第一篇:人教版数学六年级下册第二单元圆柱与圆锥单元备课
第 二 单 元 圆 柱 与 圆 锥
一、教材分析
本单元的学习内容是:圆柱与圆锥的认识,圆柱的表面积,圆柱与圆锥的体积。
本单元是在学生认识了圆,掌握了长方体和立方体特征的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
教材在编写上遵循了“特征—表面—体”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。
本单元在教学方法上的一个显著特点是让学生积极、主动地实践探究,要让学生合作探究的过程中自主发现规律,获取知识,提高研究问题和解决问题的能力。
二、教学目标:
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、教学重、难点:
重点:理解、掌握圆柱和圆锥的基本特征。会运用公式计算体积,解决有关的简单实际问题。难点:圆柱、圆锥体积计算公式的推导。
四、教学措施
(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。
(2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。
(3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。
(4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。
(5)加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。教学时应注意加强与实际生活的联系,重视运用所学知识解决实际问题的意识与能力的训练。
(6)让学生经历探索知识的过程,培养自主解决问题的能力。教学时,应放手让学生经历探索的过程,在观察、操作、推理、想像过程中掌握知识、发展空间观念,让学生在经历试验探究的过程中获取,以改变只按教材说明进行演示得出结论的做法。
五、教学准备
圆柱、圆锥实物,模型,多媒体课件,直尺,三角板,铅笔等。
六、课时安排:
圆柱的认识 „„„„„1课时 圆柱的表面积 „„„„2课时 圆柱的体积 „„„„„2课时 圆锥的认识„„„„„ 1课时 圆锥的体积„„„„„ 2课时 整理复习„„„„„„ 1课时
第二篇:圆柱与圆锥 单元备课
圆柱与圆锥
单元分析:
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
教学目标:
1、认识圆柱和圆锥,掌握它们的基本特征,认识圆柱的底面,侧面和高,认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积,表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、这观察,设计和掉作圆柱、圆锥模型等活动,了解平在图形与立体图形之间的联系,发展学生的空间观察
教学重点:
1、圆柱体积,表面积计算;2、圆锥体积计算 教学难点:
圆锥体积计算公式的推导 教学关键:
利用教具,学具进行实验活动,引导学生观察、思考经历计算公式的推导过程
教学时数:13课时
课时安排:
1、圆柱…………………………..8课时
2、圆锥…………………………..3课时
3、整理和复习…………………..2课时
4、单元测试……………………..1课时
第三篇:第二单元圆柱和圆锥
第二单元圆柱和圆锥
(一)教学目标
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
(二)教材说明
本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。圆柱、圆锥是人们在生产、生活中经常遇到的几何形体,教学这一部分内容,有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。本单元加强了与现实生活的联系;加强了对图形特征、计算方法的探索;加强了在操作中对空间与图形问题的思考,使学生在经历观察、操作、推理、想像过程中认识掌握圆柱、圆锥的特征以及体积的计算方法,进一步发展空间观念。
