

作业设计:

一、选择题

1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.

2②

4③6

④8

2.体积单位和面积单位相比较,().

①体积单位大

②面积单位大

③一样大

④不能相比

3.等底等高的圆柱体、正方体、长方体的体积相比较,().

①正方体体积大

②长方体体积大

③圆柱体体积大

④一样大

二、填空题

1.0.9平方米=()平方分米

2.3立方米5立方分米=()立方米

3.4.5立方分米=()立方分米()立方厘米

4.一个棱长为4厘米的正方体,它的表面积是().

5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().

6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是(),表面积是(),体积是().

7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().

8.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.

三、应用题:

1.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是多少?体积是多少?

2.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是多少?

3.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是多少?

4.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是多少平方厘米?

5.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

6.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

圆柱体容积的计算

课时 3

节次2

时间 教学内容:圆柱体容积的计算方法 教学目标:

知识与能力:使学生能够运用公式正确地计算圆柱的体积和容积,初步学会用转化的数学思想和方法,解决实际问题的能力

过程与方法:通过自主探究、练习,进一步巩固容积的计算方法。情感态度与价值观:渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积和容积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。教学准备:课件,圆柱体。

教学过程:

一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。求下面圆柱的体积。

(1)底面积是12平方分米,高5分米。(2)底面直径10厘米,高6厘米。(3)底面周长6.28分米,高4分米。

二、解决实际问题

1、出示:一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

(1)学生读题,回答问题:题目为什么告诉我们从里面量?怎样计算?(2)学生尝试练习,一生板演。(3)班内交流,订正。

2、小结:怎样计算物体的容积?

三、巩固练习:

1、一个圆柱形粮囤,高2.5米,底面周长12.56米。如果每立方米稻谷重600千克,这个粮囤大约能装稻谷多少千克? 两人扮演,全班练习。

2、做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

先交流算法,再练习,师根据情况予以指导。作业设计:

一、判断题

1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2 .()

2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()

3.所有圆的直径都相等.()

4.一张长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.()

5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.()

二、应用题

1、把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?

2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?

5.把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土?

6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.

7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

圆柱体体积和表面积的综合运用

课时 3

节次3

时间 教学目标:

1、通过综合练习,使学生进一步掌握有关圆柱的表面积和体积的计算。

2、能运用公式解决有关实际问题,加深对知识的理解。

3、提高和培养学生的观察、实践的能力。

教学重点:掌握有关圆柱的表面积和体积的计算,会综合运用。教学难点:运用所学的知识解决生活中的实际问题。练习过程:

一、揭示课题

圆柱体表面积和体积的综合练习。(板书)

二、基本练习

1、一个圆柱体侧面积是50.24平方厘米,底面积是12.56平方厘米,它的表面积是多少平方厘米?

2、一个圆柱体底面半径是10厘米,高20厘米,它的表面积是多少平方厘米?体积是多少立方厘米?

3、一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

4、一个圆柱体的体积是10立方分米,底面积是2.5平方分米,它的高是多少分米?

5、一个圆柱的底面周长是12.56分米,高是3米,它的体积是多少立方分米? 学生独立完成,师根据情况指导。

三、延伸练习:

1、把一个棱长是6分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?

2、一根长2米的圆木,截成两段后,表面积增加了24平方厘米,这根圆木原来的体积是多少?

3、一个底面直径是6厘米的茶杯里,装有7厘米高的水,放入一块小石头,水面上升到10厘米,这个石头的体积是多少立方厘米?

4、把一张长62.8厘米,宽31.4厘米的长方形硬纸片,卷成一个圆柱形纸筒,它的体积是多少?

5、一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的体积是多少立方厘米?

