第一篇:2015新版人教版六年级数学下册 第三单元 《圆柱与圆锥》教学设计范文
第三单元 圆柱与圆锥
【教学目标】
1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决相关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥模型的活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。使学生经历探索知识的过程,培养学生自主解决问题的能力。
【重点难点】
1.认识并掌握圆柱和圆锥的形体特征,掌握圆柱表面积和体积、圆锥体积的计算方法及推导过程。
2.利用所学的知识解决实际问题。
【教学指导】
1.加强数学知识与实际生活的联系,提高学生运用所学知识解决实际问题的能力。
本单元内容加强了与生活的联系,也为教师组织教学提供了思路。因此教学时应注意加强与实际生活的联系,重视运用所学知识解决实际问题的意识与能力的训练。如,在认识圆柱和圆锥之前,可以让学生收集、整理生活中圆柱、圆锥的实例和信息材料,以便在课堂中交流。认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形物品,让大家欣赏或使用,这样既可激发学生的学习兴趣,又可提高学生运用数学为生活服务的意识和能力。
2.让学生经历探索知识的过程,培养学生自主解决问题的能力。
本单元加强了对图形特征、计算方法的探究。为此,在教学时,应放手让学生经历探索的过程,在观察、操作、推理、想象过程中掌握知识、发展空间观念。如圆锥体积的教学,教材首先创设了一个问题情境“如何知道像铅锤这样的物体的体积?”引导学生探索,并给出提示:圆锥的体积与圆柱的体积有没有关系。在教学时,教师应大胆放手让学生探究,注意提供给学生积极思考,充分参与探索活动的时间和空间。如圆锥的体积等于与它等底等高的圆柱体积的三分之一,应让学生在经历试验探究的过程中获取,以改变只按教材说明进行演示得出结论的做法。
【课时安排】建议共分10课时:
1.圆柱
6课时 2.圆锥
3课时 整理和复习
1课时 【知识结构】
1.圆柱
第1课时 圆柱的认识
【教学内容】
圆柱的认识(教材第17~20页)。【教学目标】
1.使学生了解圆柱的特征,认识圆柱的底面及其直径和半径,圆柱的高、侧面及圆柱的展开图。
2.通过观察,认识圆柱并掌握它的特征,建立空间观念。3.培养学生的观察能力,增强从实物抽象到几何图形的能力。【重点难点】
1.理解并掌握圆柱的特征,建立空间观念。
2.明确圆柱沿高展开的侧面展开图是一个长方形(或正方形),理解长方形(侧面展开图)的长和宽与圆柱的底面周长和高的关系。
【情景导入】
师:今天我给大家带来一位朋友,你们知道它是谁吗?(师拿起圆柱体模型,让学生一起说出它的名字。)
师:在一年级我们就看见过它,却没有深刻认识它,想不想进一步认识它? 师:好,那么我们这节课就来认识一下圆柱,一起走近它,看看它究竟有什么奥秘。
(教师板书课题:圆柱的认识。)【新课讲授】 1.初步感知圆柱。
(1)大家找一找我们生活的周围有哪些圆柱形的物体,谁能说一说?(师指名回答)
(2)教师展示课件中常见的圆柱形物体。
(3)教师:这些物体有哪些共同的特点?大家也可以拿出自己手中的圆柱形物体看一看,摸一摸。
(4)教师又拿出几个不是圆柱,接近圆柱形物体,然后问:它们是圆柱吗?为什么?那么什么样的物体才是真正的圆柱?
学生回答后,教师强调:圆柱一定是直直的,上下一样粗细。2.教学例1。(1)认识圆柱的面。
分组活动,每人拿一个圆柱,摸一摸它的面。学生互相交流自己的感觉。启发学生自主探究圆柱的特征。
教师:圆柱一共有几个面?用手摸上、下底,看一看有什么特点?再摸一摸侧面,有什么感觉,它是一个什么面? 学生:3个面;形状相同,都是圆形,面积相等;曲面。
教师小结:圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱的侧面是一个曲面。
教师在黑板上画出圆柱图,并把上下底面、侧面标出来。(2)认识圆柱的高。
①教师出示高、矮不同的圆柱体提问:哪个圆柱高,哪个圆柱矮? 想一想:圆柱的高矮与圆柱的两个底面之间有什么关系? 引导学生思考得出:圆柱的高矮与圆柱的底面无关。
②如何测量圆柱的高?小组讨论,找出测量方法。然后请一名学生展示自己的测量方法。
师问:他的测量方法好吗?有没有需要改进的地方?让学生各抒己见。教师演示正确的测量方法。并强调:在测量中一定要注意圆柱要水平放置,刻度尺也要水平放置。
(3)教师出示准备好的长方形纸片。
教师:同学们和我一起快速转动纸片,看一看转出来的是什么形状。组织学生操作后,汇报结果。
3.教学例2。
(1)请同学们摸一摸你们的圆柱体的侧面,猜想一下,如果把侧面展开后会是什么形状?(2)组织学生分小组操作:剪开侧面,再展开。
(3)教师:你们有什么发现?会有几种情况出现?小组之间可以相互交流。圆柱的侧面展开可能是长方形、正方形、平行四边形。教师同时用课件展示三种不同的圆柱侧面展开图,让学生系统直观的感受展开图。
(4)大家再认真观察展开图的长和宽并和圆柱相比较,此时的长相当于圆柱的什么?宽呢?学生观察并思考。教师用课件将长方形还原并再打开。
让学生经过比较、分析概括出:圆柱展开得到的长方形的长等于圆柱底面的周长,宽等于圆柱的高。
(5)引导学生思考:什么情况下圆柱的侧面展开图是正方形?
引导学生回答:圆柱的底面周长与高相等时,圆柱的侧面展开图是正方形。同时教师用课件展示一遍。
【课堂作业】
1.完成教材第18、19页的“做一做”。
组织学生先独立做一做,再在小组中相互交流。2.完成教材第20页练习三的第1、2、3题。
第1题要让学生仔细观察并准确地说出图中哪些地方或物体的哪一部分是圆柱。
第2题指名说。
第3题学生判断后,要让学生说理由。还可以让学生想一想,如果把第2、3个图形围起来,会出现什么情况? 答案:
2.第1题:手电筒的筒身、柱子、哑铃的把手和两端都是圆柱。第2题:长方体 正方体 圆柱
第3题:第一个图 理由:将圆柱展开,长方形的长应等于底面圆的周长。【课堂小结】
通过这节课的学习,你有哪些收获? 组织学生畅谈学习的收获。【课后作业】
完成练习册中本课时的练习。
第2课时 圆柱的表面积(1)
【教学内容】
圆柱的表面积(1)(教材第21页例3)。【教学目标】
1.理解圆柱的表面积的意义。
2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。
【重点难点】
1.掌握圆柱的侧面积和表面积的计算方法。
2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。【教学准备】
多媒体课件和圆柱体模型。
【复习导入】 1.复习引入。
指名学生说出圆柱的特征。2.口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少?(2)长方形的面积怎样计算? 板书:长方形的面积=长×宽。【新课讲授】
1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。师:圆柱的侧面展开是一个什么图形? 生:长方形。
师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。
师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?
教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。
2.教学例3。
(1)圆柱的表面积的含义。
教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?
通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。
(2)计算圆柱的表面积。
①师:圆柱的表面展开后是什么样的?