如,对圆柱、圆锥的认识。教材均通过列举大量生活中的圆柱、圆锥形实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出它们的几何图形的基础上引入。在认识它们的主要特征后,再让学生从生活中寻找更多的具有如此特征的实物,以加强所学知识与现实生活的联系,加深对圆柱、圆锥的认识,进一步感受几何知识在生活中的广泛应用。
又如,对圆柱的表面积、圆柱、圆锥体积的教学,教材注意拓宽学生的探索空间,加强对图形计算方法的探索,加强在操作中对问题的思考。例如对圆柱表面积的教学,教材一开始就提出问题:圆柱的侧面展开后是什么形状?让学生动手操作,剪一剪展开观察,再进一步探索:长方形的长、宽与什么有关?有什么关系?长方形的长与圆柱底面的周长的关系,宽与圆柱的高的关系是学生在自主操作、观察与探索过程中获取的。在此基础上教材又提出进一步探索的问题:圆柱的表面积怎么计算呢?使学生探索得出:圆柱的表面积=圆柱的侧面积+两个底面的面积,圆柱的侧面积=底面周长×高。
另外,在认识圆柱和圆锥时,教材增加了用长方形(或三角形)的硬纸贴在木棒上快速转动的活动。此活动不仅可以激发学生的学习兴趣,同时可以使学生了解平面图形与立体图形之间的联系和转换,进一步发展空间观念。
第四篇:小学数学六年级下册第二单元解说教材_圆柱与圆锥
悉心钻研教材 领悟教材内涵
各位老师:
大家好!我今天解说的内容是人教版小学数学六年级下册第二单元《圆柱与圆锥》。下面我分教学内容、教学目标和教学重难点、教材的编写体例、教材的内在结构和逻辑关系、教材的编排特点以及如何处理这些教材六个方面进行说课。
一、教学内容。
第二单元《圆柱与圆锥》属于“空间与图形”版块中图形的计算。包括:圆柱认识、圆柱的表面积、圆柱的体积、圆锥的认识、圆锥的体积。
二、教学目标。
1、单元教学目标:
(1)认识圆柱和圆锥,掌握他们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
(2)探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
(3)通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
2、教学重点:
(1)圆柱的表面积、体积的计算。(2)圆锥体积的计算。
3、教学难点:
(1)圆柱的表面积和体积的计算公式的推导(2)圆锥体积的计算公式的推导。
三、教材编写体例
教材在编写上遵循了“特征—表面—体积”的发展过程,使学生对圆柱和圆锥的理解逐步深入,并拓展到空心的圆柱(钢管、垫片等)的表面积和体积的计算。化归和类比是常用的数学思想方法,教师要在学生已有的知识和方法的基础上展开教学。教材比较注重与生活实际的联系,编排了较多的解决实际问题的题目,有利于学生知识的巩固和技能的形成。
四、教材的内在结构和逻辑关系
本单元是在学生认识了圆,掌握了长方体和立方体特征的基础上进行教学的,是小学里学习立体图形的最后阶段,知识的综合性和对学生的能力要求都 比较高,学习圆柱和圆锥的知识扩大了学生认识形体的范围,增加了形体的知识,促进空间观念的进一步发展。因此,长方形和正方形以及圆的基础知识都是本单元的认知基础。同时,数学思想方法的有效迁移在本单元的教学中起着重要的作用。
五、编排特点
圆柱与圆锥是传统的教学内容,对这部分内容的编排,在内容和要求方面体现了新的教学理念。
1、加强了所学知识与现实生活的联系。对圆柱、圆锥的认识,教材均通过列举大量现实生活中具有圆柱、圆椎体特征的实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具有如此特征的实物,从而加强所学知识与现实生活的联系,加深了学生对圆柱、圆锥的认识,进一步感受几何知识在生活中的广泛应用。
2、加强了对图形特征、求表面积和体积方法的探索过程。教材加强了动手实践、自主探索,让学生经历知识的形成过程,获得更多的自主探索和空间观念的训练机会。例如,圆柱的特征,是让学生动手实验、自主探索得到的。在教学圆柱展开图的特征时,教材从让学生自主探索“圆柱的侧面展开后是什么形状?”开始,让学生动手操作,剪一剪并展开观察,再把展开得到的长方形重新包上,探索并发现此长方形的长等于圆柱底面的周长,宽等于圆柱的高。这就为进一步探索圆柱表面积的计算方法打下基础,也加深了学生对圆柱特征的认识,锻炼了学生空间想像的能力。