学生讨论交流以上练习的解题思路,师根据情况予以点拨。作业设计: 完成以上练习。

圆锥的体积

课时 3

节次1

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过实验得出圆锥体积计算公式,并会运用公式正确计算

过程与方法:引导学生经历圆锥体积计算的探索过程,体会类比等数学思想方法教材。情感态度与价值观:通过观察、操作,培养学生的动手实验能力。

教学重点:通过实验得出圆锥的体积计算公式,并会用公式计算圆锥的体积。教学难点:探索圆锥体积公式的推导过程。

教学准备:圆锥体、圆柱体模型容器、沙子、水。教学过程:

一、复习:

说一说圆柱体的体积计算方法,回忆已学过的立体图形的体积计算方法。

二、探究新知

导入:今年风调雨顺,许多农民家的小麦都获得了丰收,(投影出示p11图):小丽家有一大堆小麦,它像我们学过的什么图形?谁能猜猜这堆小麦体积是多少?

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来验证大家刚才的猜想,探究圆锥体积的计算方法。

教师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验。

3、汇报实验结果:

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。结论3:等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。公式:V = 1/3Sh

(二)算一算:如果小麦堆的底面半径为2米,高为1.5米。你能计算出小麦堆的体积吗?

学生在练习本上独立完成,集体订正。

三、巩固练习

1、试一试(p12)(一人板演,全班齐练)

2、判断对错,并说明理由.

(1)圆柱的体积相当于圆锥体积的3倍.()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1

3.求圆锥的体积:

底面半径是4厘米,高是5厘米。

底面直径是12厘米,高是4厘米。

底面周长是12.56分米,高是6分米。

4、应用题:

(1)一圆锥形的沙堆,底面直径是6米,高1.8米,它的体积是多少?学生口答计算方法。(2)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重油35千克,这堆小麦大约有多少千克?(得数保留整千克)

(3)一圆锥形的沙堆,底面周长是6.28米,高1.2米。若把它在宽5米的公路上铺2厘米厚,能铺多长?

引导学生理解题意,试做,师根据情况点拨。

四、小结:

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的三分之一。V=1/3sh 作业设计:

课本12---13页练一练1----7题。

圆锥的体积练习课

课时 3

节次2

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:引导学生经历圆锥体积计算的过程,体会类比等数学思想。

情感态度与价值观:通过练习,培养学生解决问题的能力和培养学生将所学知识运用和服务于生活的能力。

教学重点:熟练运用圆锥体的体积公式解决实际问题,教学难点:理解圆柱与圆锥的关系。

教学准备:圆锥体、圆柱体模型容器、课件。教学过程:

一、复习铺垫、内化知识。

1、圆锥体的体积公式是什么?我们是如何推导的?

2、圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(出示课件)

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、求下列圆锥体的体积。(口答算式)(1)底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米.高12厘米。

4.一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?

5.一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?

6.一个圆柱形油桶,底面半径是1.4分米,高5分米,做这样一个油桶需要多少铁皮?这个圆柱形油桶可以盛汽油多少升?(得数保留一位小数)4、5、6三人板演,全班齐练。然后教师根据学生练习中存在的问题,集体评讲。

三、丰富拓展、延伸练习。

1、拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2、讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

(3)圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

(4)一个圆柱体的体积和底面积与一个圆锥体分别相等,圆柱体的高是圆锥体高的()

(5)一个圆柱和一个圆锥的底面积相等,圆柱的体积是圆锥体积的2倍,圆柱的高是圆锥的高的()。

(6)用边长是1厘米的正方形围成一个圆柱体,它的体积是()

3、交流讨论结果,师根据情况点拨。

四、全课总结,内化知识。

1、提问:(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

作业设计:

一、填空

1. 等底等高的圆柱和圆锥,圆柱的体积是圆锥的(),圆锥的体积是圆柱的(),圆柱的体积比圆锥大(),圆锥的体积比圆柱小()。

2.一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,那么,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3.等底等高的圆柱和圆锥,圆柱的体积比圆锥大10立方米,圆柱的体积是(),圆锥的体积是()。

二、应用题

(1)一个圆锥和一个圆柱等底等高,圆柱比圆锥的体积大48立方分米,求圆柱和圆锥的体积各是多少?

(2)把一个底面周长是25.12分米,高是9分米的圆柱木料削成一个最大的圆锥体,这个圆锥的体积是多少分米?

(3)将一个棱长为6分米的正方体木块切削成 一个最大的圆锥体,应削去多少木料?

