六年级数学下册“圆柱与圆锥”作业设计

时间:2019-05-13 10:18:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《六年级数学下册“圆柱与圆锥”作业设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《六年级数学下册“圆柱与圆锥”作业设计》。

第一篇:六年级数学下册“圆柱与圆锥”作业设计

六年级数学下册“圆柱与圆锥”作业设计

第一课时面的旋转

填空题

1、快速旋转一面底边是直角的三角形小旗就会看到一个()。

2、圆柱有两个面是()的圆,有一个面是()。

3、从圆柱的()到()的距离是圆柱的高,一个圆柱有()条高。

第二课时圆柱的表面积

1、圆柱的侧面展开后是一个()形。

2、圆柱的侧面积=()×()。

3、圆柱的表面积=()+()。

4、一个圆柱的底面半径是1厘米,高是2厘米,⑴这个圆柱的底面周长是多少?

⑵这个圆柱的侧面积是多少?

⑶这个于圆柱的表面积多少?

第三课时圆柱的体积

求下面圆柱的体积。

1、底面半径是2厘米,高是3厘米。

2、底面直径是2分米,高是10分米。

3、底面周长是25.12米,高是100米。

第四课时圆锥的体积

1、底面半径是2厘米,高是3厘米。

2、底面直径是2分米,高是30分米。

3、底面周长是25.12米,高是100米。

第二篇:六年级数学下册《圆柱与圆锥整理和复习》教案

六年级数学下册《圆柱与圆锥整理和复

习》教案

教学要求:通过整理和复习,掌握圆柱和圆锥的特点,求圆柱圆锥体积的计算公式。能区别圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。

教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。

教学难点:形成表象,建立空间观念。

教学过程:

整理

圆柱

圆柱的特点

圆柱的各部分名称

圆柱表面积

圆柱的体积

V=Sh

圆锥

圆锥的特点

圆锥的各部分名称

圆锥的体积

V=-1/3Sh

随堂练习、第48页1-3圆柱内容

填书。

练习十第1、2题,第3体求圆柱的体积。

2、第48页4-6题圆锥的内容,填书。

练习十第3题求圆锥的体积。

板书设计:

整理和复习

特征

圆柱

各部分名称

表面积=两个底面积=侧面积

体积=V=Sh

特征

圆锥

各部分名称

体积V=1/3Sh

第三篇:(北师大版)六年级数学下册 圆柱和圆锥-圆柱与圆锥教学设计

圆柱的体积

课时 3

节次 1

时间 教学内容: 教材第10~12页圆柱的体积公式,例

1、例2和“练一练”,练习二第1~5题。教学要求:

知识与技能:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历类比猜想——验证说明探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。过程与方法:

1、通过观察,认识圆柱并掌握它的特征,建立空间观念。

2、培养学生的空间观念及有序的观察、分析、比较、概括的能力。

3、培养学生的迁移类推能力和动手操作能力。情感态度与价值观:

1、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

2、使学生感悟到美源于生活,显示对美的追求,提高审美意识。教学重点难点:

圆柱体积计算公式的推导过程并能正确应用。教具、学具准备:

多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具 教学过程:

一、铺垫孕伏:

1.求下面各圆的面积(回答)。

(1)r=1厘米;

(2)d=4分米;

(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、自主研究:

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。

3.公式推导。

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的()体。这个长方体的底面积与圆柱体的底面积(),这个长方体的高与圆柱体的高()。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:

板书:圆柱的体积=底面积×高,用字母表示:板书:V=Sh

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4、教学例1。

出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)

0.9米=90厘米

24×90=2160(立方厘米)

5、做试一试1、2题。两人板演,全班齐练。

6、“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

第12页练一练。

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。板书设计: 圆柱的体积

长方体的体积=底面积×高

圆柱的体积 =底面积×高

V =

S × h

作业设计:

一、选择题

1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.

2②

4③6

④8

2.体积单位和面积单位相比较,().

①体积单位大

②面积单位大

③一样大

④不能相比

3.等底等高的圆柱体、正方体、长方体的体积相比较,().

①正方体体积大

②长方体体积大

③圆柱体体积大

④一样大

二、填空题

1.0.9平方米=()平方分米

2.3立方米5立方分米=()立方米

3.4.5立方分米=()立方分米()立方厘米

4.一个棱长为4厘米的正方体,它的表面积是().

5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().

6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是(),表面积是(),体积是().

7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().

8.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.

三、应用题:

1.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的表面积是多少?体积是多少?

2.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是多少?

3.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是多少?

4.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是多少平方厘米?

5.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

6.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

圆柱体容积的计算

课时 3

节次2

时间 教学内容:圆柱体容积的计算方法 教学目标:

知识与能力:使学生能够运用公式正确地计算圆柱的体积和容积,初步学会用转化的数学思想和方法,解决实际问题的能力

过程与方法:通过自主探究、练习,进一步巩固容积的计算方法。情感态度与价值观:渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积和容积的计算公式。

教学难点:灵活应用圆柱的体积公式解决实际问题。教学准备:课件,圆柱体。

教学过程:

一、复习

1、复习圆柱体积的推导过程

长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。求下面圆柱的体积。

(1)底面积是12平方分米,高5分米。(2)底面直径10厘米,高6厘米。(3)底面周长6.28分米,高4分米。

二、解决实际问题

1、出示:一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

(1)学生读题,回答问题:题目为什么告诉我们从里面量?怎样计算?(2)学生尝试练习,一生板演。(3)班内交流,订正。

2、小结:怎样计算物体的容积?

三、巩固练习:

1、一个圆柱形粮囤,高2.5米,底面周长12.56米。如果每立方米稻谷重600千克,这个粮囤大约能装稻谷多少千克? 两人扮演,全班练习。

2、做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

先交流算法,再练习,师根据情况予以指导。作业设计:

一、判断题

1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的1/2 .()

2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()

3.所有圆的直径都相等.()

4.一张长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.()

5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.()

二、应用题

1、把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?

2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?

5.把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土?

6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.

7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

圆柱体体积和表面积的综合运用

课时 3

节次3

时间 教学目标:

1、通过综合练习,使学生进一步掌握有关圆柱的表面积和体积的计算。

2、能运用公式解决有关实际问题,加深对知识的理解。

3、提高和培养学生的观察、实践的能力。

教学重点:掌握有关圆柱的表面积和体积的计算,会综合运用。教学难点:运用所学的知识解决生活中的实际问题。练习过程:

一、揭示课题

圆柱体表面积和体积的综合练习。(板书)

二、基本练习

1、一个圆柱体侧面积是50.24平方厘米,底面积是12.56平方厘米,它的表面积是多少平方厘米?