3、加强了学生在操作中对空间与图形问题的思考。在编排圆柱和圆锥的认识时,用长方形(或三角形)的硬纸贴在木棒上快速转动转出圆柱(或圆锥)的活动。此项活动不仅可以激发学生的学习兴趣,了解平面图形与立体图形之间的联系和转换关系;同时可以使学生在操作、观察、想像、推理过程中,进一步认识圆柱、圆锥的特征,发展空间观念。
六、对教材的处理
1、对于圆柱的认识这一部分:
首先从生活中的圆柱实物或模型入手,引导学生认识圆柱的特征及各个部分的名称,让学生经历由“形象——表象——抽象的过程。
然后通过观察交流,抽象圆柱的特征。例1的教学,重点在认识圆柱的特征。教学中应加强直观演示并让学生通过观察和操作,即看一看,摸一摸,比一比认识圆柱的底面、侧面和高,发现他们的特征;之后安排这样一个有趣的操作活动,使学生从旋转的角度认识圆柱,即绕长方形的一条边快速旋转,形成圆柱形状,感受并沟通从平面图形与立体图形的转换。让学生快速转动长方形纸片活动,只要求学生操作、感知,不必做更深入的讲解。
本节课的难点应放在例2,即认识圆柱的侧面展开图。指导展开圆柱侧面的方法,理解侧面展开后的形状。教学时要放手让学生经历探索知识的过程,再一次沟通从立体图形再到平面图形的转换。可这样设计教学过程:
(1)先让学生摸一摸圆柱形实物,圆柱侧面在哪里,猜想一下侧面展开后是什么形状。
(2)接着让学生动手操作再剪开侧面,再展开,看有什么发现。学生准备的圆柱体各不相同,在剪开的过程中并不是千篇一律,故可能会出现:圆柱的侧面展开后是一个长方形或是平行四边形,对于这些操作结果教师都应给予肯定和鼓励,并让学生说说是怎样剪的,以培养学生从不同角度思考问题的习惯。(3)最后再让学生观察思考“圆柱侧面展开得到的长方形的长、宽与圆柱的什么有关?”让学生经过分析、比较,概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。最后让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过在亲历立体图形与其展开图之间的转化,逐步建立了立体图形与平面图形的联系,进一步发展了空间观念。课外作业可让学生制作圆柱,加深对圆柱特征的认识,也为后面学习计算圆柱的表面积做准备。
2、圆柱的表面积这一部分主要是理解圆柱表面积的概念,探索表面积的计算方法。
因为学生已有计算长方体、正方体的表面积的经验,知道表面积是物体各个面的面积总和。所以对于圆柱表面积的理解并不困难。
例3的教学让学生将课前做好的圆柱模型展开,观察展开后的形状,并在展开后的图形中标明圆柱的底面和侧面,以便于把展开后的每个面与展开前的位置对应起来,得出:圆柱的表面积=圆柱的侧面积+两个底面的面积。圆柱的侧面积=底面周长×高。
例4的教学是关于圆形物体表面积的计算,关于例4的教学,我个人认为要注意这样几点:①圆柱形物体在计算表面积之前一定要先判断此圆柱体是几个面,什么面,再来进行计算;②圆柱形物体表面积的计算的步骤较多,学生在熟练应用公式计算之前,最好是分步进行计算,即先求出侧面积和底面积,再求出表面积。注意每一步的运算结果要写上正确的计量单位;③圆柱表面积计算结果在取近似值时,一定要注意不可乱用“四舍五入法”取近似值,而是用进一法取近似值。
完成例4后,做一做是一道计算圆柱表面积的基本题型可让学生独立完成,订正后后可与例4进行比较,找出两题不同之处,同样都是求圆柱体的表面积,为什么这题要求侧面和两个底面的面积之和,而例4求侧面和一个底面的面积之和?使学生明确在解决实际问题时,求表面积要根据具体情况确定计算哪些面的面积之和。
3、圆柱的体积这一部分可采用转化策略来推导圆柱的体积计算公式。例5是教学圆柱体积公式的推导,(1)例5,渗透了转化的思想。首先从回顾旧知(长方体、正方体的体积计算)入手,引出圆柱体积的计算问题,并提出圆柱能否转化成已学过的立体图形来计算体积。接着通过教具演示图说明把圆柱的底面分成若干个相等的扇形,把圆柱切开,拼成一个近似的长方体。在这个教学环节中,教师一定不要忽略操作与直观演示,也可借助多媒体。然后引导观察和推理,得出这个长方体的底面积等于圆柱的底面积S,高就是圆柱的高h,并由长方体的体积计算公式得出圆柱的体积计算公式为V=Sh(2)在例6之前,安排了已知圆柱底面半径r和高h,将圆柱体积计算公式V=Sh改写为V=∏r²h。的内容。