(4)一个圆锥和一个圆柱等体积等高,已知圆柱的底面周长是12.56分米,圆锥的底面积是多少?

(5)一个直角三角形的三条边分别为3厘米、4厘米、5厘米,沿它的一条直角边为轴旋转一周,可得什么图形?体积最小是多少?体积最大是多少?

圆锥的体积练习课

课时 3

节次 3

时间 教学内容:圆锥的体积深化练习教学目标:

知识与能力:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:学生经历圆锥体积的计算、比较、分析过程,进一步理解圆柱与圆锥的关系。情感态度与价值观:培养学生学习数学的兴趣,以及将所学知识运用和服务于生活的能力。教学重点:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。教学难点:进一步理解圆柱与圆锥的关系。教学准备:课件。教学过程: 课件出示

一、基本练习:

1、一个圆柱的底面积是12.56平方分米,高6分米,与它等底等高的圆锥的体积是多少?

2、一个圆柱的底面直径是8厘米,高5厘米,与它等底等高的圆锥的体积是多少? 一个圆锥的底面周长是9.42米,高1米,圆锥的体积是多少?

二、引导练习:

出示例题: 将一个体积为42.39立方分米的圆柱形零件熔铸成一个底面直径为12分米的圆锥体零件,圆锥的高是多少?

学生先讨论交流,然后师引导提问:

1、要求圆锥的高,必须知道哪些条件?

2、引导学生画出思路图:圆锥的高——体积、底面积

体积-------圆柱的体积

底面积-------底面直径

圆锥的高=体积×3÷底面积

3、学生独立解答。

三、深化练习:

出示例题: 一个长方体木块,长55厘米,宽40厘米,高30厘米,将其加工成一个最大的圆锥体木块,圆锥的体积是多少?

1、学生试做。

2、学生交流做法。

3、师点拨,重点引导理解加工成最大的圆锥体的底面直径和高。

四、巩固练习

一圆锥形的底面半径和高都 等于正方体的棱长,已知正方体的体积是30立方厘米,圆锥的体积是多少?

学生板演,全班练习。作业设计:

一、填空

1.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

2. 等底等高的圆柱和圆锥,如果先在圆锥容器中注满水,水面高12厘米,再全部倒入圆柱形容器中,水面高()厘米;如果先在圆柱容器中注满水,再把水倒入圆锥形容器直到注满,这时圆柱形容器中的水面高()厘米。

1.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。

2.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)

3.一个圆锥形的小麦堆,底面周长是 12.56米,高是2.7米,把这些小麦放到圆柱形的粮囤中去,恰好占这粮囤容积的78.5%。已知粮囤底面的周长是9.42米,求这个粮囤的高。(保留两位小数)

4、圆柱的体积是圆锥的2倍,圆柱的高与圆锥的高的比是2:5,圆锥的底面积与圆柱的底面积的比是多少? 圆锥的体积练习

5、将一个底面半径是4分米,高6分米的圆柱体零件熔铸成一个底面直径为4分米的圆锥形零件,求圆锥零件的高是多少分米?

练习一

课时 2

节次1

时间 教学内容:圆柱与圆锥的整理与复习教学目标:

知识与能力:使学生较为系统的掌握圆柱和圆锥的基础知识,进一步理解圆柱与圆锥的关系,能正确的解答有关问题。

过程与方法:学生经历系统整理的过程,提高自己的逻辑思维能力和空间想象力。情感态度与价值观:培养学生认真反思的好习惯。教学重点:运用所学知识解决实际问题。教学难点:深入理解圆柱与圆锥的关系。教学准备: 课件

教学方法:自主探究,合作交流。教学过程:

一、基本练习

1、回答下列问题:

(1)圆柱圆椎各有什么特征? 圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。

圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。

(2)怎样求圆柱的侧面积?怎样求圆柱的表面积?公式呢?生口答。(3)怎样求圆柱的体积?怎样求圆锥的体积?公式是呢?生口答。

(4)圆柱与圆锥之间有什么关系?(圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

二、完成课本练习一1-----6题。第1题:学生独立完成。

第2、3题:学生板演,集体订正。

第4题:让学生说一说求几个面的面积,在独立完成。第5题:学生独立完成。

第6题:引导学生先理清题中的信息和思路,在独立完成。

三、交流收获:你本节有什么收获? 板书设计 圆柱与圆锥

圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。侧面积 = 底面周长×高

表面积 = 侧面积+底面积×2 圆柱:v = sh

圆锥:

v =1/3sh 作业设计 一.填空

(1)一个圆锥体积是与它等底等高的圆柱体积的();(2)圆柱的体积相当于和它等底等高的圆锥体积的();

(3)把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的(),相当于圆锥体积的()。

(4)仔细观察,圆柱的体积是圆锥的的3倍的是()。(单位:cm)

二、1、一个圆柱形水池,直径是20米,深2米 ① 这个水池的占地面积是多少?

② 在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

2、一个圆柱形罐头盒,底面直径6厘米,高10厘米 ① 做这个罐头盒至少要用多少铁皮?

② 这个罐头盒上的包装纸的面积是多少平方厘米?

3、一个圆锥形的石子堆,底面周长25.12米,高3米,每立方米石子重2吨。如果用一辆载重4吨的汽车来运这些石子,至少需运多少次才能运完?

4、一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?

5、一个圆柱形木块切成四块(如图1),表面积增加48平方厘米;切成三块(如图2),表面积增加了50.24平方厘米。若削成一个最大的圆锥体(如图3),体积减少了多少立方厘米?

练习一

课时2

节次 2

时间 教学内容:北师大小学数学第十二册第14-17页

练习一 教学目标: 知识与能力:.1.复习圆柱、圆锥体积的计算公式,加深学生对立体形体之间内在联系的认识,使学生对所学的知识进一步系统化和概括化。2.通过实际操作,培养学生的实际能。过程与方法:学生通过练习、实际操作,对所学的知识进一步系统化和概括化。情感态度与价值观:使学生在解决实际问题中感受数学与生活的密切联系 教学重点::体积计算公式的运用。

教学难点:运用所学的知识解决生活中的实际问题。教学准备:课件

教学方法:学生练习,师点拨。教学过程: 出示课件:

一、针对性练习。

1、一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体()

2、把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是()

3、圆柱的体积是和它等底等高的圆锥体积的()

4、圆锥的体积是和它等底等高的圆柱体积的()

5、圆柱的体积比和它等底等高的圆锥体积多()

6、圆锥的体积比和它等底等高圆柱的体积少()学生独立完成,师根据情况点拨。

二、完成课本练习一7-----思考题。第7题:生独立完成。

第8题:师引导学生观察两个圆柱,再试着说出体积之比。用两种方法说明:一种是举例:设大圆的底面半径和小圆的底面半径,计算出两个圆柱的体积,再求体积比;另一种用计算公式来说明:大圆的底面半径为R,小圆的底面半径为r,大圆柱与小圆柱的体积之比是:(ΠR ²×18):(πr ²×18)=R ²:r ²=9:4。通过计算说明,在高一定的情况下,两个圆柱的体积比等于两个半径的平方比。第9题:本题有两种解法,让学生试做,然后交流不同的方法。第10题:先让学生说说思考方法在做。

第11题:本题是“等积变形”题,学生试做,再点拨。

第12题:本题是一个组合图形,学生试做,师根据情况点拨。

你知道吗?本栏目是向学生介绍沙漏,让学生讨论后试着解答,师点拨。

三、课堂小结:

通过练习,你有什么收获?全班交流。作业设计:

一、填空

1、一个直角三角形,两条直角边分别为3厘米和6厘米,以短直角边为轴旋转一周,可以得到一个()体,它的体积是()立方厘米

2、把一根9分米的圆柱形钢材截成两段后,表面积比原来增加了2.4平方分米,这根圆柱形钢材原来的体积是()立方分米

3、(课件显示)一个铁皮制成的底面直径为20厘米,高10厘米的圆柱形的礼品盒,捆扎时,底面成十字形,打结处用去绳子18厘米,共需塑料绳()厘米,做一个礼品盒至少要用()铁皮,这个礼品盒大约装()立方厘米的礼品。