2、一个圆柱体底面半径是10厘米,高20厘米,它的表面积是多少平方厘米?体积是多少立方厘米?

3、一个圆柱形油桶,从里面量的底面半径是20厘米,高是2分米。这个油桶的容积是多少?

4、一个圆柱体的体积是10立方分米,底面积是2.5平方分米,它的高是多少分米?

5、一个圆柱的底面周长是12.56分米,高是3米,它的体积是多少立方分米? 学生独立完成,师根据情况指导。

三、延伸练习:

1、把一个棱长是6分米的正方形木块,削成一个最大的圆柱,需要削去多少立方分米的木块?

2、一根长2米的圆木,截成两段后,表面积增加了24平方厘米,这根圆木原来的体积是多少?

3、一个底面直径是6厘米的茶杯里,装有7厘米高的水,放入一块小石头,水面上升到10厘米,这个石头的体积是多少立方厘米?

4、把一张长62.8厘米,宽31.4厘米的长方形硬纸片,卷成一个圆柱形纸筒,它的体积是多少?

5、一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的体积是多少立方厘米?

学生讨论交流以上练习的解题思路,师根据情况予以点拨。作业设计: 完成以上练习。

圆锥的体积

课时 3

节次1

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过实验得出圆锥体积计算公式,并会运用公式正确计算

过程与方法:引导学生经历圆锥体积计算的探索过程,体会类比等数学思想方法教材。情感态度与价值观:通过观察、操作,培养学生的动手实验能力。

教学重点:通过实验得出圆锥的体积计算公式,并会用公式计算圆锥的体积。教学难点:探索圆锥体积公式的推导过程。

教学准备:圆锥体、圆柱体模型容器、沙子、水。教学过程:

一、复习:

说一说圆柱体的体积计算方法,回忆已学过的立体图形的体积计算方法。

二、探究新知

导入:今年风调雨顺,许多农民家的小麦都获得了丰收,(投影出示p11图):小丽家有一大堆小麦,它像我们学过的什么图形?谁能猜猜这堆小麦体积是多少?

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来验证大家刚才的猜想,探究圆锥体积的计算方法。

教师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验。

3、汇报实验结果:

结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。结论3:等高不等底的圆锥体与圆柱体,圆锥的体积不是圆柱体积的三分之一。

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3。公式:V = 1/3Sh

(二)算一算:如果小麦堆的底面半径为2米,高为1.5米。你能计算出小麦堆的体积吗?

学生在练习本上独立完成,集体订正。

三、巩固练习

1、试一试(p12)(一人板演,全班齐练)

2、判断对错,并说明理由.

(1)圆柱的体积相当于圆锥体积的3倍.()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1

3.求圆锥的体积:

底面半径是4厘米,高是5厘米。

底面直径是12厘米,高是4厘米。

底面周长是12.56分米,高是6分米。

4、应用题:

(1)一圆锥形的沙堆,底面直径是6米,高1.8米,它的体积是多少?学生口答计算方法。(2)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重油35千克,这堆小麦大约有多少千克?(得数保留整千克)

(3)一圆锥形的沙堆,底面周长是6.28米,高1.2米。若把它在宽5米的公路上铺2厘米厚,能铺多长?

引导学生理解题意,试做,师根据情况点拨。

四、小结:

1、上了这些课,你有什么收获?(互说中系统整理)

2、用什么方法获取的?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的三分之一。V=1/3sh 作业设计:

课本12---13页练一练1----7题。

圆锥的体积练习课

课时 3

节次2

时间 教学内容:圆锥体积的计算。(教科书11---12页内容)教学目标:。

知识与能力:通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:引导学生经历圆锥体积计算的过程,体会类比等数学思想。

情感态度与价值观:通过练习,培养学生解决问题的能力和培养学生将所学知识运用和服务于生活的能力。

教学重点:熟练运用圆锥体的体积公式解决实际问题,教学难点:理解圆柱与圆锥的关系。

教学准备:圆锥体、圆柱体模型容器、课件。教学过程:

一、复习铺垫、内化知识。

1、圆锥体的体积公式是什么?我们是如何推导的?

2、圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(出示课件)

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、求下列圆锥体的体积。(口答算式)(1)底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米.高12厘米。

4.一个近似圆锥形的麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重750千克,这堆小麦重多少千克?

5.一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?

6.一个圆柱形油桶,底面半径是1.4分米,高5分米,做这样一个油桶需要多少铁皮?这个圆柱形油桶可以盛汽油多少升?(得数保留一位小数)4、5、6三人板演,全班齐练。然后教师根据学生练习中存在的问题,集体评讲。

三、丰富拓展、延伸练习。

1、拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2、讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

(3)圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

(4)一个圆柱体的体积和底面积与一个圆锥体分别相等,圆柱体的高是圆锥体高的()

(5)一个圆柱和一个圆锥的底面积相等,圆柱的体积是圆锥体积的2倍,圆柱的高是圆锥的高的()。

(6)用边长是1厘米的正方形围成一个圆柱体,它的体积是()

3、交流讨论结果,师根据情况点拨。

四、全课总结,内化知识。

1、提问:(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

作业设计:

一、填空

1. 等底等高的圆柱和圆锥,圆柱的体积是圆锥的(),圆锥的体积是圆柱的(),圆柱的体积比圆锥大(),圆锥的体积比圆柱小()。

2.一个圆柱和圆锥等底等高,它们的体积一共60立方厘米,那么,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3.等底等高的圆柱和圆锥,圆柱的体积比圆锥大10立方米,圆柱的体积是(),圆锥的体积是()。

二、应用题

(1)一个圆锥和一个圆柱等底等高,圆柱比圆锥的体积大48立方分米,求圆柱和圆锥的体积各是多少?

(2)把一个底面周长是25.12分米,高是9分米的圆柱木料削成一个最大的圆锥体,这个圆锥的体积是多少分米?

(3)将一个棱长为6分米的正方体木块切削成 一个最大的圆锥体,应削去多少木料?

(4)一个圆锥和一个圆柱等体积等高,已知圆柱的底面周长是12.56分米,圆锥的底面积是多少?

(5)一个直角三角形的三条边分别为3厘米、4厘米、5厘米,沿它的一条直角边为轴旋转一周,可得什么图形?体积最小是多少?体积最大是多少?