(3)例6是利用圆柱体积计算解决问题。创设了一个生活化的问题情境“这个杯子能不能装下这袋牛奶?”解决这个问题,先要计算杯子的容积,使学生明白圆柱形容器容积的计算方法,跟圆柱体积的计算方法相同,可直接利用V=计算。
4、圆锥包括圆锥的认识和体积两部分内容。
(1).圆锥的认识内容主要包括:圆锥的特征及各部分名称,其编排与圆柱的认识类似,教学中可参考圆柱的教学,这部分可放手学生自己探究发现总结。在本节课中圆锥高的认识是教学难点,教学时可联系圆柱的高进行:“圆柱两底面之间的距离叫做圆柱的高。那么圆锥的高指什么?”学生可能会出现两种不同的说法“从圆锥的顶点到底面圆心的距离是圆锥的高”和“从圆锥的顶点到底面圆周上的一点的距离是圆锥的高”,教师可让学生进行小组辩论、交流,准确认识圆锥的高,并区分高和母线(母线的名称不要给学生介绍)。为进一步认识圆锥的高,可以通过实际测量或利用课件介绍测量圆锥高的方法。做转动三角形纸片活动时,可先让学生猜测:“一个长方形通过旋转,可以形成一个圆柱,那么你们知道绕一个三角形的直角边旋转,会形成什么形状?”认识圆锥后,可以将圆锥和圆柱从组成和特征角度进行对比,使学生加深对这两种图形特征的整体的认识。
(2)圆锥的体积中例2教学圆锥体积公式的推导,例3是圆锥体积公式的应用。例2的教学可按“引出问题——联想、猜测——实验探究——导出公式”四步进行。首先提出“你有办法知道这个铅锤的体积吗?”让学生讨论,讨论结果是:可以用排水法,但这种方法太麻烦。从而产生推导圆锥体积公式的动机。再让学生联想、猜测。回想会计算哪些图形的体积,思考圆锥的体积和哪种图形的体积有关?从而将圆锥和圆柱的体积联系起来。接着进行实验探究。课前让学生准备好等底、等高的圆锥和圆柱,通过圆柱圆锥相互倒水或沙子的实验,探究圆锥和圆柱体积之间的关系。最后导出公式。通过试验学生发现:等底等高的圆锥和圆柱,圆锥的体积是圆柱体积的。由此得出圆锥体积的计算公式V=Sh。
5、对于整理和复习可采取先引导归纳总结,形成知识网络。再借助直观手段帮助学生回顾、总结图形的特征及计算方法。最后让学生注意知识之间的内在联系与区别。
悉心钻研教材 领悟教材内涵
阳店镇中心小学
第五篇:苏教版六年级数学下册第二单元圆柱和圆锥单元整理练习题(3份)
苏教版六年级数学下册圆柱和圆锥单元复习题(3份)
苏教版六年级下册数学试题
圆柱和圆锥单元复习题(一)
一、基础巩固
1.填一填。
(1)一个棱长为10厘米的正方体与一个高是20厘米的圆柱体底面积相等,圆柱的体积是()立方厘米。
(2)一个圆柱的底面半径是4厘米,高是10厘米,这个圆柱的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
(3)一个圆柱的高减少2厘米,表面积就减少18.84平方厘米。这个圆柱的底面积是()平方厘米。
(4)一个圆柱和一个圆锥的等底等体积。如果圆锥的高是6厘米,那么圆柱的高是()厘米;如果圆柱的高是6厘米,那么圆锥的高是()厘米。
(5)一个圆柱形铁皮通风管,横截面直径是10厘米,每节长1.2米。做100节这样的通风管,则至少需要()平方米的铁皮。
(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。
(7)一个圆锥的底面直径与高相等,它的底面周长是6.28分米。这个圆锥的体积是()立方分米。
(8)棱长是9分米的正方体木料,如果削成一个最大的圆锥,圆锥的体积是()立方分米。
2.选一选。
(1)求一个圆柱形水桶能装多少水,就是求这个水桶的()。
A.侧面积
B.表面积
C.体积
D.容积
(2)一个长方体和一个圆柱的底面周长和高都相等。它们的体积相比()。
A.一样大
B.长方体大
C.圆柱体积大
D.无法比较
3.压路机的滚筒是一个圆柱。滚筒的直径是1.2米,长是1.5米。如果滚筒向前滚动一周,那么所压路面的面积是多少?