组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。
②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。
(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。
答案:628cm2 【课堂作业】
完成教材第23页练习四的第2~6题。
第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。
第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。
第5题,对于有困难或争议大的,可用实物或模型直观演示。第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。答案:
第2题:3.14×1.2×2=7.536(m2)第3题:3.14×1.5×2.5=11.775(m2)第4题:3.14×3×2+3.14×(3÷2)2=25.905(m2)
第6题:长方体:800cm正方体:216dm2
圆柱:533.8cm2 【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 圆柱的表面积(1)
第3课时 圆柱的表面积(2)
【教学内容】
圆柱的表面积(2)(教材第22页例4)【教学目标】
能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。【重点难点】
运用圆柱的表面积公式解决问题。【教学准备】
多媒体课件和圆柱体模型。
【复习导入】
前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么? 指名学生回答。板书:
圆柱的表面积=圆柱的侧面积+两个底面面积 圆柱的侧面积=圆柱的底面周长×高 【新课讲授】 教学例4。
(1)出示例4。学生读题,明确已知条件:已知圆柱的高和底面直径,求表面积。
(2)求厨师帽所用的材料,需要注意:厨师帽没有下底面,说明它只有一个底面。
(3)指定两名学生板演,其他学生独立进行计算。教师巡视,注意看学生所算最后的得数是否正确。
指导学生做完后集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整十平方厘米,省略的个位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。(4)巩固练习。
①教材第22页“做一做”第1题。组织学生独立完成。
②教材第22页第2题。请三名学生板演,其余同学做在草稿本上。答案:①第22页“做一做”第1题:1.12m2,100.48dm2 ②第22页“做一做”第2题:376.8cm2 【课堂作业】
完成教材第23~24页练习四的第7~12题。
第7、8题,学生独立作业,老师巡视,个别不会的加以指导。
第9题,提醒学生注意是上下底面分别留出了78.5cm2的口,应减去的部分是78.5×2=157(cm2)。
第10题,先让学生明确计算步骤,再分步列出算式,最后计算水桶的用料。第11题,教师应先用教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体的表面积与圆柱的侧面积之和减去圆柱的一个底面积。提醒学生注意根据要求将计算结果化成以平方米为单位的数,并根据实际情况保留近似数。
第12题,是已知圆柱的侧面积和底面半径,求圆柱的高,部分学生有困难。教师辅导时可以提示学生列方程解答。
答案:
第8题:花布:3.14×18×80=4521.6(cm2)黄布:3.14×(18÷2)2×2=508.68(cm2)
第9题:3.14×20×30+3.14×(20÷2)2×2-78.5×2=2355(cm2)第10题:3.14×(12×
33)×12+3.14×(12×÷2)2=402.705(dm2)44第11题:(1)12×12×2+16×12×4+3.14×12×55-3.14×(12÷2)2 =3015.36cm2≈0.31(m2)(2)50×0.31×30=465(元)
第12题:188.4÷(2×3.14×2)=15(dm)【课堂小结】
通过这节课的学习,你有哪些收获? 【课后作业】 完成练习册中本课时的练习。
第3课时 圆柱的表面积(2)圆柱的表面积=圆柱的侧面积+两个底面面积
实际用料>计算用料 “进一法”→近似数
第4课时 圆柱的体积(1)
【教学内容】
圆柱的体积(教材第25页例5)。【教学目标】
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
【重点难点】
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。2.理解圆柱体积公式的推导过程。【教学准备】
推导圆柱体积公式的圆柱教具一套。
【复习导入】 1.口头回答。
(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。【新课讲授】
1.教学圆柱体积公式的推导。(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想: ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么? ①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算? ②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
教师板书:
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。(3)出示下面几种解答方案,让学生判断哪个是正确的。①50×2.1=105(cm3)答:它的体积是105cm3。②2.1m=210cm
50×210=10500(cm3)答:它的体积是10500cm3。
③50cm2=0.5m
20.5×2.1=1.05(m3)答:它的体积是1.05m3。④50cm2=0.005m2 0.005×2.1=0.0105(m3)答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。【课堂作业】
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1.6750(cm3)2.7.85m3 第1题:(从左往右)3.14×52×2=157(cm3)3.14×(4÷2)2×12=150.72(cm3)3.14×(8÷2)2×8=401.92(cm3)【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受? 【课后作业】
完成练习册中本课时的练习。
第4课时 圆柱的体积(1)
第5课时 圆柱的体积(2)
【教学内容】 圆柱的体积(2)【教学目标】
能运用圆柱的体积计算公式解决简单的实际问题。【重点难点】
容积计算和体积计算的异同,体积计算公式的灵活运用。【教学准备】 教具。
【复习导入】 口头回答。
教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h 【新课讲授】 1.教学例6。
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。
(2)学生尝试完成例6。①杯子的底面积:
3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)(3)比较一下补充例题和例6有哪些相同的地方和不同的地方? 学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。
2.教学补充例题。(1)出示补充例题:教材第26页“做一做”第1题。
(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。
(3)教师评讲本题。【课堂作业】
教材第26页“做一做”第2题,第28页练习五第3、4题。
第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。
第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。答案:“做一做”:
2. 3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)
第3题: 3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)第4题:80÷16=5(cm)【课堂小结】
通过这节课的学习,你有什么收获和感受? 【课后作业】
完成练习册中本课时的练习。
第5课时 圆柱的体积(2)圆柱的体积=底面积×高
V=Sh=πr2h
第6课时解决问题
【教学内容】
解决问题。(教材第27页内容)【教学目标】
利用圆柱的相关知识解决问题。【重点难点】
求不规则圆柱体的体积。【教学准备】
多媒体课件、矿泉水瓶。
前面我们已经学习了圆柱的体积求法,今天我们来学习它的更多应用。
【情景导入】
我们之前在推导圆柱的体积公式时,是把它转化成近似的长方体,找到这个长方体与圆柱各部分的联系,由长方体的体积公式推导出了圆柱的体积公式。那么不规则圆柱的体积要怎么求呢?
今天老师带来了一个矿泉水瓶,它的标签没有了,要怎么通过计算得出它的容积呢?
【新课讲授】 1.教学例7。
2.学生读题,明确已知条件及问题。
学生:这个瓶子不是一个完整的圆柱,无法直接计算容积。教师:所以,我们要看看,能不能将这个瓶子转化成圆柱呢?
3.拿出水瓶,装上一部分水,按照例题中的方法做出讲解。引导学生思考。解题思路:
(1)瓶子里水的体积倒置后没变,水的体积加上18cm高圆柱的体积就是瓶子的容积。
(2)也就是把瓶子的容积转化成了两个圆柱的容积。【课堂作业】
完成教材第27页“做一做”。这类题的解题关键是明确瓶子正放和倒放时空余部分的容积是相等的。
答案:3.14×(6÷2)2×10=282.6(cm3)=282.6mL。【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第6课时 解决问题
1.转化成圆柱。
2.瓶子容积=圆柱1+圆柱2。
2.圆锥
第1课时 圆锥的认识
【教学内容】
圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、2题)。【教学目标】
1.认识圆锥,掌握它的各部分名称及特征。2.认识圆锥的高,掌握测量圆锥的高的方法。
3.通过观察圆锥建立空间观念,培养学生的观察能力,以及从实物抽象到几何的能力。
【重点难点】
认识圆锥的高及高的测量方法。【教学准备】
圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,米(或沙子),三角板,长方形,半圆形硬纸片。
【情景导入】
“魔术”导入,引出课题。
1.出示一个圆柱,用这个圆柱外壳套住一个圆锥。教师:这是一个圆柱,谁能说说它有什么特征? 学生回答。
2.教师:现在老师用一块布把这个圆柱遮住(边说边演示)。如果这个圆柱的上底面慢慢的缩到圆心时,那么圆柱将变成怎样的呢?你能试着描述一下吗?
学生回答。
3.教师:现在看一看,老师能不能把这个圆柱变成你们说的那样。教师喊一、二、三,揭开遮在圆柱上面的布,露出一个圆锥。教师:像你们说的一样吗? 学生回答。
4.教师:看到这个课题,你想知道什么呢? 【新课讲授】 1.初步感知。
电脑出示圆锥实物图。
教师:观察上面这些物体的形状有什么共同点?教师利用课件动画光点的闪烁,闪动实物图的轮廓,移走实物的模样,剩下图形的轮廓,抽象出圆锥的几何图形。
教师:这样的图形叫圆锥。在我们生活的周围,你们知道哪些物体是圆锥形的? 2.认识圆锥及各部分的名称。
(1)引导学生认真对照图形和模型观察。
请一名学生上台指出哪是圆锥的底面,哪是圆锥的侧面。
师:我们已经知道了圆锥的底面和侧面,大家围绕下面几个问题同桌之间共同探讨。
①圆锥有几个底面?是什么形状的?
②用手摸一摸圆锥的侧面,你发现了什么?
③用手摸一摸圆锥的顶点,你有什么感觉?组织学生先独立思考,再在小组中相互交流,然后汇报。教师根据学生的汇报结果小结:圆锥有一个底面,是圆形的,有一个侧面,它是一个曲面,有一个顶点。
(2)怎样画圆锥的平面图呢?
示范:先画一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆的,最后标出顶点、底面、圆心、底面半径r。(师在黑板上画出来)学生试着在自己的练习本上画。(3)认识圆锥的高。
师:圆锥的高在哪里?圆锥的高有几条?先让学生小组讨论交流汇报,然后全班讨论。
教师:圆锥的高就是指从圆锥的顶点到底面圆心的距离。(师在黑板上画出来)那么它有几条高一看就知道了。(1条)
(4)测量圆锥的高。
教师:由于圆锥的高在圆锥的里面,我们不能直接测量它的长度,怎样测量圆锥的高呢?