圆锥的体积练习课

课时 3

节次 3

时间 教学内容:圆锥的体积深化练习教学目标:

知识与能力:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。过程与方法:学生经历圆锥体积的计算、比较、分析过程,进一步理解圆柱与圆锥的关系。情感态度与价值观:培养学生学习数学的兴趣,以及将所学知识运用和服务于生活的能力。教学重点:熟练运用圆锥体的体积公式解决实际问题,进一步理解圆柱与圆锥的关系。教学难点:进一步理解圆柱与圆锥的关系。教学准备:课件。教学过程: 课件出示

一、基本练习:

1、一个圆柱的底面积是12.56平方分米,高6分米,与它等底等高的圆锥的体积是多少?

2、一个圆柱的底面直径是8厘米,高5厘米,与它等底等高的圆锥的体积是多少? 一个圆锥的底面周长是9.42米,高1米,圆锥的体积是多少?

二、引导练习:

出示例题: 将一个体积为42.39立方分米的圆柱形零件熔铸成一个底面直径为12分米的圆锥体零件,圆锥的高是多少?

学生先讨论交流,然后师引导提问:

1、要求圆锥的高,必须知道哪些条件?

2、引导学生画出思路图:圆锥的高——体积、底面积

体积-------圆柱的体积

底面积-------底面直径

圆锥的高=体积×3÷底面积

3、学生独立解答。

三、深化练习:

出示例题: 一个长方体木块,长55厘米,宽40厘米,高30厘米,将其加工成一个最大的圆锥体木块,圆锥的体积是多少?

1、学生试做。

2、学生交流做法。

3、师点拨,重点引导理解加工成最大的圆锥体的底面直径和高。

四、巩固练习

一圆锥形的底面半径和高都 等于正方体的棱长,已知正方体的体积是30立方厘米,圆锥的体积是多少?

学生板演,全班练习。作业设计:

一、填空

1.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

2. 等底等高的圆柱和圆锥,如果先在圆锥容器中注满水,水面高12厘米,再全部倒入圆柱形容器中,水面高()厘米;如果先在圆柱容器中注满水,再把水倒入圆锥形容器直到注满,这时圆柱形容器中的水面高()厘米。

1.把一个体积是282.6立方厘米的铁块熔铸成一个底面半径是6厘米的圆锥形机器零件,求圆锥零件的高。

2.在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米。每立方米小麦约重35千克,这堆小麦大约有多少千克?(得数保留整千克数)

3.一个圆锥形的小麦堆,底面周长是 12.56米,高是2.7米,把这些小麦放到圆柱形的粮囤中去,恰好占这粮囤容积的78.5%。已知粮囤底面的周长是9.42米,求这个粮囤的高。(保留两位小数)

4、圆柱的体积是圆锥的2倍,圆柱的高与圆锥的高的比是2:5,圆锥的底面积与圆柱的底面积的比是多少? 圆锥的体积练习

5、将一个底面半径是4分米,高6分米的圆柱体零件熔铸成一个底面直径为4分米的圆锥形零件,求圆锥零件的高是多少分米?

练习一

课时 2

节次1

时间 教学内容:圆柱与圆锥的整理与复习教学目标:

知识与能力:使学生较为系统的掌握圆柱和圆锥的基础知识,进一步理解圆柱与圆锥的关系,能正确的解答有关问题。

过程与方法:学生经历系统整理的过程,提高自己的逻辑思维能力和空间想象力。情感态度与价值观:培养学生认真反思的好习惯。教学重点:运用所学知识解决实际问题。教学难点:深入理解圆柱与圆锥的关系。教学准备: 课件

教学方法:自主探究,合作交流。教学过程:

一、基本练习

1、回答下列问题:

(1)圆柱圆椎各有什么特征? 圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。

圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。

(2)怎样求圆柱的侧面积?怎样求圆柱的表面积?公式呢?生口答。(3)怎样求圆柱的体积?怎样求圆锥的体积?公式是呢?生口答。

(4)圆柱与圆锥之间有什么关系?(圆锥的体积等于和它等底等高的圆柱体积的三分之一。)

二、完成课本练习一1-----6题。第1题:学生独立完成。

第2、3题:学生板演,集体订正。

第4题:让学生说一说求几个面的面积,在独立完成。第5题:学生独立完成。

第6题:引导学生先理清题中的信息和思路,在独立完成。

三、交流收获:你本节有什么收获? 板书设计 圆柱与圆锥

圆柱:两底面是大小相等的圆,侧面是一个曲面,展开后是一个长方形,两地面之间的距离是圆柱的高,有无数条高。圆椎:底面是圆,侧面是一个曲面,展开后是一个扇形,顶点到底面圆心的距离是圆锥的高。它有一条高。侧面积 = 底面周长×高

表面积 = 侧面积+底面积×2 圆柱:v = sh

圆锥:

v =1/3sh 作业设计 一.填空

(1)一个圆锥体积是与它等底等高的圆柱体积的();(2)圆柱的体积相当于和它等底等高的圆锥体积的();

(3)把一个圆柱削成一个最大的圆锥,削去的部分的体积相当于圆柱体积的(),相当于圆锥体积的()。

(4)仔细观察,圆柱的体积是圆锥的的3倍的是()。(单位:cm)

二、1、一个圆柱形水池,直径是20米,深2米 ① 这个水池的占地面积是多少?

② 在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

2、一个圆柱形罐头盒,底面直径6厘米,高10厘米 ① 做这个罐头盒至少要用多少铁皮?

② 这个罐头盒上的包装纸的面积是多少平方厘米?

3、一个圆锥形的石子堆,底面周长25.12米,高3米,每立方米石子重2吨。如果用一辆载重4吨的汽车来运这些石子,至少需运多少次才能运完?

4、一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?

5、一个圆柱形木块切成四块(如图1),表面积增加48平方厘米;切成三块(如图2),表面积增加了50.24平方厘米。若削成一个最大的圆锥体(如图3),体积减少了多少立方厘米?