二、判断题:

A.电线杆上下两个底都是圆,所以电线杆是圆柱。()

B.一段圆柱形木材,削成一个最大的圆锥体,削去的部分是原体积的1/3()C.圆柱的底面半径扩大2倍,高也同时扩大2倍,圆柱体积就扩大8倍。()(用手势进行判断,并说明理由)三.选择题:

1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。

A 0.3

B 10

C 3

D 6

2、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是()分米.A 0.4

B 3.6

C 1.2

D 0.6

3、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深()米.A 2

B 3

C 0.6

D 5 四.求下组合体的体积:(单位:厘米)

五.应用题:

1、一个圆锥形沙滩,低面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?

2、一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克?

3、一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克?

4、把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?

实践活动

课时

节次

时间 教学内容:教材17页实践活动。教学目标:

知识与能力:通过“用长方形卷圆柱形”的探索活动,鼓励学生应用所学知识解决实际问题。过程与方法:经历探索规律的过程,体会变量之间的关系。情感态度与价值观:培养学生学习数学的兴趣。教学重点:圆柱表面积和体积的应用。教学难点:体会变量之间的关系。

教学准备:学生每人准备4张长方形纸:长16厘米,宽4厘米。

教学方法:实验法。教学过程:

一、回答问题:

圆柱的表面积和体积公式各是什么?

二、实践活动:

活动一:拿出两张长方形纸,一张以宽为高,一张以长为高,分别卷成一个圆柱体。猜一猜:两个圆柱体的体积一样大吗? 算一算:两个圆柱体的体积一样大吗? 学生列式解答,交流计算方法。

通过计算,得出结论:一张以宽为高卷成的圆柱体的体积大。

活动二:再拿出两张长方形纸,分别按教材的步骤做成两个圆柱体。两个圆柱体的底面半径和高各是多少?

计算它们的体积各是多少?(小组合作计算)

得出结论:同样大小的纸,底面周长越大,体积越大。活动

三、汇总四个圆柱有关数据,填写教材表格,你发现了什规律?

交流发现,得出结论:当侧面积一定时,越是细长的圆柱体积越小,越是粗矮的圆柱体积越大。课后探讨:

再找两张纸,按照不同的方式剪一剪,卷一卷,得到不同的圆柱形。探讨:活动三的结论还成立吗?要求记录实验数据,写出计算过程)

第三篇:北师大版六年级数学下册《圆锥的体积》教学设计

六年级数学下册《圆锥的体积》教学设计

教材分析:

本节课内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

学情分析:

学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对于新的知识教学,他们一定能表现出极大的热情。

设计理念:

数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。教学目标:

1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:

探索圆锥体积的计算方法,能正确计算圆锥的体积。

教学难点:

探索圆锥体积方法和推导过程。

教法学法:

试验探究法、小组合作学习法。

教学具:

1、多媒体课件。

2、等底等高的空心圆锥与圆柱,大小不一的圆锥、圆柱,沙子。

教学过程:

一、铺垫孕伏

1、圆柱的体积公式是什么?用字母怎样表示?

2、求下列各圆柱的体积。

(1)底面积是5平方厘米,高是6厘米。

(2)底面半径4分米,高是10分米。

(3)底面直径2米,高是3米。

3、出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

二、创设情境,导入新课

万物复苏的季节来了,老师家备了一堆沙子,准备把家里的墙面重新装修一遍。可是老师遇到了一个难题,你们大家和我一起解决好吗?(出示沙堆图片)这堆沙子的底面半径是2米,高是1.5米,瓦匠告诉我要用6立方米的沙子,我不知道我备的这些沙子够不够?你们说怎么计算这堆沙子的体积呢?今天我们就共同来研究一下求圆锥体积的方法。(板书圆锥的体积)

三、类比猜想

1、大胆猜想,计算圆锥体积

(1)引导学生从已知圆柱体积“底面积×高”猜想圆锥体积。

(2)引导学生发现问题:圆锥体积小,公式不合适。(出示课件:演示把圆柱削成圆锥),如果我们知道圆柱体积,猜想圆锥体积是它的几分之一?