组织学生小组合作,交流汇报。课件演示测量过程,教师叙述: ①把圆锥的底面放平;②用一块木板水平的放在圆锥的顶点上面; ③竖直地量出平板和底面之间的距离。同桌相互配合,动手测量手中圆锥的高。教师:谁来展示一下你的方法,有其它的方法吗? 教师:如果是圆锥形的沙堆和粮堆,又怎样测量它的高呢?(学生合作实验,并相互交流)(5)大家喜欢制作玩具吗?下面我们一起制作一个玩具,好吗?拿出你准备的三角形、长方形硬纸片,快速转动,看一看它们是什么形状?(学生操作演示,小组内互相演示)
【课堂作业】
1.完成教材第32页的“做一做”。2.完成教材第35页练习六第1、2题。答案:
1.做一做:提示:亲自动手测量出圆锥的底面直径和高。
2.第1题:蒙古包由圆柱和圆锥组成;墨水瓶由2个长方体和1个圆柱组成;建筑物由圆柱、圆锥、长方体组成。
【课堂小结】
通过这节课的学习,你有哪些收获?让学生畅所欲言后,教师再加以小结。【课后作业】
完成练习册中本课时的练习。
第1课时 圆锥的认识
圆锥的底面是个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。
第2课时 圆锥的体积(1)
【教学内容】
圆锥的体积(1)(教材第33页例2)。【教学目标】
1.参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。
2.培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。
【重点难点】
圆锥体积公式的推导过程。【教学准备】
同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。
【情景导入】
1.复习旧知,作出铺垫。
(1)教师用电脑出示一个透明的圆锥。
教师:同学们仔细观察,圆锥有哪些主要特征呢?(2)复习高的概念。A.什么叫做圆锥的高?
B.请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
2.创设情境,引发猜想。
(1)电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)
(2)引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。
【新课讲授】 自主探究,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。
出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?
(1)小组实验。
A.学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)
B.同组的学生做完实验后,进行交流,并把实验结果写在黑板上。(2)全班交流。①组织收集信息。
学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上: A.圆柱的体积正好等于圆锥体积的3倍。B.圆柱的体积不是圆锥体积的3倍。C.圆柱的体积正好等于圆锥体积的8倍。D.圆柱的体积正好等于圆锥体积的5倍。E.圆柱的体积是等底等高圆锥体积的3倍。F.圆锥的体积是等底等高圆柱体积的。3②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)
③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?
1圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验
3用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。
(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的Sh表示什么?1为什么要乘?要求圆锥体积需要知道几个条件?
3(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)
【课堂作业】
完成教材第34页“做一做”第1题。
先组织学生在练习本上算一算,然后指名汇报。答案:13×19×12=76(cm3)【课堂小结】
教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。【课后作业】
1.完成练习册中本课时的练习。2.教材第35页第3、4、5题。
答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3Sh计算出该物体的体积。
第4题:(1)25.12
(2)423.9 第5题:(1)×
(2)√
(3)×
第2课时 圆锥的体积(1)
第3课时 圆锥的体积(2)
【教学内容】
圆锥的体积(教材第34页例3)。【教学目标】
进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。【重点难点】
圆锥体积公式的实际应用。【教学准备】 多媒体课件。
【情景导入】
前面的课程中我们一起经历了圆锥体积公式的推导过程。有同学能说一说么?
指名学生回答。
11板书:V圆锥=V圆柱=Sh 33【新课讲授】 1.教学例3。
(1)组织学生阅读题目,理解题意。(2)组织学生独立思考,尝试解答。
(3)组织学生交流反馈,结合学生发言,教师板书: 沙堆底面积:
3.14×(4÷2)2=3.14×4=12.56(m2)沙堆的体积:1/3×12.56×1.2=0.4×12.56=5.024≈5.02(m3)答:这堆沙子的体积大约是5.02m3。2.教学补充例题。
例:在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4m,高是1.5m,每立方米小麦约重735kg,这堆小麦大约有多少千克? 教师先引导学生读题,弄清题意。组织学生在小组中合作完成,并在全班交流。
4答案:13×3.14×()2×1.5×735=4615.8(kg)
2【课堂作业】
完成教材第34页“做一做”第2题。
先组织同学们在练习本上演算,教师集体订正。答案:
13.14×(4÷2)2×5××7.8=163.28≈163g
3【课堂小结】
通过这节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第3课时 圆锥的体积(2)
沙堆底面积:3.14×(4÷2)2=3.14×4=12.56(m2)1沙堆的体积:×12.56×1.2=0.4×12.56=5.024≈5.02(m3)
3答:这堆沙子的体积大约是5.02m3。
整理和复习
【教学内容】
整理和复习(教材第37页内容)。【教学目标】
1.进一步认识圆锥和圆柱的特征,巩固圆柱的侧面积和表面积的计算方法,掌握圆柱和圆锥的体积计算公式。
2.使学生能运用有关知识灵活地解决一些实际问题,经历知识的回顾整理过程,形成科学的学习方法。
3.体验掌握数学知识的成功喜悦,激发学习兴趣,培养善于归纳总结、自我激励的良好习惯。
【重点难点】
掌握圆柱和圆锥的体积计算公式。【教学准备】
把学生每十人分一小组,投影片。
【回顾导入】
教师:同学们,经过这一段时间的学习,我们认识了两种新的图形——圆柱和圆锥。回忆一下,我们学习了圆柱和圆锥的哪些知识呢?
引导学生回顾思考,并在小组中议一议,也可以翻书看一看。每个小组委派一人代表回答。教师引导有次序地归纳。
【复习讲授】
(一)复习圆柱。1.圆柱的特征。
(1)圆柱的形体特征有哪些?学生归纳,教师板书:圆柱是立体图形,有上、下两个面,叫做底面,它们是完全相同的两个圆。两个底面之间的距离叫做高。侧面是一个曲面。
(2)做第37页第1题:指出几个图形中哪些是圆柱。要求学生在小组中互相说一说每类图形的名称和特征。
答案:
第1、2、6是圆柱,3、4、5是圆锥。2.圆柱的侧面积和表面积。
(1)出示画有圆柱的表面展开图的投影片。先让学生观察,指名其中一小组的学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?
学生归纳,教师板书:表面积=圆柱的侧面积+底面的面积×2。(3)完成第37页第2题中求圆柱表面积的部分。先组织学生独立完成,再说说是怎样算的。答案:(从上到下)282.6dm2
10.676m2
3140cm2 3.圆柱的体积。
(1)圆柱的体积怎样计算?计算公式是怎样推导出来的?圆柱体积计算的字母公式是什么?
教师板书:底面积×高;把圆柱切割开,拼成近似的长方体,使圆柱的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱的体积=底面积×高,即V=Sh。
(2)做第37页第2题中关于圆柱体积的部分。答案: 从上到下依次为:314dm3
2.198m3
6280cm3 4.学生独立完成第37页第3题。提示:先思考“用多少布料”是求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积后再计算。
教师指名说一说,然后指名板演,集体订正。答案:
3.14×10×20+3.14×(10÷2)2×2=785(cm2)
3.14×(10÷2)2×20=1570(cm3)=1570(ml)=1.57(L)(二)复习圆锥。1.圆锥的特征。
圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
2.圆锥的体积。
(1)怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?这个计算公式是怎样得到的?
1教师板书:用底面积×高,再除以3,即V=Sh;通过实验得到的,圆锥体
3的体积等于和它等底等高的圆柱体体积的三分之一。
(2)做第37页第2题中有关圆锥体积的部分。答案:从上到下依次为:10.048dm3
1.1775m3 【课堂作业】
做练习七的第1题。学生独立判断,小组讨论订正。答案:12.56×5×4÷3.14×422=20(dm)【课堂小结】
通过这节课的学习活动,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第二篇:2015六年级下册第三单元圆柱与圆锥教案
第三单元习题 圆柱与圆锥
教材分析:
本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念,为进一步应用几何知识解决实际问题打下基础。
教学目标:
1.使学生认识圆柱和圆锥,掌握它们的基本特征。并认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.使学生理解除了研究几何图形的形状和特征,还要从数量的角度来研究几何图形,如图形的面积、体积等,体会数形结合思想。
5.通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。教学重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。教学难点:
圆柱、圆锥体积的计算公式的推导。教学建议
1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。2.让学生经历探索知识的过程,培养自主解决问题的能力。3.充分关注操作与想象相结合,发展学生的空间观念。课时安排:11课时
1.圆柱 第一课时
教学内容:圆柱的认识,教材P17—20页相关内容。教学目标:
1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2.培养学生细致的观察能力和一定的空间想像能力。3.激发学生学习的兴趣。教学重点:认识圆柱的基本特征
教学难点:圆柱的侧面与它的展开图之间的关系 教具、学具准备:圆柱体、硬纸、剪刀、直尺 教学过程:
一、自主学习
(一)复习旧知,渗透学习方法。
师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?