练习一

课时2

节次 2

时间 教学内容:北师大小学数学第十二册第14-17页

练习一 教学目标: 知识与能力:.1.复习圆柱、圆锥体积的计算公式,加深学生对立体形体之间内在联系的认识,使学生对所学的知识进一步系统化和概括化。2.通过实际操作,培养学生的实际能。过程与方法:学生通过练习、实际操作,对所学的知识进一步系统化和概括化。情感态度与价值观:使学生在解决实际问题中感受数学与生活的密切联系 教学重点::体积计算公式的运用。

教学难点:运用所学的知识解决生活中的实际问题。教学准备:课件

教学方法:学生练习,师点拨。教学过程: 出示课件:

一、针对性练习。

1、一个圆柱和一个圆锥等底等高,体积和是48立方厘米,圆柱体()

2、把一个圆柱削成一个最大的圆锥,削去18立方厘米,圆柱体积是()

3、圆柱的体积是和它等底等高的圆锥体积的()

4、圆锥的体积是和它等底等高的圆柱体积的()

5、圆柱的体积比和它等底等高的圆锥体积多()

6、圆锥的体积比和它等底等高圆柱的体积少()学生独立完成,师根据情况点拨。

二、完成课本练习一7-----思考题。第7题:生独立完成。

第8题:师引导学生观察两个圆柱,再试着说出体积之比。用两种方法说明:一种是举例:设大圆的底面半径和小圆的底面半径,计算出两个圆柱的体积,再求体积比;另一种用计算公式来说明:大圆的底面半径为R,小圆的底面半径为r,大圆柱与小圆柱的体积之比是:(ΠR ²×18):(πr ²×18)=R ²:r ²=9:4。通过计算说明,在高一定的情况下,两个圆柱的体积比等于两个半径的平方比。第9题:本题有两种解法,让学生试做,然后交流不同的方法。第10题:先让学生说说思考方法在做。

第11题:本题是“等积变形”题,学生试做,再点拨。

第12题:本题是一个组合图形,学生试做,师根据情况点拨。

你知道吗?本栏目是向学生介绍沙漏,让学生讨论后试着解答,师点拨。

三、课堂小结:

通过练习,你有什么收获?全班交流。作业设计:

一、填空

1、一个直角三角形,两条直角边分别为3厘米和6厘米,以短直角边为轴旋转一周,可以得到一个()体,它的体积是()立方厘米

2、把一根9分米的圆柱形钢材截成两段后,表面积比原来增加了2.4平方分米,这根圆柱形钢材原来的体积是()立方分米

3、(课件显示)一个铁皮制成的底面直径为20厘米,高10厘米的圆柱形的礼品盒,捆扎时,底面成十字形,打结处用去绳子18厘米,共需塑料绳()厘米,做一个礼品盒至少要用()铁皮,这个礼品盒大约装()立方厘米的礼品。

二、判断题:

A.电线杆上下两个底都是圆,所以电线杆是圆柱。()

B.一段圆柱形木材,削成一个最大的圆锥体,削去的部分是原体积的1/3()C.圆柱的底面半径扩大2倍,高也同时扩大2倍,圆柱体积就扩大8倍。()(用手势进行判断,并说明理由)三.选择题:

1、一个圆柱体,侧面展开图是正方形,它的边长是18.84厘米,它的底面半径是()厘米。

A 0.3

B 10

C 3

D 6

2、一个圆柱和一个圆锥的底相等,体积也相等.圆柱的高是1.2分米,圆锥的高是()分米.A 0.4

B 3.6

C 1.2

D 0.6

3、学校修建一个圆形喷水池,容积是37.68立方米,池内直径是4米,.那么这个水池深()米.A 2

B 3

C 0.6

D 5 四.求下组合体的体积:(单位:厘米)

五.应用题:

1、一个圆锥形沙滩,低面半径是1.5米,高4.5分米,用这推沙子铺一个长5米,宽2米的沙坑.沙坑的沙子厚多少厘米?

2、一个圆锥形的麦堆,量得底面直径是4米,高是1.5米。按每立方米小麦重740千克,这堆小麦约重多少千克?

3、一根空心钢管长2米,内直径是10厘米,外直径是20厘米,如果每立方厘米的钢材重7.8克,这根钢管重多少千克?

4、把圆柱体铁块熔制成一个圆锥体铁块,已知圆柱的底面半径是2厘米,高是3厘米,熔制成圆锥的底面半径是3厘米.那么圆锥的高是多少?

实践活动

课时

节次

时间 教学内容:教材17页实践活动。教学目标:

知识与能力:通过“用长方形卷圆柱形”的探索活动,鼓励学生应用所学知识解决实际问题。过程与方法:经历探索规律的过程,体会变量之间的关系。情感态度与价值观:培养学生学习数学的兴趣。教学重点:圆柱表面积和体积的应用。教学难点:体会变量之间的关系。

教学准备:学生每人准备4张长方形纸:长16厘米,宽4厘米。

教学方法:实验法。教学过程:

一、回答问题:

圆柱的表面积和体积公式各是什么?

二、实践活动:

活动一:拿出两张长方形纸,一张以宽为高,一张以长为高,分别卷成一个圆柱体。猜一猜:两个圆柱体的体积一样大吗? 算一算:两个圆柱体的体积一样大吗? 学生列式解答,交流计算方法。

通过计算,得出结论:一张以宽为高卷成的圆柱体的体积大。

活动二:再拿出两张长方形纸,分别按教材的步骤做成两个圆柱体。两个圆柱体的底面半径和高各是多少?

计算它们的体积各是多少?(小组合作计算)

得出结论:同样大小的纸,底面周长越大,体积越大。活动

三、汇总四个圆柱有关数据,填写教材表格,你发现了什规律?

交流发现,得出结论:当侧面积一定时,越是细长的圆柱体积越小,越是粗矮的圆柱体积越大。课后探讨:

再找两张纸,按照不同的方式剪一剪,卷一卷,得到不同的圆柱形。探讨:活动三的结论还成立吗?要求记录实验数据,写出计算过程)

第四篇:小学六年级下册数学圆柱圆锥教案

公式

例题

题型一:展开圆柱的情况

1、展开侧面

(1)圆柱的底面周长和高相等时,展开后的侧面一定是个()。

(2)一个圆柱体,两底面之间的距离是10厘米,底面周长是31.4厘米,把这个圆柱体的侧面展开得到一个长方形,长方形的周长是()。

(3)把一个圆柱的侧面展开,是一个边长9.42dm的正方形,这个圆柱的底面直径是()。

(4)一个圆柱形的纸筒,它的高是3.14分米,底面直径是1分米,这个圆柱形纸筒的侧面展开图是()。

A、长方形

B、正方形

C、圆形

(5)把一张长6分米、宽3分米的长方形纸片卷成一个圆柱,并把圆柱直立在桌子上,它的最大容积是()。

(6)一个圆柱的侧面展开后恰好是一个正方形,这个圆柱的底面直径和高的比是()。

2、将圆柱体切开后分析增加的表面积

(1)圆柱两个底面的直径()。把一个底面积为6.28立方厘米的圆柱,切成两个圆柱,表面积增加()平方厘米。

(2)把一根圆柱形木料据成四段,增加的底面有()个。

(3)一根圆柱形有机玻璃棒,体积是54立方厘米,底面积是4立方厘米,把它平均截成5段,每段长()cm。

(4)一个高为9分米的圆柱体,沿底面直径切成相等的两部分,表面积增加72平方分米,这个圆柱体的体积是多少立方分米?