4.一个圆锥形小麦堆,底面周长是12.56米,高是1.2米。如果每立方米小麦重0.7吨,这堆小麦重多少吨?(得数保留两位小数)
5.一个近似于圆锥形的旅游帐篷,它的底面半径是4米,高3米。
(1)按每人最低2平方米的活动面积计算,每顶账篷大约能住几人?
(2)每项账篷内的空间有多大?
6.一块圆柱形橡皮泥,底面积是15平方米,高是6厘米,把它捏成底面积是5平方厘米的圆锥形,高是多少厘米?
7.一个铺路队把一堆底面半径3米,高1.5米的圆锥沙石铺在10米宽的公路上。若铺2厘米厚,能铺多少米?
二、思维拓展
1.把一个底面半径为4厘米的圆柱沿底面直径和高剖成两个半圆柱,这两个半圆柱的表面积比原来增加了80平方厘米。原来圆柱的体积是多少立方厘米?
2.在一个圆柱形水桶里,把一段底面半径为5厘米的圆柱形钢材全部放入水中,这时水面上升9厘米。把这段钢材竖着拉出水面8厘米后,水面下降4厘米。求这段钢材的体积。
苏教版六年级下册数学试题
圆柱和圆锥单元复习题(二)
一、基础巩固
1.填一填。
(1)一个圆柱的底面半径是2厘米,高是5厘米,这个圆柱的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米。
(2)一个直角三角形两条直角边的长分别是6厘米和8厘米。将它绕一条直角边所在的直线旋转,所得圆锥的体积最大是()立方厘米,最小是()立方厘米。
(3)将一个圆柱沿直径切开,得到两个边长是8厘米的正方形切面,原来圆柱的表面积是()平方厘米,体积是()。
(4)一个圆柱和一个圆锥的等底等高。如果圆锥的体积是12立方厘米,那么圆柱的体积是()厘米;如果一个圆柱和一个圆锥的等底等体积,如果圆柱的高是12厘米,那么圆锥的高是()厘米。
(5)将底面周长是6.28分米的圆柱的高增加4分米,表面积增加()平方分米,体积增加()立方分米。
(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。
(7)一个圆柱形水桶,桶内底面直径是4分米,桶内有半桶水,当把一些石子投入水中时(石子全部浸入水中),水面上升了1.5分米(水未溢出),则这些石子的体积是()立方分米。
(8)把一个长8厘米、宽6厘米、高7厘米的长方体削成一个最大的圆柱,这个圆柱的体积是()立方厘米。
2.选一选。
(1)一个圆柱的底面半径是8厘米,高是10厘米,沿着底面直径和高把圆柱切成相等的两部分,表面积增加了()方厘米。
A.80
B.160
C.320
D.40
(2)一个圆柱和一个圆锥的底面半径的比是3:4,高的比是2:3,圆柱与圆锥的体积比是()。
A.1:2
B.3:2
C.9:8
D.3:8
3.3.一种圆柱形油桶,底面半径是4分米,高是1米。做这样的一对油桶,至少需要铁皮多少平方分米?