生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。
师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。
(二)引导学生观察教材第17页的建筑物及物品图,引入板书课题,明确目标
(三)自学提示
1.这些物体有什么共同的特点?
2.一个圆柱形的物体,由几部分组成?它们有什么特征?
3.圆柱的侧面展开后是什么形状?这个长方形的长、宽与圆柱有什么关系?圆柱在什么情况下展开图是正方形。
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示
(三)老师按自学提示组织反馈全班交流
(四)总结归纳:
1.圆柱由3个面围成的。上、下两个面叫做底面,它们是完全相同的两个圆。圆柱周围的曲面叫侧面。2.圆柱的两个底面之间的距离叫做高。圆柱的高有无数条,高的长度都相等。
3.圆柱沿着高展开后得到一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。当圆柱的底面周长与高相等时,展开后得到一个正方形。
三、达标检测
1.完成课本第18页和19页做一做。
2.(1)上下两个底面相等的物体一定是圆柱体。()(2)圆柱的侧面沿着高展开后会得到一个长方形或者正方形。()(3)同一个圆柱底面之间的距离处处相等。()
(4)一个圆柱,底面周长是12.56厘米,高是12.56厘米。这个圆柱的侧面沿着高展开,得到一个 长方形。()
(5)一个圆柱,底面周长是12.56厘米,高是12.56厘米。这个圆柱的侧面沿着高展开,得到一个正方形。()
(6)一个圆柱,底面半径是4厘米,高是4厘米。这个圆柱的侧面沿着高展开,得到一个正方形。
3.练习三第1至第5题 4.课堂总结
学会了什么知识?有什么收获? 5.课堂作业(补充)
(1)画一个圆柱平面图,把它各部分的名称标上去(2)填空
①圆柱的两个圆面叫做(),它们是()的圆形;周围的面叫做();圆柱两个底面之间的距离叫做()。一个圆柱有()条高。
②把一张长方形的纸的一条边固定贴在一根木棒上,然后快速转动,得到一个()。③一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。这个圆柱的底面周长是()厘米,高是()厘米。
④一个圆柱的侧面展开后得到一个正方形,边长是9.42厘米。这个圆柱的底面周长是()厘米,高是()厘米。
板书设计: 圆柱的认识
2.圆柱的表面积
第二课时
教学内容:圆柱的表面积,教材P21—22页例
3、例4及做一做与练习四相关内容。教学目标:
1.理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。2.会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
3.培养学生良好的空间观念和解决简单的实际问题的能力。教学重点:认识圆柱的基本特征 教学重点:掌握圆柱侧面积和表面积的计算方法。教学难点:运用所学的知识解决简单的实际问题。教具、学具准备:圆柱体 教学过程:
一、自主学习
(一)复习旧知
1.指名学生说出圆柱的特征. 2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算?(3)长方体、正方体的表面积指什么?
(二)同学们,圆柱的表面积指什么?怎样求呢?今天就让我们一起来学习圆柱的表面积。引入板书课题,明确目标
(三)自学提示
1.圆柱的表面积指什么?它由几部分组成? 2.圆柱的表面积=()3.求圆柱的表面积,必须要先求出什么?怎么求?
4.圆柱的侧面展开后是一个什么图形?求圆柱的侧面积可以转化成求什么图形的面积?圆柱的侧面积怎么样求?
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示
(三)老师按自学提示组织反馈全班交流
(四)总结归纳板书:
1.圆柱的表面积=圆柱的侧面积+两个底面的面积 2.圆柱的侧面积=底面周长×高 3.练一练:完成21页做一做
(五)出示例4,理清题意,学生尝试解答,小组交流,全班交流,归纳方法。
三、达标检测
1.完成课本第22页做一做。2.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第23页1、2、3题 板书设计:
教学反思:
第三课时 教学内容:圆柱的表面积练习课,练习四第23—24页第4至14题 教学目标:
1.进一步巩固圆柱体的特征,侧面积、表面积的计算方法,提高计算正确率。2.根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的实际问题。3.渗透转化思想,提高学生对数学问题与生活问题相互转化的能力。教学重点:圆柱体侧面积、表面积的计算方法。教学难点:运用所学的知识解决简单的实际问题。教具准备:小黑板 教学过程:
一、问题回顾,再现新知
同学们,经过学习的不断深入,我们已初步掌握了圆柱形表面积的计算方法,下面我们就来回忆一下这些知识。
1.圆柱有几个面组成? 2.圆柱的侧面积怎么求? 3.圆柱的表面积怎么求?
二、分层练习,巩固提高
(一)基本练习,巩固新知
学生自主练习,然后小组内交流练习成果。师生共同小结计算公式:
知道圆柱的底面直径和高求表面积:s=2π(d÷2)+πdh 知道圆柱的底面半径和高求表面积:s=2πr+2πrh 知道圆柱的底面周长和高求表面积:s=2π(C÷π÷2)+ch
(二)综合练习,应用新知 1.说一说
联系生活实际,说说生活中的问题与哪些面积有关?(1)圆形水池的占地面积;(2)做一节烟囱所需铁皮的面积;(3)做一个无盖水桶所需铁皮的面积;
222(4)做一个油桶所需铁皮的面积;(5)求易拉罐上商标纸的面积;
(6)在水池的内壁和底面抹水泥,求抹水泥部分的面积;(7)往大厅的柱子上涂漆,求涂漆部分的面积;(8)压路机的滚筒转动一周,求压路的面积. 2.解决生活中的实际问题
(1)一种圆柱形铁皮通风管,横截面的直径是10厘米,长 1米,做这样的通风管需要铁皮多少平方厘米?
(2)做一个高5分米,底面半径1分米的无盖圆柱形铁皮水桶,大约要铁皮多少平方分米?(3)一个圆柱形汽油桶,底面直径是10分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分米)
(4)一辆压路机的前轮是圆柱形,轮宽 1.6米,直径是 0.8米,每分前轮钟转12周。A、每分钟前轮压路的面积有多大?(实际求什么?)B、每分钟前轮滚多远?(实际求什么?)
(5)大厅里有5根柱子,每根柱子的底面周长3.14米,高3米,现给这5根柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少克?
3.总结方法:
在生活中要求圆柱的表面积,首先得考虑求哪几个面的面积。一般分为三种:一种是只求一个侧面积,第二种是求一个侧面积和一个底面积;第三种是求一个侧面积和两个底面积。这就要求学生要根据实际情况具体分析。
3.完成课本第5、6、7、9、11、13、14题(学生独立完成,小组交流,集体交流)
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业
课本第4、8、10、12题 板书设计:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
s=2π(d÷2)+πdh
s=2πr+2πrh
s=2π(C÷π÷2)+ch
222
3.圆柱的体积 第四课时 教学内容:圆柱的体积,教材P25—26页例
5、例6及相关练习题。教学目标:
1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2.初步学会用转化的数学思想和方法,解决实际问题的能力 教学重点:
1.掌握圆柱体积的计算公式。
2.应用圆柱的体积计算公式解决简单的实际问题。教学难点:圆柱体积的计算公式的推导。教具准备:圆柱体 教学过程:
一、自主学习
(一)复习旧知
(1)长方体的体积公式是什么?(2)复习圆面积计算公式的推导过程。
(二)引入板书课题,明确目标
(三)自学提示 自学课本25页,思考: 1.什么叫圆柱的体积?
2.圆柱的体积公式推导过程是怎么样的? 3.圆柱的体积怎么求?
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示、汇报
(三)老师按自学提示组织反馈全班交流
(四)总结归纳板书: 长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即:V=Sh 应用公式尝试解答:完成25页做一做
(五)出示例6,(1)理清题意,学生尝试解答,小组交流,全班交流(2)集体订正。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm)② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)答:因为502.4大于498,所以杯子能装下这袋牛奶。(3)总结方法
三、达标检测
1.完成课本第26页做一做。2.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第28页1、2、3题
2板书设计: 圆柱的体积
圆柱的体积=底面积×高 V=Sh或V=πr2h 例6:
第五课时
教学内容:解决问题:圆柱的容积,教材P27页例7及相关练习题。教学目标:
1.通过观察比较,掌握不规则物体的体积的计算方法。
2.培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。
教学重点:通过观察比较,掌握不规则物体的体积的计算方法。教学难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。教具准备:两个同样的玻璃瓶容器 教学过程:
一、自主学习
(一)复习旧知,问题引入 1.圆柱的体积公式是怎样的?