3、将两圆柱体合并

把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?

题型二:求表面积、体积、侧面积和底面积(主要是应用题)

1、表面积

(1)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?

2、侧面积

一种圆柱形铅笔,底面直径是0.8cm,长18cm。这支铅笔刷漆的面积是多少平方厘米?(两底面不刷)

3、不规则

做一个没盖的圆柱形水桶,底面半径是25厘米,高50厘米,至少需要铁皮多少平方厘米?

4、底面直径和半径 有一节张160厘米的圆柱形状的烟囱,它的侧面积是5024立方厘米。这节烟囱的底面半径是多少厘米?

题型三:升和毫升、立方米、立方分米和立方厘米之间的进率

1升=1000毫升;

1立方米=1000立方分米=1000000立方厘米; 1立方分米=100立方厘米。

圆柱的表面积练习题1、2.6米 =()厘米

48分米 =()米

7.5平方分米 =()平方厘米

9300平方厘米 =()平方米

2、填空:

(1)圆柱的()面积加上()的面积,就是圆柱的表面积。

(2)把一个底面积是15.7平方厘米的圆柱,切成两个同样大小的圆柱,表面积增加了()平方厘米。

(3)计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的()。

(4)计算做一个圆柱形的烟囱要用多少铁皮,要计算圆柱的()。

(5)计算做一个没有盖的圆柱形水桶要用多少铁皮,要计算圆柱的()。

(6)一个圆柱,它的高是8厘米,侧面积是200.96平方厘米,它的底面积是()。

3、求下面各圆柱的表面积。

(1)底面半径是2分米,高是7.3分米。

(2)底面周长是18.84米,高是5米。

4、选择正确答案的序号填在括号里。(1)圆柱的侧面积等于()乘以高。

A、底面积

B、底面周长

C、底面半径

(2)把一个直径为4厘米,高为5厘米的圆柱,沿底面直径切割成两个半圆柱,表面积增加了多少平方厘米?算式是()A、3.14×4×5×2

B、4×5

C、4×5×2

5、一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)

6、一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?

第五篇:六年级数学圆柱、圆锥和球

第二单元:圆柱、圆锥和球

教学内容:圆柱的认识。教学目标:

1.使学生认识圆柱,掌握圆柱的特征。

2.使学生认识圆柱的底面、侧面和高。教学过程:

1.复习引新。

我们以前学过的正方体、长方体都是由平面围成的立体图形。今天,我们再来研究一种新的立体图形——圆柱。

2.学习新知。

教师可以出示一些圆柱的实物,也可以让学生把自己准备的圆柱实物拿出来一起来研究。

教师可以提出以下的问题:

你还能举出生活中圆柱的例子吗?

[订正:饭店门前的柱子、灯管、药瓶、易拉罐、铅笔等。]

同学们说的这些物体的形状都是圆柱体,简称圆柱(本书所讲的圆柱都是直圆柱)。

教师拿出一个形状是圆柱的物体,请学生观察。

请同学们思考下面的问题:

(1)圆柱的上、下两个面是什么图形?

(2)用手摸一摸圆柱周围的面,你发现了什么?

(3)圆柱两个底面之间的距离叫什么?

[订正:(1)圆柱的上、下两个面叫做底面。它们是完全相同的两个圆。

(2)圆柱有一个曲面,叫做侧面。

(3)圆柱两个底面之间的距离叫做高。]

教学圆柱的认识时,要让学生拿着圆柱形物体观察和摆弄,可以通过看一看,摸一摸等直观方法,同长方体的表面进行比较,使学生认识到两者之间的差别,从而认识圆柱的侧面是曲面。

这时,教师可以让学生拿出剪子,和教师一起来把罐头盒的商标纸像下图所示那样,沿着它的一条高剪开,再打开,看看商标纸是什么形状。

并提问:你发现了什么?

[订正:让学生发现到展开的商标纸是一个长方形。圆柱的侧面是一个曲面,可以展开成一个长方形或是一个正方形平面。]

让学生观察:将这张长方形的纸包在圆柱的侧面上。

并提问:

(1)长方形的长与圆柱底面的周长有什么关系?

(2)长方形的宽与圆柱的高有什么关系?

让学生分析、比较,概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高。

3.巩固练习。

(1)说一说,你见到过哪些物体是圆柱形的。

[订正:药盒、纸筒、铁棍、水管、烟囱等。]

(2)指出下图中哪个是圆柱体。

[订正:①不是 ②是 ③不是 ④是]

4.综合提高性练习。(供学有余力的学生完成)

按照课本第147页的图样,做一个圆柱体,再量出它的底面直径和高各是多少厘米。

5.质疑。

今天我们学习了什么?圆柱侧面展开是什么图形?

6.布置作业。(略)

课后反思:本节课中的练习有利于培养学生的创新精神和实践能力。

圆柱的表面积

教学内容

教材33页、34页例

1、例

2、例3及做一做,练习七第2-5题。素质教育目标

(一)知识教学点

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

(二)能力训练点

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题。教具学具准备

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。教学步骤

一、铺垫孕伏

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8

=1.75×1.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学圆柱的表面积

(1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2

(1)投影片出示例题

2、圆柱的几何图形和表面积的展图。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

6.阅读课本33页、34页。

三、巩固发展

1.完成练习七第2题。

指两名学生板演,教师巡视指导,然后订正。

2.完成练习七第3题的前两题。

学生在练习本上做,教师巡视指导,然后订正。

3.完成练习七第5题。

(1)每组一个茶叶筒,学生分组进行测量。

(2)教师巡视,指导学生测量的方法。

(3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。

四、全课小结

教师:这节课我们所研究的例

1、例

2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?

教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

五、布置作业练习七第3题的第3小题、第4题。

课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。

圆柱的体积

教学内容

教材36、37页例

4、例5及做一做,练习八第1、2题。素质教育目标

(一)知识教学点

1.理解圆柱体体积公式的推导过程,掌握计算公式。

2.会运用公式计算圆柱的体积。

(二)能力训练点

1.能运用圆柱体的体积公式解决一些实际问题。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

(三)德育渗透点

通过把圆柱体切割后,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。教学重点

圆柱体体积的计算。教学难点

理解圆柱体体积公式的推导过程。教具学具准备

1.推导圆柱体体积的圆柱体教具一套,学生学具每人一套。

2.投影片、电脑软件。教学步骤

一、铺垫孕伏

1.提问:

(1)什么叫体积?怎样求长方体的体积?