(3)说说猜想的依据。那么圆锥的体积到底是圆柱体积的几分之几呢?你们有什么办法得到呢?

四、实验探索,发现规律

(1)利用实验的方法来探究圆锥体积的计算方法。

①准备等底等高的圆柱形容器和圆锥形容器各一个。

②将圆锥形容器装满沙,再倒入圆柱形容器,看几次能倒满。

③用不等底等高的圆柱圆锥容器再继续做实验。

(2)学生分组做实验,老师巡回指导。

师:在你们做实验用的圆锥的体积和同它等底等高圆柱的体积有什么关系?

生:圆柱的体积是圆锥体积的3倍。

生:圆锥的体积是同它等底等高的圆柱体权的1/3。(等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。)

板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

师:得出这个结论的同学请举手。你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是V=1/3Sh。(板书V=1/3Sh)

师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看大屏幕。(展示课件)

师:请大家仔细看一下这句话,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为“圆锥的体积V等于和它等底等高的圆柱体积的三分之一。”这句话很重要。

生:我认为这句话中“等底等高”和“三分之一”这几个字特别 重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等底等高。

师:现在我们有了方法,我们一起来算算老师家备的沙子够不够用?

师先让学生做,然后指名上黑板做,最后师生共同交流。3.14××1.5÷3 =12.56×1.5÷3 =6.28(立方米)

因为6.28 > 6,所以这堆沙够用了。

五、课堂练习 1.填空

圆锥的底面积是5cm,高是3cm,体积是()。

圆锥的底面积是10dm,高是9dm,体积是()。2.计算下面圆锥的体积。(多媒体展示圆锥图)3.一个圆锥形零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

4.打谷场上,有一个圆锥形的小麦堆,测得底面半径是3米,高是1.5米。你能计算出这堆小麦的体积吗?

5.一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米? 学生独立完成,教师巡视指导。学生汇报结果,教师统一指导。

六、总结

这节课你有什么收获?对自己的学习有何评价?

七、课外作业

有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水? 教学反思:

在本节课的学习中,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想。学生通过“提出问题 ——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用”这一系列过程进行探究学习。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识,提高学生的动手操作能力和创新精神。

第四篇:北师大版六年级数学下册《圆锥的体积》教学设计

六年级数学下册《圆锥的体积》教学设计

陕西省神木县锦界第一小学

方芸

教学目标:

1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体的体积和容积的含义。

2、经历“类比猜想—验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法。

3、能正确计算圆锥的体积,并解决一些简单的实际问题。教学重点:探索圆锥体积的计算方法,能正确计算圆锥的体积。教学难点:经历类比猜想—验证说明的过程,主动探索圆锥体积的计算方法。

教学具:课件,等底等高的空心圆锥与圆柱,大小不一的圆锥、圆柱,水。教学过程:

一、创设情境

课件出示小麦堆图,让学生想象小麦堆形状像学过的哪种图形,算小麦堆的体积就是算什么的体积引入新课——圆锥的体积。(板书)

二、类比猜想

大胆猜想圆锥体积计算,并说说猜想的依据。(1)观察发现圆柱与圆锥的面有相似性。

(2)猜想圆柱与圆锥体积之间有关系:圆柱的体积等于圆锥体积的3倍。(等底等高)

三、验证说明

1、小组合作,探究验证。(运用手中的学具)

(1)小组讨论填写实验记录单,有顺序地取材料进行实验。

学生分6组操作实验,教师巡回指导。(2)小组交流,得出结论:

结论1: 结论2

结论3:

结论4:

2、汇报结果,可以演示。

3、结论:圆锥体积是与它等底等高圆柱体积的1/3。V=1/3Sh。(板书:等底等高

V=1/3Sh)

4、对所得结论进行分析,以能熟练的应用圆锥体积计算公式。

5、小结:现在回顾一下,刚才我们在探索圆锥体积计算方法时,首先通过观察,发现圆柱与圆锥的面之间有相似性,进而我们大胆的猜测了圆柱与圆锥体积之间可能存在着(圆锥体积是与它等底等高圆柱体积的1/3。V=1/3Sh。)这样的关系,接着我们动手操作,进行实验,来验证我们的猜测,最后我们对实验结果进行分析,从而总结,归纳出了圆锥体积的计算公式。

四、综合应用

1、利用圆锥体积计算公式计算小麦堆的体积。

2、让学生举例说明生活中有哪些实际问题可以用圆锥的体积计算公式解决。

3、学生独立完成课堂达标,教师巡视指导。学生汇报结果。统一指导。

五、课堂总结 这节课你有什么收获?