2.求下面各圆柱的体积。(只列式,不用计算)(1)底面积是25平方米,高是10分米(2)底面半径是3米,高是10米(3)底面直径5厘米,高是5厘米(4)底面周长是18.84分米,高是3分米
3.问题:学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们还记得是怎样解决的吗?
(二)引入板书课题,明确目标
(三)自学提示
出示例题,理清题意后,让学生思考:
1.求圆柱容积的方法和求圆柱体积的方法一样吗?
2.瓶子不是一个完整的圆柱,能不能直接计算容积?能不能转化成圆柱?怎么转化?
3.瓶子倒置后,体积变没变,那瓶子的容积可以转化成求哪部分和哪部分的体积?
(四)学生尝试列式解答
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示、汇报
(三)老师按自学提示组织反馈全班交流 1.质疑:这个瓶子是圆柱吗?怎样求出它的容积?
2.实物演示:用两个相同的酒瓶,内装同样多的水进行演示。3.根据学生板演,理解方法
3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。
(四)引导归纳
求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。
三、达标检测
1.完成课本第27页做一做。2.完成课本29页第12、13题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第29页8、11、13题 板书设计: 解决问题 例7 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。教学反思:
第六课时 教学内容:圆柱的体积和容积练习课 教学目标:
1.使学生能够运用公式正确地计算圆柱的体积和容积。2.初步学会用转化的数学思想和方法,解决实际问题的能力 3.渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。教具准备:小黑板 教学过程:
一、问题回顾,再现新知 1.圆柱的体积公式是怎样推导的? 2.圆柱的体积怎么求?
3.长方体和正方体的体积怎么求?
二、分层练习,巩固提高
(一)基本练习,巩固新知 1.求圆柱的体积
S=50㎝2
学生自主练习,然后小组内交流练习成果。师生共同小结计算公式:
知道圆柱的底面积和高求体积:V=Sh 知道圆柱的底面直径和高求体积:V=π(d÷2)
2h 知道圆柱的底面半径和高求体积:V =πr2
h 知道圆柱的底面周长和高求体积:V=π(C÷π÷2)h
(二)综合练习,应用新知 1.解决生活中的实际问题
(1)一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?
(2)一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)
(3)一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)
(4)有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱体,应削多少体积的木头?(5)一只圆柱形水桶,底面半径是0.2米,高0.5米,装了 桶水,问桶中有水多少升?(6)一只圆柱形的玻璃杯,测得内直径是8厘米,内装药水的深度是16厘米,正好占杯内容积的80%,这个杯的容积是多少毫升?
2.总结方法:
3.指导完成课本第6、7、9、10、12题(学生独立完成,小组交流,集体交流)
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业 课本第4、5题
五、拓展练习课本30页第14、15题
第七课时 整理和复习
教学内容:P29页第1-3题,完成练习五。教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别 教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)
2.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答: 圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)
圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积×高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)
2、圆锥的体积怎样计算?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3 Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
3、做第29页第2题
4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
四、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、4.有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?
5.右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)
第八课时
教学内容:圆锥的认识,教材P31-32例1及相关练习题。教学目标:
1.认识圆锥,掌握圆锥的特征。2.认识圆锥的高,会正确测量圆锥的高。
3.培养学生的自主探索意识,激发学生强烈的求知欲望。教学重点:掌握圆锥的特征及各部分的名称。教学难点:认识圆锥的高,会正确测量圆锥的高。教具准备:圆锥体模型 教学过程:
一、自主学习
(一)情景引入 展示教材第31页的主题图,让学生观察。
(二)引入板书课题,明确目标
(三)自学提示
让学生在生活中找圆锥形物体,然后自学课本并思考: 1.圆锥有哪些特征?
2.什么叫做圆锥的高?它有几条高?
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生汇报
(三)结合教具组织反馈全班交流
(四)引导归纳
圆锥的特征:底面是圆,侧面是一个曲面,有一个顶点和一条高.
(五)测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。
(六)教学圆锥侧面的展开图和教学画圆锥的平面图(1)学生猜想圆锥的侧面展开后会是什么图形呢?(2)实验来得出圆锥的侧面展开后是一个扇形。
三、达标检测
1.完成课本第32页做一做。2.完成课本35页第1、2题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业(补充)
(1)说出下面各圆锥的高和底面半径
(2)下面图形以竖线为轴旋转后会得到圆锥,请说出圆锥的高和底面半径。
板书设计:
第九课时
教学内容:圆锥的体积,教材P33-34例2、3及相关练习题。教学目标:
1.通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2.借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。教学重点:理解圆锥体积公式的推导过程。教学难点:运用圆锥体积公式解决实际问题。
教具准备:铅锤、等底等高的圆柱和圆锥容器、沙子、水 教学过程:
一、自主学习
(一)问题引入 出示一个铅锤,并提问:你有办法知道这个铅锤的体积吗?。
(二)引入板书课题,明确目标
(三)自学提示 自学课本并思考:
1.圆锥的体积和圆柱的体积有没有关系?
2.通过试验,发现圆锥和同它等底等高的圆柱的体积之间的关系是怎样的? 3.圆锥的体积公式是怎么样的?
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生汇报
(三)结合教具组织学生进行实验操作,然后全班交流(1)实验探究
拿出等底等高的圆柱和圆锥各一个,先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(2)讨论探究。
(四)引导归纳
圆锥的体积是和它等底等高的圆柱的体积的V圆锥=311 V圆柱=Sh 3
3(五)出示例3,理解题意,尝试解答,对子交流,小组交流,全班交流,学生板演,教师讲解订正
三、达标检测
1.完成课本第34页做一做。2.完成课本35页第3、4、5题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本35页第6、7题 板书设计:
教学反思:
第十课时
教学内容:圆锥的体积练习课,p36页练习六的8—11题。教学目标:
1.使学生理解并圆锥体积的计算公式,会运用公式计算圆锥的体积
2.结合具体情境和实践活动,体会物体体积或容积的含义,经历探索圆锥体积计算方法的过程,并解决一些简单的实际问题。
3.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:圆锥体体积计算公式正确运用. 教学难点:正确理解圆锥体积计算公式. 教学过程
一、问题引入,回顾再现。1.圆锥的体积怎样计算?
2.圆柱的体积和圆锥的体积在什么情况下具有一定的关系?
说明圆柱和圆锥必须在等底等高的情况下才具有三分之一的关系或三倍的关系 3.强调:计算圆锥的体积千万不要忘记乘三分之一。4.体积单位和面积单位之间的进率分别是多少?
二、分层练习,强化提高。1.基本练习。(1)单位换算: 2300立方分米=()立方米
4000毫升=()立方厘米=()立方分米 6.05升=()毫升
0.083立方米=()立方分米(2)求圆锥的体积。
(1)底面积是3.14平方米,高是9分米(2)底面半径是3米,高是10米(3)底面直径5厘米,高是3厘米(4)底面周长是18.84分米,高是0.6分米 教师根据学生练习中存在的问题,集体评讲。2.指导练习
指导学生完成课本第8、11题 3.综合练习
(1)一个圆锥形零件,它的底面半径5厘米,高是底面半径的3倍。这个零件的体积是多少立方厘米?
(2)有一座圆锥形帐篷,底面直径约5米,高约3.6米。
①它的占地面积约是多少平方米?
②它的体积约多少立方米?
(3)一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。①如果把它捏成同样底面积的圆锥形,这个圆锥的高是多少?
② 如果把他捏成同样高的圆锥,这个圆锥的底面积是多少? 4.提高练习。
(1)一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?
(2)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(3)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?(4)张大伯家有一堆小麦,堆成了圆锥形,张大伯量得底面周长是9.42米,高是2米,这堆小麦的体积是多少立方米?如果每立方米小麦的体积为700千克,这堆小麦有多少千克
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业 课本第9、10题
第十一课时
教学内容:整理和复习。课本P37——38 教学目标:
1.通过整理和复习,使学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。
2.综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。3.培养思维能力和综合应用所学知识解决实际问题的能力 教学重、难点:综合应用所学知识解决实际问题 课时:2课时
第1课时
教学过程:
一、复习圆柱和圆锥的特征 1.小组同学互相说说它们的特征 2.讨论:圆柱和圆锥的异同点 3.反馈写成37页第1题
二、复习圆柱和侧面积、表面积和体积计算方法和圆锥的体积计算方法 1.学生回忆公式,小组互相交流,根据学生汇报板书公式 2.讨论:(1)圆柱的侧面积和表面积有什么联系?求法有什么不同?(2)圆柱和圆锥的体积之间有什么联系?求法有什么不同?(3)要求出分别要知道什么条件? 3.完成课本37页第2题
三、巩固练习1.基础练习
(1)计算下面各图形的体积。(单位:厘米)
(2)一个圆锥的底面周长是9.42米,高1米。圆锥的体积是多少立方米?