(2)圆的面积公式是什么?

(3)圆的面积公式是怎样推导的?

2.导入:

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的知识长方形来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)

二、探究新知

1.教学圆柱体的体积公式

(1)教师演示:

同学们看老师手中的这个圆柱,我先把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

下面请同学们拿出自己的学具动手拼一拼,看拼起来是什么形体。

(2)学生操作(教师要注意巡视指导)

(3)启发学生观察、思考、讨论:

①圆柱体切开后可以拼成一个什么形体?(近似的长方体)

②通过刚才的实验你发现了什么?(教师要注意启发、引导)

a.拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

b.拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

c.近似长方体的高就是圆柱的高,没有变化。

(4)教师演示,学生观察。

同学们,刚才我们把圆柱的底面平均分成了16份,切割后再拼起来,拼成了一个近似的长方体,下面请同学们仔细观察:(教师边利用电脑出示图形边提问)

①如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

②如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

③如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

(利用电脑使学生直观地认识到,分的份数越多,拼起来就越近似于长方体)

(5)启发学生说出通过以上的观察,发现了什么?

①平均分的份数越多,拼起来的形体越近似于长方体。

②平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

(学生回答时,教师要注意启发、点拨。如果学生回答有困难,可把演示的三个近似的长方体,放在同一画面,让学生观察比较)

(6)启发学生思考回答:

为什么要把圆柱体拼成近似的长方体?你从中发现了什么?

①圆柱体与近似的长方体,形状不同,体积相同。

②我们学过长方体的体积公式,如果把圆柱体转化成近似的长方体,圆柱体的体积就可以计算了。

(7)推导圆柱的体积公式:

①学生分组讨论:圆柱体的体积怎样计算?

②学生汇报讨论结果,并说明理由。

因为长方体的体积等于底面积乘以高。(板书:长方体的体积=底

面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积

↓),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘以高。(板书:=、×)

③用字母表示圆柱的体积公式。(板书:V=sh)

④启发学生回答:求圆柱的体积必须具备哪两个条件?

(8)反馈练习:

口答,只列式不计算:

①底面积是10,高是2,体积是()

②底面积是3,高是4,体积是()

2.教学例4。

(1)出示例4。

(2)学生独立进行计算。(教师巡视,注意发现学生计算中存在的问题)

(3)订正。(如发现有50×2.1的,让学生板演讲解,使学生自己明白错误的原因,从而加深印象。如果发现计算没有出现错误,也可让学生板演,并正确地表述)

(4)反馈练习:完成38页做一做第1题。

一名学生在小黑板上做,其余学生在练习本上做,然后订正。

3.启发学生思考回答:计算圆柱的体积,还可能有哪些情况?(学生回答时,要让学生说出计算思路)

(1)已知圆柱的底面半径和高,求体积。

(2)已知圆柱的底面直径和高,求体积。

(3)已知圆柱的底面周长和高,求体积。

反馈练习:完成38页做一做第2题,学生口述解题思路,不计算。

4.教学例5

(1)出示例5。

(2)引导学生分析题意:

①这道题已知什么?求什么?

②要求水桶的容积,应先求什么?再求什么?

(3)求水桶的底面积:(学生在练习本上解答,然后订正)

板书:(1)水桶的底面积:

(4)求水桶的容积:(让学生填在书上的空白处,然后订正)

板书:(2)水桶的容积:

3.14×25

=7850(立方厘米)

≈7.9(立方分米)

答:这个水桶的容积大约是7.9立方分米。

5.阅读课本36页、37页。

三、巩固发展

1.完成练习八第1题。

投影出示题目内容,学生口答。

2.完成练习八第2题的第1小题。

学生独立解答,集体订正,并说解题思路。

3.一个圆柱形水池,半径是10米,深1.5米。这个水池占地面积是多少?水池的容积是多少立方米?

学生独立解答,然后订正。

四、全课总结

通过本节课的学习,你有什么收获?(启发学生从两个方面谈:圆柱体体积公式的推导方法和公式的应用)

五、布置作业 练习八第二题的后两个小题。

课后反思:本节课进一步发展了学生的空间观念,而且还进一步提高了学生学习数学的兴趣。

圆 锥

教学内容:认识圆锥 圆锥的体积。教学目标:

1.使学生认识圆锥,掌握它的特征;认识圆锥的底面和高。

2.使学生理解并掌握圆锥体体积的计算公式,并能正确计算圆锥体体积。

3.通过操作、观察,发展学生的空间思维能力,培养学生的观察能力,学会解决一些与计算圆锥形物体的体积有关的实际问题。教学过程:

1.复习旧知识,引出新问题。

(1)出示圆柱体。

这是什么物体?它的体积怎样计算?

(2)投影出示圆锥体。(先将第一组和第二组图重合在一起,然后再抽拉出第一组成为透视图。)

上面这些物体的形状都是圆锥体,简称圆锥。

(3)出示圆锥模型。

请同学们观察圆锥有哪些特点。

圆锥的底面是个圆,圆锥的侧面是个圆曲面。从圆锥的顶点到底面圆心的距离是圆锥的高(用h表示)。

请同学们阅读课本,自学测量圆锥高的方法。再按照书上介绍的步骤将圆锥模型的侧面展开,就能得到一个扇形(如下图)。

2.指导探索圆锥体积计算公式。

刚才同学们认识了圆锥体,圆锥体的体积是多少?下面我们就共同研究一下圆锥体体积的计算方法。

引导学生把圆锥体同与它等底等高圆柱体联系起来,教给操作方法。

让学生拿出已经准备好的圆柱体、圆锥体、沙土,请同学们利用手中的学具探讨圆锥体积计算方法,看圆柱和圆锥有什么关系。

圆柱和圆锥同底等高,将空圆锥体装满沙子,向空圆柱体倒了三次正好装满。圆柱体体积是和它同底等高圆锥体体积的3倍。也可以说,圆锥体积

引导学生观察、比较、讨论。

(1)圆锥体和圆柱体的高相等、底相同,它们的体积有什么关系?

学生经过认真观察、讨论,师生归纳:

圆柱的体积=底面积×高 V=Sh

通过学具的操作、演示,注意渗透联系的思维方法和同底等高的思想,并通过观察、比较,找到圆锥和圆柱之间的联系,从而使学生在参与中获得知识。

3.巩固知识,运用公式。

(1)教师出示刚才演示过的学具圆锥体,提问:要求这个圆锥体的体积,必须知道什么条件?