板书设计:

圆锥的体积

等底等高

V=3V

V锥=1/3V柱

V =1/3sh

第五篇:北师大版六年级下册数学圆柱、圆锥练习题

北师大版六年级下册数学圆柱、圆锥练习题

1、一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米.

2、圆柱体育圆锥体的底面积相等,圆柱体的高是圆锥体的高的1/6,则圆锥体的体积是圆柱体体积的()。

3、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是()厘米。

4、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米。

5、一个圆柱体高4分米,体积是40立方分米,比与它等底的圆锥体的体积多10立方分米。这个圆锥体的高是()分米。

6、一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是()分米。

二、应用题

1、用橡皮泥做一个圆柱形学具,作出的圆柱底面直径是6厘米,高是8厘米,如果再做一个长方体纸盒(6个面),使橡皮泥圆柱正好能装进去,至少需要多少平方厘米硬纸?

2、一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)

3、一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺4厘米厚,可以铺多少米长?

4、一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。如果圆锥体的底面半径是2厘米,这个圆锥体的高是多少厘米?

5、一个没有盖的圆柱形铁皮桶,底面周长是18.84分米,高是12分米,做这个水桶大约需要多少平方分米的铁皮?(用进一法保留整十数)

下载(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计word格式文档
下载(北师大版)六年级数学下册 圆柱和圆锥--圆锥的体积教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    教学设计六年级下册圆锥的体积

    圆锥的体积 龙首村小学 万瑞 教材分析: 圆锥的体积是在学生已经掌握了圆柱体积计算及应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时的内容。......

    (北师大版)六年级数学下册 圆柱和圆锥- 面的旋转教学设计

    一 圆柱与圆锥面的旋转 一、填一填 1.快速旋转一面底面是直角的三角形小旗就会看到一个( )。 2.圆柱有两个面是的圆,有一个面是。 3.把圆柱的侧面展开,得到一个。侧面展开图的长......

    六年级数学圆锥的体积教学设计

    六年级数学《圆锥的体积》教学设计 教学内容:北师大版数学六年级下册 教材分析 本节内容是北师大版六年级下册圆锥的体积,本节内容是在学生已经掌握了圆锥的特征和圆柱体积的......

    北师大版六年级数学下册《圆锥的体积》教学设计5篇

    六年级数学下册《圆锥的体积》教学设计 教学目标: 1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体的体积和容积的含义。 2、经历“类比猜想—验证说明......

    圆柱体积和圆锥体积的应用教学设计

    圆柱体积和圆锥体积的应用教学设计 高楼小学王俊渊 教学内容:新课标人教版小学数学六年级下册圆柱体积和圆锥体积的应用 教学目标: 1、让学生进一步掌握圆柱和圆锥体积的计算......

    圆柱和圆锥体积比较教学设计(共五则范文)

    《等底等高的圆柱和圆锥》教学设计 陇县东风镇西沟小学 刘金为 【教学题目】等底等高的圆柱和圆锥 【教学目标】 知识与技能:1、领会等底等高的圆柱和圆锥体积的相互关系。2......

    圆柱和圆锥的体积复习教学设计

    教学内容:小学六年制数学第十二册──圆柱体和圆锥体体积的复习; 教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际......

    圆柱和圆锥教学设计[精选合集]

    圆柱和圆锥(专项训练)教学设计 首阳小学 张亚萍 教学目标 1.通过复习进一步掌握圆柱和圆锥的特征。 2.理解求圆柱侧面积和表面积的计算方法,并能正确计算。 3.掌握圆柱和圆锥体......