(3)一个圆柱底面积是6.28平方分米,高3分米。与它等底等高的圆锥的体积是多少立方分米?(4)一个圆柱的底面直径是12厘米,高5厘米。和它等底等高的圆锥的体积是多少立方厘米?(5)一个圆锥底面直径是4厘米,高是5厘米。和它等底等高的圆柱的体积是多少?
四、布置作业:思考练习七第6题
第十二课时
教学内容
教学过程:
一、谈话引入,揭示课题。
1、谈话。
同学们,第三单元我们学习了什么内容?今天,老师要检查你们对本单元的知识掌握情况。
1、揭示课题:整理和复习
二、知识梳理
1、结合教材第37页第1题,回顾圆柱、圆锥的特征。(1)圆柱的特征。(2)圆锥的特征。
2、复习圆柱的侧面积和表面积
(1)出示圆柱的表面展开图,先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?
(2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)(3)第37页第2题中求圆柱表面积的部分。
3、复习圆柱、圆锥的体积
(1)圆柱的体积怎样计算?(圆柱体的体积=底面积×高,用字母表示:V=Sh)
(2)怎样计算圆锥的体积?(圆锥体的体积等于和它等底等高的圆柱体体积的三分之一,计算圆锥体积的字母公式是V=
4、知识应用。
学生独立完成第37页第3、4题。
三、课堂练习:
2.指导练习
学生完成课本37页第4题,第38页第1、3、5、6题 3.综合练习
(1)一个圆锥形铅垂,底面直径是4厘米,高是10厘米。若每立方厘米钢重7.8克。问这个铅垂重多少千克?
(2)一个圆柱底面积是314平方厘米,高8厘米。一个圆锥和它的体积、底面积都相等,问这个圆锥的高是多少?
(3)一个圆锥与一个圆柱的底面积相等。已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,圆柱的高是多少厘米?
(4)求右面图形的体积。(单位:厘米)
(5)一个圆锥形沙堆,占地面积是30平方米,高是2.7米。每立方米沙重1.7吨,如果用一辆载重8吨的汽车把这些沙子运走,需要运几次?
(6)把50个底面直径是30厘米,高20厘米的圆锥,熔铸成一根底面直径是60厘米的圆柱形钢材。1Sh)(3)做第37页第2题中关于圆柱、圆锥体积的部分。3求圆柱形钢材长多少厘米?
(7)等底等高的圆柱和圆锥。它们的体积相差18立方厘米。求它们的体积各是多少立方厘米?(8)如图,一个底面直径为20厘米的圆柱形玻璃杯,装有一些水。水中放着一个底面直径是6厘米,高是20厘米的圆锥形铅垂。当取出铅垂后,杯里的水下降几厘米?
四、课堂总结
复习了什么?有什么收获?
五、课后作业
课本37页第3题第38页第2、4题
第三篇:六年级数学下册“圆柱与圆锥”作业设计
六年级数学下册“圆柱与圆锥”作业设计
第一课时面的旋转
填空题
1、快速旋转一面底边是直角的三角形小旗就会看到一个()。
2、圆柱有两个面是()的圆,有一个面是()。
3、从圆柱的()到()的距离是圆柱的高,一个圆柱有()条高。
第二课时圆柱的表面积
1、圆柱的侧面展开后是一个()形。
2、圆柱的侧面积=()×()。
3、圆柱的表面积=()+()。
4、一个圆柱的底面半径是1厘米,高是2厘米,⑴这个圆柱的底面周长是多少?
⑵这个圆柱的侧面积是多少?
⑶这个于圆柱的表面积多少?
第三课时圆柱的体积
求下面圆柱的体积。
1、底面半径是2厘米,高是3厘米。
2、底面直径是2分米,高是10分米。
3、底面周长是25.12米,高是100米。
第四课时圆锥的体积
1、底面半径是2厘米,高是3厘米。
2、底面直径是2分米,高是30分米。
3、底面周长是25.12米,高是100米。
第四篇:人教版六年级下册数学第三单元《圆柱、圆锥整理和复习》教案(定稿)
人教版六年级下册数学第三单元《圆柱、圆锥整
理和复习》教案
教学内容:
P29页第1-3题,完成练习五。
教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
教学重点:
圆柱、圆锥表面积、体积的计算
教学难点: 圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)
2、圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答
圆柱的侧面是指哪一部分?它是什么形状的?
(长方形或正方形)
圆柱的侧面积怎样计算?
(底面的周长高)
为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)
2、表面积是由哪几部分组成的?
(圆柱的侧面积+两个底面的面积)
3、第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积高,推出圆柱体的体积=底面积高)圆柱体的体积计算的字母公式是什么?(V=Sh)
2、圆锥的体积怎样计算?
(用底面积高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3 Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
第五篇:高中:2015春六年级下册第三单元圆柱与圆锥教案
第三单元 圆柱与圆锥
教材分析:
本单元的主要内容有:圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念,为进一步应用几何知识解决实际问题打下基础。
教学目标:
1.使学生认识圆柱和圆锥,掌握它们的基本特征。并认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2.引导学生探索并掌握圆柱的侧面积、表面积的计算方法以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察、设计和制作圆柱、圆锥体模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4.使学生理解除了研究几何图形的形状和特征,还要从数量的角度来研究几何图形,如图形的面积、体积等,体会数形结合思想。
5.通过圆柱和圆锥体积公式的探索,使学生体会转化、推理、极限、变中有不变等数学思想。
教学重点:
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。教学难点:
圆柱、圆锥体积的计算公式的推导。教学建议
1.加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。2.让学生经历探索知识的过程,培养自主解决问题的能力。3.充分关注操作与想象相结合,发展学生的空间观念。课时安排:9课时
1.圆柱 第一课时
教学内容:圆柱的认识,教材P17—20页相关内容。教学目标:
1.借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2.培养学生细致的观察能力和一定的空间想像能力。3.激发学生学习的兴趣。教学重点:认识圆柱的基本特征
教学难点:圆柱的侧面与它的展开图之间的关系 教具、学具准备:圆柱体、硬纸、剪刀、直尺 教学过程:
一、自主学习
(一)复习旧知,渗透学习方法。
师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面? 生:长方体的组成,就是长方体有6个面,12条棱和8个顶点。相对的面的面积相等,相对的棱的长度相等。
师:正向大家所说,我们在认识一种几何图形时,通常研究它的两个方面:即它的组成和组成部分之间的关系。今天这节课我们就用这种方式研究一种新的立体图形。
(二)引导学生观察教材第17页的建筑物及物品图,引入板书课题,明确目标
(三)自学提示
1.这些物体有什么共同的特点?
2.一个圆柱形的物体,由几部分组成?它们有什么特征?
3.圆柱的侧面展开后是什么形状?这个长方形的长、宽与圆柱有什么关系?圆柱在什么情况下展开图是正方形。
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示
(三)老师按自学提示组织反馈全班交流
(四)总结归纳:
1.圆柱由3个面围成的。上、下两个面叫做底面,它们是完全相同的两个圆。圆柱周围的曲面叫侧面。2.圆柱的两个底面之间的距离叫做高。圆柱的高有无数条,高的长度都相等。3.圆柱沿着高展开后得到一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。当圆柱的底面周长与高相等时,展开后得到一个正方形。
三、达标检测
1.完成课本第18页和19页做一做。
2.(1)上下两个底面相等的物体一定是圆柱体。()(2)圆柱的侧面沿着高展开后会得到一个长方形或者正方形。()(3)同一个圆柱底面之间的距离处处相等。()(4)一个圆柱,底面周长是12.56厘米,高是12.56厘米。这个圆柱的侧面沿着高展开,得到一个 长方形。()
(5)一个圆柱,底面周长是12.56厘米,高是12.56厘米。这个圆柱的侧面沿着高展开,得到一个正方形。()
(6)一个圆柱,底面半径是4厘米,高是4厘米。这个圆柱的侧面沿着高展开,得到一个正方形。
3.练习三第1至第5题 4.课堂总结
学会了什么知识?有什么收获? 5.课堂作业(补充)
(1)画一个圆柱平面图,把它各部分的名称标上去(2)填空
①圆柱的两个圆面叫做(),它们是()的圆形;周围的面叫做();圆柱两个底面之间的距离叫做()。一个圆柱有()条高。
②把一张长方形的纸的一条边固定贴在一根木棒上,然后快速转动,得到一个()。
③一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。这个圆柱的底面周长是()厘米,高是()厘米。
④一个圆柱的侧面展开后得到一个正方形,边长是9.42厘米。这个圆柱的底面周长是()厘米,高是()厘米。
板书设计: 圆柱的认识
2.圆柱的表面积
第二课时
教学内容:圆柱的表面积,教材P21—22页例
3、例4及做一做与练习四相关内容。教学目标:
1.理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。2.会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。3.培养学生良好的空间观念和解决简单的实际问题的能力。教学重点:认识圆柱的基本特征
教学重点:掌握圆柱侧面积和表面积的计算方法。教学难点:运用所学的知识解决简单的实际问题。教具、学具准备:圆柱体 教学过程:
一、自主学习
(一)复习旧知
1.指名学生说出圆柱的特征. 2.口头回答下面问题.