[订正:圆锥的底面积和高,或圆锥底面的半径和高。]

请学生到前面量出圆锥教具的底面半径和高,然后让全班学生在练习本上求出该圆锥体的体积。

(2)一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

=76(立方厘米)

答:这个零件的体积是76立方厘米。]

(3)一个圆锥的底面面积是 25平方分米,高是 9分米,它的体积是多少?

答:它的体积是75立方分米。]

(4)一个圆锥的底面直径是20厘米,高是9厘米,体积是多少?

答:它的体积是942立方厘米。]

4.综合提高性练习。(供学有余力的学生完成)

自己动手做一个圆锥,你能想办法算出它的体积吗?说说侧量和计算的方法。

[订正:通常先用软尺量出底面圆的周长,再求出底面半径和面积,然后用学过的方法测量高(或其他可行的方法)。这样就可以求出圆锥的体积。]

5.质疑。

今天我们学习了什么?说一说,如何计算出圆锥的体积?

6.布置作业。(略)

课后反思:学生解决实际问题的能力有所提高。

圆锥的体积

教学内容

教材42-43页 例2及做一做,练习九3-5题。素质教育目标

(一)知识教学点

1.使学生理解求圆锥体积的计算公式。

2.会运用公式计算圆锥的体积。

(二)能力训练点

1.能运用圆锥体积公式解决一些实际问题。

2.通过圆锥体积公式的推导实验,增强学生的操作能力和观察能力。

(三)德育渗透点

通过圆锥体积公式推导的教学,引导学生探索知识的内在联系,渗透转化思想。教学重点

圆锥体体积计算公式的推导过程。教学难点

正确理解圆锥体积计算公式。教具学具准备

1.每组学生准备两个大小不等的圆柱体容器和两个大小不等的圆锥体容器(其中有一个圆柱体容器和圆锥体容器等底等高)。

2.投影仪、投影片 教学步骤

一、铺垫孕伏

1.提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

2.导入:

同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

二、探究新知

1.指导探究圆锥体积的计算公式。

(1)教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒入圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量、看它们之间有什么关系,并想一想,通过实验你发现了什么?

(2)学生分组实验:(教师要注意指导学生实验操作中的技巧问题)

(3)学生汇报实验结果:(边演示边说明)

①圆柱和圆锥的底相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

②圆柱和圆锥的底不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

③圆柱和圆锥的底相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

„„

(4)最后引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍,或圆锥的体积是和它等底等高圆柱体积的1/3。

(5)引导学生推导圆锥的体积公式:

板书:

(6)启发学生思考:要求圆锥的体积,必须知道哪两个条件?

(7)反馈练习:

口答,只列式不计算:

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

2.教学例1

(1)投影出示例1。

(2)学生独立计算,并把计算结果填在课本上,然后订正。

板书:例1

答:这个零件的体积是76立方厘米。

(3)反馈练习:完成课本44页做一做第1题。

学生在练习本上做,集体订正。

3.启发学生思考讨论:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(学生回答时,要让学生说出计算思路)

(1)已知圆锥的底面半径和高,求体积。

(2)已知圆锥的底面直径和高,求体积。

(3)已知圆锥的底面周长和高,求体积。

4.反馈练习:完成课本44页做一做第2题。

一名学生板演,其他学生在练习本上做,订正时让学生说明解题思路。

5.教学例2

(1)投影出示例2,引导学生分析题意:

①这道题已知什么?求什么?

②要求小麦的重量,必须先求什么?

③要求小麦的体积应怎么办?

④这道题应先求什么?再求什么?最后求什么?

(2)学生独立解答,然后把计算的步骤填写在课本50页例2的空白处,最后集体订正。

板书:(1)麦堆底面积:

=3.14×4

=12.56(平方米)

(2)麦堆的体积:

12.56×1.=15.072(立方米)

(3)小麦的重量:

735×15.072

=11077.92

≈11078(千克)

答:这堆小麦大约重11078千克。

(3)教师说明:小麦每立方米的重量随着含水量的大小而不同,要经过测量才能确定,735千克并不是一个固定的常数。

(4)教学如何测量麦堆的底面直径和高。

①启发学生根据自己的生活经验来讨论、谈想法。

②教师补充介绍。

a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径。也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径。

b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得。(投影出示示意图)

6.阅读课本44-45页。

三、巩固发展

1.完成练习九第3题。

指定3名同学做在小黑板上,其他同学在练习本上做,做完后订正。

2.完成练习九第5题。

投影出示题目,学生独立填完,然后订正。订正时让学生讲出相对应的计算公式。

3.判断对错,并说明理由。

(1)圆柱的体积相当于圆锥体积的3倍。()

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2∶1。()

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米。()

四、全课小结

通过本节的学习,你学到了什么知识?(引导学生从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

五、布置作业练习九第4题。

课后小记:在本节课的课堂教学中让学生合作探究,发现规律,激发了学生的学习兴趣。不足之处是学生在计算中马虎现象太严重。

球(选学内容)

教学内容:教科书第46~47页的内容。

教具准备:教师演示用的球模型一个,最好是空心的,打开后将一个半球的平面用纸粘牢,并用两条线段表示球的两条直径相交于一点上(如右图)。也可以用其他可以切开的球形物体代替,如把一个近似球形的萝卜削成球状。地球仪一个,米尺一把,切刀一把,夹板两块;每个学生准备一个球形物体,及一个可以切开的球形物体,切刀一把。

教学过程:

一、复习

1.复习圆的特征。

出示圆的几何图形。然后向学生提问:

(1)圆的中心叫什么?

(2)指名画出圆的半径,用字母表示。

(3)指名画出圆的直径,用字母表示。

(4)圆的直径与半径有什么关系?

学生回答后教师板书:

直径=半径的2倍

d=2r

2.指名说出下列各立体图形的名称以及它们的特征。(着重说出每个立体图形是由几个什么样的图形围成的。)

二、新课

1.导入课题。

教师说明:我们已经认识了长方体、正方体、圆柱和圆锥这几种立体图形,了解了它们的特征。今天我们再来认识一种立体图形——球。

板书课题:球。

2.研究球的特征。

教师逐个出示乒乓球、皮球、排球、足球、滚珠等实物,让学生观察它们的形状有什么共同点。然后,指出它们都是球。现在我们来研究球的特点。

(1)认识球面。

请学生把自己搜集的球拿出来,放在手心上,用另一只手摸一摸。教师提问:你有什么感觉吗?它与长方体、正方体、圆柱、圆锥的区别在什么地方?