4.一根长11分米的圆柱形钢材,截成两段后,两段表面积的和比原来增加5.4平方分米。这根钢材原来的体积是多少立方分米?
5.一顶圆柱形厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
6.把一个圆锥形铁块浸没在一个底面半径是6厘米,水深20厘米的圆柱形容器中,水面上升到22厘米,且水未溢出。这个圆锥形铁块的体积是多少立方厘米?
7.一个铺路队把一堆底面半径3米,高1.5米的圆锥沙石铺在10米宽的公路上。若铺2厘米厚,能铺多少米?
二、思维拓展
1.在圆柱形水桶中放入一段直径为6厘米的圆钢。如果圆钢全部浸入水中,那么桶里的水就会上升8厘米;如果把圆钢垂直插入水中,露出5厘米长的一段,这时桶里的水上升6厘米。这段圆钢的体积是多少立方厘米?
2.把一个圆柱的底面平均分成若干个扇形,再沿高切开,拼成一个近似的长方体。这个长方体的长是6.28厘米,高是5厘米,它的体积是多少立方厘米?
苏教版六年级下册数学试题
圆柱和圆锥单元复习题(三)
一、基础巩固
1.填一填。
(1)圆柱的底面半径是3分米,高是4分米,底面积是()平方分米,侧面积是()平方分米,表面积是()平方分米。
(2)一根长9分米的圆柱形木条,平均锯成3段,表面积增加了12.56平方分米,那么原来木条的体积是()立方分米。如果锯成3段用了6分钟,那么把它锯成5段要用()分钟。
(3)一块长25.12厘米、宽18.84厘米的长方形铁皮应配上直径是()厘米的圆形铁皮,才能做成一个容积尽可能大的无盖容器。
(4)一个底面周长为15.7分米,高为6分米的圆锥,沿着高把它分成完全一样的两部分,这两部分的表面积之和比原来圆锥的表面积增加了()平方分米。
(5)将底面周长是6.28分米的圆柱的高增加4分米,表面积增加()平方分米,体积增加()立方分米。
(6)把一个圆柱的侧面展开,得到一个正方形,圆柱的高是62.8厘米,圆柱的底面积是()平方厘米。
(7)一个底面积是24平方厘米的圆锥和棱长4厘米的正方体体积相等,则圆锥的高是()厘米。
(8)把一个长6厘米、宽和高都是4厘米的长方体橡皮削成一个体积最大的圆锥,这个圆锥的体积是()立方厘米。
(9).一个底面周长为15.7厘米的圆柱,侧面展开是一个正方形。如果沿底面直径把它平均切成两半,它的表面积增加()平方厘米。
2.选一选。
(1)一个圆柱的底面半径是8厘米,高是10厘米,沿着底面直径和高把圆柱切成相等的两部分,表面积增加了()方厘米。
A.80
B.160
C.320
D.40
(2)一个圆柱和一个圆锥的底面半径的比是2:1高的比是1:5,圆柱与圆锥的体积比是()。
A.4:5
B.8:5
C.12:5
3..压路机滚筒是一个圆柱,它的宽是2米,横截面的半径是0.6米。每分钟滚5周计算,1小时压的路面的面积是多少平方米?
4.王大伯家的蔬菜地里有一个圆柱形蓄水池,从里面量水池的底面直径是4米,池深2米。现在王大伯准备在水池的底面和内壁抹上水泥,如果每平方米用水泥2.5千克。
(1)王大伯至少要准备多少千克水泥
(2)这个水池如果蓄满水,水的体积是多少立方米?
5.一个圆锥形沙堆,底面积是25.12平方米,高是1.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?(用方程解)
6.如图用一块长方形铁皮做一个圆柱形带盖的水桶,这个水桶的容积是多少平方分米?
20.7分米
二、思维拓展
一个圆柱和一个圆锥底面半径的比是2:1,高的比是1:3,它们的体积的和是31.4立方厘米。圆柱和圆锥的体积各是多少立方厘米?