(1)一个圆形花池,直径是5米,周长是多少?(2)长方形的面积怎样计算?(3)长方体、正方体的表面积指什么?
(二)同学们,圆柱的表面积指什么?怎样求呢?今天就让我们一起来学习圆柱的表面积。引入板书课题,明确目标
(三)自学提示
1.圆柱的表面积指什么?它由几部分组成? 2.圆柱的表面积=()3.求圆柱的表面积,必须要先求出什么?怎么求? 4.圆柱的侧面展开后是一个什么图形?求圆柱的侧面积可以转化成求什么图形的面积?圆柱的侧面积怎么样求?
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示
(三)老师按自学提示组织反馈全班交流
(四)总结归纳板书:
1.圆柱的表面积=圆柱的侧面积+两个底面的面积 2.圆柱的侧面积=底面周长×高 3.练一练:完成21页做一做
(五)出示例4,理清题意,学生尝试解答,小组交流,全班交流,归纳方法。
三、达标检测
1.完成课本第22页做一做。2.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第23页1、2、3题 板书设计:
教学反思:
第三课时
教学内容:圆柱的表面积练习课,练习四第23—24页第4至14题 教学目标:
1.进一步巩固圆柱体的特征,侧面积、表面积的计算方法,提高计算正确率。2.根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的实际问题。3.渗透转化思想,提高学生对数学问题与生活问题相互转化的能力。教学重点:圆柱体侧面积、表面积的计算方法。教学难点:运用所学的知识解决简单的实际问题。教具准备:小黑板 教学过程:
一、问题回顾,再现新知
同学们,经过学习的不断深入,我们已初步掌握了圆柱形表面积的计算方法,下面我们就来回忆一下这些知识。
1.圆柱有几个面组成? 2.圆柱的侧面积怎么求? 3.圆柱的表面积怎么求?
二、分层练习,巩固提高
(一)基本练习,巩固新知
学生自主练习,然后小组内交流练习成果。师生共同小结计算公式:
知道圆柱的底面直径和高求表面积:s=2π(d÷2)2+πdh 知道圆柱的底面半径和高求表面积:s=2πr2+2πrh 知道圆柱的底面周长和高求表面积:s=2π(C÷π÷2)2+ch
(二)综合练习,应用新知 1.说一说
联系生活实际,说说生活中的问题与哪些面积有关?(1)圆形水池的占地面积;(2)做一节烟囱所需铁皮的面积;(3)做一个无盖水桶所需铁皮的面积;(4)做一个油桶所需铁皮的面积;(5)求易拉罐上商标纸的面积;
(6)在水池的内壁和底面抹水泥,求抹水泥部分的面积;(7)往大厅的柱子上涂漆,求涂漆部分的面积;(8)压路机的滚筒转动一周,求压路的面积. 2.解决生活中的实际问题
(1)一种圆柱形铁皮通风管,横截面的直径是10厘米,长 1米,做这样的通风管需要铁皮多少平方厘米?
(2)做一个高5分米,底面半径1分米的无盖圆柱形铁皮水桶,大约要铁皮多少平方分米?
(3)一个圆柱形汽油桶,底面直径是10分米,高是20分米,做这样一个汽油桶需要铁皮多少平方分米?(得数保留整十平方分米)
(4)一辆压路机的前轮是圆柱形,轮宽 1.6米,直径是 0.8米,每分前轮钟转12周。A、每分钟前轮压路的面积有多大?(实际求什么?)B、每分钟前轮滚多远?(实际求什么?)
(5)大厅里有5根柱子,每根柱子的底面周长3.14米,高3米,现给这5根柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少克?
3.总结方法:
在生活中要求圆柱的表面积,首先得考虑求哪几个面的面积。一般分为三种:一种是只求一个侧面积,第二种是求一个侧面积和一个底面积;第三种是求一个侧面积和两个底面积。这就要求学生要根据实际情况具体分析。
3.完成课本第5、6、7、9、11、13、14题(学生独立完成,小组交流,集体交流)
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业
课本第4、8、10、12题 板书设计:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
s=2π(d÷2)2+πdh s=2πr2+2πrh s=2π(C÷π÷2)2+ch
3.圆柱的体积 第四课时
教学内容:圆柱的体积,教材P25—26页例
5、例6及相关练习题。教学目标:
1.通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2.初步学会用转化的数学思想和方法,解决实际问题的能力 教学重点:
1.掌握圆柱体积的计算公式。
2.应用圆柱的体积计算公式解决简单的实际问题。教学难点:圆柱体积的计算公式的推导。教具准备:圆柱体 教学过程:
一、自主学习
(一)复习旧知
(1)长方体的体积公式是什么?(2)复习圆面积计算公式的推导过程。
(二)引入板书课题,明确目标
(三)自学提示 自学课本25页,思考: 1.什么叫圆柱的体积?
2.圆柱的体积公式推导过程是怎么样的? 3.圆柱的体积怎么求?
(四)学生自学
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示、汇报
(三)老师按自学提示组织反馈全班交流
(四)总结归纳板书: 长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即:V=Sh 应用公式尝试解答:完成25页做一做
(五)出示例6,(1)理清题意,学生尝试解答,小组交流,全班交流(2)集体订正。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)答:因为502.4大于498,所以杯子能装下这袋牛奶。(3)总结方法
三、达标检测
1.完成课本第26页做一做。2.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第28页1、2、3题 板书设计: 圆柱的体积
圆柱的体积=底面积×高 V=Sh或V=πr2h 例6:
第五课时
教学内容:解决问题:圆柱的容积,教材P27页例7及相关练习题。教学目标:
1.通过观察比较,掌握不规则物体的体积的计算方法。
2.培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。
教学重点:通过观察比较,掌握不规则物体的体积的计算方法。教学难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。教具准备:两个同样的玻璃瓶容器 教学过程:
一、自主学习
(一)复习旧知,问题引入 1.圆柱的体积公式是怎样的?
2.求下面各圆柱的体积。(只列式,不用计算)(1)底面积是25平方米,高是10分米(2)底面半径是3米,高是10米(3)底面直径5厘米,高是5厘米(4)底面周长是18.84分米,高是3分米
3.问题:学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们还记得是怎样解决的吗?
(二)引入板书课题,明确目标
(三)自学提示
出示例题,理清题意后,让学生思考:
1.求圆柱容积的方法和求圆柱体积的方法一样吗?
2.瓶子不是一个完整的圆柱,能不能直接计算容积?能不能转化成圆柱?怎么转化?
3.瓶子倒置后,体积变没变,那瓶子的容积可以转化成求哪部分和哪部分的体积?
(四)学生尝试列式解答
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生展示、汇报
(三)老师按自学提示组织反馈全班交流 1.质疑:这个瓶子是圆柱吗?怎样求出它的容积?
2.实物演示:用两个相同的酒瓶,内装同样多的水进行演示。3.根据学生板演,理解方法
3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。
(四)引导归纳
求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。
三、达标检测
1.完成课本第27页做一做。2.完成课本29页第12、13题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本第29页8、11、13题 板书设计: 解决问题 例7 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。教学反思:
第六课时
教学内容:圆柱的体积和容积练习课 教学目标:
1.使学生能够运用公式正确地计算圆柱的体积和容积。2.初步学会用转化的数学思想和方法,解决实际问题的能力 3.渗透转化思想,培养学生的自主探索意识。教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。教具准备:小黑板 教学过程:
一、问题回顾,再现新知 1.圆柱的体积公式是怎样推导的? 2.圆柱的体积怎么求?
3.长方体和正方体的体积怎么求?
二、分层练习,巩固提高
(一)基本练习,巩固新知 1.求圆柱的体积
S=50㎝2
学生自主练习,然后小组内交流练习成果。师生共同小结计算公式:
知道圆柱的底面积和高求体积:V=Sh 知道圆柱的底面直径和高求体积:V=π(d÷2)2h 知道圆柱的底面半径和高求体积:V =πrh 知道圆柱的底面周长和高求体积:V=π(C÷π÷2)2h
(二)综合练习,应用新知 1.解决生活中的实际问题
(1)一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?(2)一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)
(3)一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)
(4)有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱体,应削多少体积的木头?