在学生讨论的基础上,教师说明:球的表面不像长方体和正方体那样有几个平面,也不像圆柱和圆锥那样有平面也有曲面,而是只有一个曲面,这个曲面叫做球面(板书:球面)。

(2)通过实验认识球的重要特征。

教师说明:除去球面不同于我们学过的其他立体图形以外,球还有什么更重要的特征吗?下面我们一起来做个实验,看谁能有所发现。

①在两块互相平行的木板中间夹一个大球。(见教科书第53页图)请一名学生将米尺的零刻度对准一块夹板的内边缘,看另一块夹板的内边缘对准的是哪一个刻度,将这个刻度报告给大家。

②教师一边轻轻转动夹板中间的球(注意不要碰撞夹板),一边请学生注意观察米尺的刻度,让刚才看刻度的学生再次向大家报告米尺的刻度。

③提问:你发现两块木板间的距离有什么变化吗?学生回答后,教师继续提问:“你知道这是什么原因吗?”(引导学生回答,球面和两块木板相交的两个点之间的距离总是相等的。)

(3)认识球心、球的半径和直径。

①教师仿照教科书在黑板上画出球的直观图。指出:“球和圆类似,也有一个中心。”然后在直观图的中心画一个点,说明它叫做球心。(板书:球心)并用字母“O”表示。教师把球的模型平均分成两半(或把削成球状的萝卜平均切成两半,指出球心的位置)。

②两次出示半球模型,指出球的半径,然后指名学生用米尺量一量半径的长度,提问:“想一想,球有多少条半径?”

③教师边在直观图上描画,边口述:“通过球心,并且两端都在球面上的线段,叫做球的直径。”让学生在半球模型上指出哪些是直径。

提问:球的直径有多少条?

指名测量球的直径的长度,然后提问:

“球的直径长度都相等吗?”

“球的直径长度和半径长度有什么关系?”

引导学生回答球的直径长度等于半径长度的2倍。教师将复习圆的知识时板书的“直径=半径的2倍”及“d=2r”下面各画一条红线,强调球的直径与半径的关系和圆的直径与半径的关系相同。

提问学生:你能说明刚才转动木板中间的球,两块木板间的距离没有变化的原因吗?引导学生回答:因为两块互相平行的木板间夹的球和木板相交的两点之间的长度都是通过球心的直径的长度,这些直径的长度都相等,所以在夹板中转动球时,不会改变两块夹板中间的距离。

④研究把球切开的截面形状和大小。

教师举起一个削成球状的萝卜,用切刀随便切一刀,将截面展示给学生。提问:把一个球形物体切开,切开的面是什么形状?

在学生回答后,教师再任意切一刀(但是不与先切的截面相交),又出现了圆形截面,再给学生看,提问:

想一想:怎样切得到的圆的面积最大?用你自己的球形物体试试看。

学生操作,教师注意巡视,了解情况,请一名操作正确的学生汇报自己的实验结果,阐述观点,教师同时进行演示。得出:通过球心切开时,得到的圆的面积最大。

3.介绍地球仪。

(1)教师说明我们居住的地球,它的形状就是一个近似的球。

(2)观察地球仪。

教师出示大地球仪,学生如果有地球仪也可以拿出。指出地球仪上哪一条线是赤道(可以把地球仪的赤道用红纸条围出)。赤道绕地球一周是一个近似的圆。

(3)计算赤道周长。

教师说明赤道是绕地球一周所围成的圆,半径大约是6400千米。让学生独立在练习本上计算出赤道一周大约长多少千米,然后集体订正。

三、小结和练习

1.提问:

“今天我们学习了什么新知识?”

“球有什么特点?什么是球的半径?什么是球的直径?”

“说说你见到过的球形物体的名称。”

2.做第47页“做一做”第2题。

先让学生思考如何解答,再进行实物操作,看看自己想出的答案是否正确。

课后反思:本课体现了让学生在现实情境中体验和理解数学的教学理念,使学生在生动活泼的情境中掌握了必要的基础知识和基本技能。

下载六年级数学下册“圆柱与圆锥”作业设计word格式文档
下载六年级数学下册“圆柱与圆锥”作业设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学圆柱圆锥练习题

    “圆柱圆锥”练习题姓名成绩 一、填充题: 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的. 一个直圆柱底面半径是1厘米,高是2.......

    2015新版人教版六年级数学下册 第三单元 《圆柱与圆锥》教学设计范文

    第三单元 圆柱与圆锥 【教学目标】 1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。 2.探索并掌握圆柱的侧面积、表面积的计算方法......

    人教版六年级数学课外辅导作业(圆柱圆锥单元测试)

    人教版六年级数学课外辅导作业(圆柱圆锥单元测试) 姓名:______________ 成绩:_______ 一、 填空。(每空4分,共40分) 1、 把圆柱的侧面展开,一般可以得到一个( ),这个图形的长相当于圆......

    六年级圆柱与圆锥练习题精选

    圆柱巩固练习题 一、填空 1一个圆柱体,底面周长是125.6厘米,高是12厘米,它的侧面积是( )平方厘米。 2一个圆柱体,底面半径是3厘米,高是5厘米,它的侧面积是( )平方厘米,表面积是( )平......

    6六年级下册数学圆柱圆锥练习题(含答案)

    „ „ „ _„__„__„__„__„__„__„__„名„姓„ „ „ „ _„__„__„__„__„__„__„_号„学题 答 得 不 内 _线__封__密__„__„__„__„级„班„ „......

    北师大版六年级下册数学圆柱、圆锥练习题

    北师大版六年级下册数学圆柱、圆锥练习题1、一个圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是( )厘米.2、圆柱体育圆锥体的底面积相等,圆柱体的高是圆锥体的高的1/6......

    六年级数学下册圆柱圆锥专项练习-苏教版

    六年级数学下册圆柱圆锥专项练习姓名:得分:一、填空。1.5080立方分米=立方米立方分米3升50毫升=升2.8平方米=平方厘米27毫升=立方分米2.把一个圆柱体的侧面展开,得到......

    六年级数学下册 圆柱圆锥数学活动课教案 苏教版

    圆柱圆锥数学活动课 (多媒体展示课) 教学目的:通过学生自己在复习中的整理、练习、讨论、合作和竞赛,让学生在活动中较系统地掌握圆柱与圆锥的相关特点,并进一步提高运用 知识......