(5)一只圆柱形水桶,底面半径是0.2米,高0.5米,装了 桶水,问桶中有水多少升?
(6)一只圆柱形的玻璃杯,测得内直径是8厘米,内装药水的深度是16厘米,正好占杯内容积的80%,这个杯的容积是多少毫升?
2.总结方法:
3.指导完成课本第6、7、9、10、12题(学生独立完成,小组交流,集体交流)
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业 课本第4、5题
五、拓展练习
课本30页第14、15题
2第七课时
教学内容:圆锥的认识,教材P31-32例1及相关练习题。教学目标:
1.认识圆锥,掌握圆锥的特征。2.认识圆锥的高,会正确测量圆锥的高。
3.培养学生的自主探索意识,激发学生强烈的求知欲望。教学重点:掌握圆锥的特征及各部分的名称。教学难点:认识圆锥的高,会正确测量圆锥的高。教具准备:圆锥体模型 教学过程:
一、自主学习
(一)情景引入
展示教材第31页的主题图,让学生观察。
(二)引入板书课题,明确目标
(三)自学提示
让学生在生活中找圆锥形物体,然后自学课本并思考: 1.圆锥有哪些特征?
2.什么叫做圆锥的高?它有几条高?
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生汇报
(三)结合教具组织反馈全班交流
(四)引导归纳
圆锥的特征:底面是圆,侧面是一个曲面,有一个顶点和一条高.
(五)测量圆锥的高
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。
(六)教学圆锥侧面的展开图和教学画圆锥的平面图(1)学生猜想圆锥的侧面展开后会是什么图形呢?(2)实验来得出圆锥的侧面展开后是一个扇形。
三、达标检测
1.完成课本第32页做一做。2.完成课本35页第1、2题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业(补充)
(1)说出下面各圆锥的高和底面半径
(2)下面图形以竖线为轴旋转后会得到圆锥,请说出圆锥的高和底面半径。
板书设计:
第八课时
教学内容:圆锥的体积,教材P33-34例2、3及相关练习题。教学目标:
1.通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
2.借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
教学重点:理解圆锥体积公式的推导过程。教学难点:运用圆锥体积公式解决实际问题。
教具准备:铅锤、等底等高的圆柱和圆锥容器、沙子、水 教学过程:
一、自主学习
(一)问题引入
出示一个铅锤,并提问:你有办法知道这个铅锤的体积吗?。
(二)引入板书课题,明确目标
(三)自学提示 自学课本并思考:
1.圆锥的体积和圆柱的体积有没有关系?
2.通过试验,发现圆锥和同它等底等高的圆柱的体积之间的关系是怎样的? 3.圆锥的体积公式是怎么样的?
二、展示交流
(一)学生对子交流,小组讨论。
(二)学生汇报
(三)结合教具组织学生进行实验操作,然后全班交流(1)实验探究
拿出等底等高的圆柱和圆锥各一个,先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(2)讨论探究。
(四)引导归纳
1圆锥的体积是和它等底等高的圆柱的体积的
311V圆锥= V圆柱=Sh 3
3(五)出示例3,理解题意,尝试解答,对子交流,小组交流,全班交流,学生板演,教师讲解订正
三、达标检测
1.完成课本第34页做一做。2.完成课本35页第3、4、5题 3.课堂总结
学会了什么知识?有什么收获? 3.课堂作业
完成课本35页第6、7题 板书设计:
教学反思:
第九课时
教学内容:圆锥的体积练习课,p36页练习六的8—11题。教学目标:
1.使学生理解并圆锥体积的计算公式,会运用公式计算圆锥的体积
2.结合具体情境和实践活动,体会物体体积或容积的含义,经历探索圆锥体积计算方法的过程,并解决一些简单的实际问题。
3.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。教学重点:圆锥体体积计算公式正确运用. 教学难点:正确理解圆锥体积计算公式. 教学过程
一、问题引入,回顾再现。1.圆锥的体积怎样计算?
2.圆柱的体积和圆锥的体积在什么情况下具有一定的关系?
说明圆柱和圆锥必须在等底等高的情况下才具有三分之一的关系或三倍的关系 3.强调:计算圆锥的体积千万不要忘记乘三分之一。4.体积单位和面积单位之间的进率分别是多少?
二、分层练习,强化提高。1.基本练习。(1)单位换算: 2300立方分米=()立方米
4000毫升=()立方厘米=()立方分米 6.05升=()毫升
0.083立方米=()立方分米(2)求圆锥的体积。
(1)底面积是3.14平方米,高是9分米(2)底面半径是3米,高是10米(3)底面直径5厘米,高是3厘米
(4)底面周长是18.84分米,高是0.6分米 教师根据学生练习中存在的问题,集体评讲。2.指导练习
指导学生完成课本第8、11题 3.综合练习
(1)一个圆锥形零件,它的底面半径5厘米,高是底面半径的3倍。这个零件的体积是多少立方厘米?
(2)有一座圆锥形帐篷,底面直径约5米,高约3.6米。
①它的占地面积约是多少平方米?
②它的体积约多少立方米?
(3)一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米。①如果把它捏成同样底面积的圆锥形,这个圆锥的高是多少?
② 如果把他捏成同样高的圆锥,这个圆锥的底面积是多少? 4.提高练习。
(1)一个长方体容器,长5厘米,宽4厘米,高3厘米,装满水后将水全部倒入一个高6厘米的圆锥形的容器内刚好装满。这个圆锥形容器的底面积是多少平方厘米?
(2)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?
(3)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?
(4)张大伯家有一堆小麦,堆成了圆锥形,张大伯量得底面周长是9.42米,高是2米,这堆小麦的体积是多少立方米?如果每立方米小麦的体积为700千克,这堆小麦有多少千克
三、梳理总结,提升认知
通过这节课的学习,你有什么收获?
四、课堂作业 课本第9、10题
第十课时
教学内容:整理和复习。课本P37——38 教学目标:
1.通过整理和复习,使学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。
2.综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。3.培养思维能力和综合应用所学知识解决实际问题的能力 教学重、难点:综合应用所学知识解决实际问题 教学过程:
一、复习圆柱和圆锥的特征 1.小组同学互相说说它们的特征 2.讨论:圆柱和圆锥的异同点 3.反馈写成37页第1题
二、复习圆柱和侧面积、表面积和体积计算方法和圆锥的体积计算方法 1.学生回忆公式,小组互相交流,根据学生汇报板书公式
2.讨论:(1)圆柱的侧面积和表面积有什么联系?求法有什么不同?(2)圆柱和圆锥的体积之间有什么联系?求法有什么不同?(3)要求出分别要知道什么条件? 3.完成课本37页第2题
三、巩固练习1.基础练习
(1)计算下面各图形的体积。(单位:厘米)
(2)一个圆锥的底面周长是9.42米,高1米。圆锥的体积是多少立方米?
(3)一个圆柱底面积是6.28平方分米,高3分米。与它等底等高的圆锥的体积是多少立方分米?(4)一个圆柱的底面直径是12厘米,高5厘米。和它等底等高的圆锥的体积是多少立方厘米?
(5)一个圆锥底面直径是4厘米,高是5厘米。和它等底等高的圆柱的体积是多少? 2.指导练习
学生完成课本37页第4题,第38页第1、3、5、6题 3.综合练习
(1)一个圆锥形铅垂,底面直径是4厘米,高是10厘米。若每立方厘米钢重7.8克。问这个铅垂重多少千克?
(2)一个圆柱底面积是314平方厘米,高8厘米。一个圆锥和它的体积、底面积都相等,问这个圆锥的高是多少?
(3)一个圆锥与一个圆柱的底面积相等。已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,圆柱的高是多少厘米?(4)求右面图形的体积。(单位:厘米)
(5)一个圆锥形沙堆,占地面积是30平方米,高是2.7米。每立方米沙重1.7吨,如果用一辆载重8吨的汽车把这些沙子运走,需要运几次?
(6)把50个底面直径是30厘米,高20厘米的圆锥,熔铸成一根底面直径是60厘米的圆柱形钢材。求圆柱形钢材长多少厘米?
(7)等底等高的圆柱和圆锥。它们的体积相差18立方厘米。求它们的体积各是多少立方厘米?
(8)如图,一个底面直径为20厘米的圆柱形玻璃杯,装有一些水。水中放着一个底面直径是6厘米,高是20厘米的圆锥形铅垂。当取出铅垂后,杯里的水下降几厘米?
四、课堂总结
复习了什么?有什么收获?
五、课后作业
课本37页第3题第38页第2、4题。批注:好!