第一篇:《1.1正数和负数(第1课时)》教学设计
《1.1正数和负数(第1课时)》教学设计
一、内容和内容解析 1.内容
正数和负数的意义。2.内容解析
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析 1.教学目标
(1)体会引入负数的必要性;
(2)了解负数的意义,会用正数、负数表示具有相反意义的量。2.目标解析
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计 1.创设情境,引入新知
教师展示教科书图1.1-1,并提出:
问题1 哪位同学知道这些图片介绍的是什么内容?
师生活动 学生回答。教师补充说明数的产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要. 问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
师生活动 学生思考并尝试解释,对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念
问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗? 师生活动 学生回答,给出正确答案后,教师给出正数、负数的描述性定义: 大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。
问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗? 师生活动 学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用
例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%。写出这些国家这一年商品进出口总额的增长率。
师生活动 提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?
师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的,体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗?
【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?
师生活动 学生总结,师生共同补充、完善。要总结出:
(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;
(2)选定一方用正数表示,那么另一方就用负数表示;
(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;
(4)当数据没有变化时,增长率是0。
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。【设计意图】让学生用刚刚总结出的结论解决问题。4.巩固概念,学以致用 练习:教科书第3页练习1,2。
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?
(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?
6.布置作业:教科书习题1.1第1,2,4,8题。
五、目标检测设计 1.以下各
数
120115,0.6,10,0,0,36,28220127中,正数有______________________________;负数有______________________________。
【设计意图】考查对正数、负数概念的理解。
2.向东行进-50m表示的实际意义是______________________________。【设计意图】会用正数、负数表示具有相反意义的量。3.下列结论中正确的是()A.0既是正数,又是负数 B.O是最小的正数 C.0是最大的负数
D.0既不是正数,也不是负数
【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。
4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。【设计意图】能用正数与负数表示生活中的数量。
第二篇:《1.1正数和负数(第1课时)》教学设计
《1.1正数和负数(第1课时)》教学设计
一、内容和内容解析 1.内容
正数和负数的意义。2.内容解析
引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。
通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。
基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。
二、目标和目标解析 1.教学目标
(1)了解负数的产生是生活、生产的需要;
(2)掌握正、负数的概念和表示方法,理解数0表示的量的意义;(3)理解具有相反意义的量的含义;(4)熟练地运用正、负数描述现实世界具有相反意义的量;(5)进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。
2.目标解析
(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;
(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。
三、教学问题诊断分析
学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。
本节课的教学难点为:用正数、负数表示指定方向变化的量。
四、教学过程设计 1.创设情境,引入新知
教师展示课本第2页 图1.1-1,并提出: 问题1 哪位同学知道这些图片介绍的是什么内容?
师生活动 学生回答。教师补充说明数的产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。
【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.
问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?
师生活动 学生思考并尝试解释,对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.
【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。
2.观察感知,理解概念
问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?
师生活动 学生回答,给出正确答案后,教师给出正数、负数的描述性定义:
大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?
师生活动 学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。
教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。
【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。
3.例题示范,学会应用
例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%。写出这些国家这一年商品进出口总额的增长率。
师生活动 提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?
师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的,体重增长值为负数,相当于体重减少。
再提问:你能仿照第(1)题的解答,自己解决(2)吗? 【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。
问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?
师生活动 学生总结,师生共同补充、完善。要总结出:(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;
(2)选定一方用正数表示,那么另一方就用负数表示;(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;
(4)当数据没有变化时,增长率是0。
【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。
问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。
【设计意图】让学生用刚刚总结出的结论解决问题。4.巩固概念,学以致用 练习:课本第3页练习1,2。
【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?
(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?
6.布置作业:课本习题1.1第1,2,4,8题。
第三篇:1.1正数和负数教学设计(第二课时)
1.1正数和负数(二)教学目标] 1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;3.激发学生学习数学的兴趣.4.掌握有理数分类方法。[教学重点与难点] 重点:深化对正负数概念的理解.难点:正确理解和表示向指定方向变化的量.课时安排:2课时 教学方法
讨论法、探究法、讲授法、观察法. 教学过程:
(一)情景导学、提出问题:
上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用数表示其中一种意义的量,这就是说数的范围扩大了:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该怎样表示呢?
(二)自主学习、尝试解决:
1通常规定零上温度用正数来表示,零下温度用负数来表示。零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。
(三)讨论交流、合作解决:
问题:有没有一种既不是正数又不是负数的数呢?
学生思考讨论,借助举例说明.(数0既不是正数又不是负数,是正数和负数的分 界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数·(四)展示评研、归纳提升:
问题:通过前面的学习,我们已经将数的范围扩大了,什么是有理数?你能写出2个有理数的分类吗?
学生归纳:(小组汇报,教师订正)
①(五)巩固达标、扩展延伸:
;②有理数
1.所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:
-11,4,8,+73,-2,7,正数集合负数集合
2在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为–155米。它表示什么含义?
3、记录帐目时,通常用正数表示收入款额,负数表示支出款额。则收入50元可记为多少元?支出23元可记为多少元?
,-8,12,-;
第四篇:1.1正数和负数教学设计(第一课时)
1.1正数和负数
(一)一、教学目标
1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。3 培养学生会独立思考、合作交流的意识。
二、教学设计
通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算比赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数引人的必要性.教师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数可以表示具有相反意义的量.
三、教学重点与难点
1.理解“相反意义的量”是重点。
2.能灵活运用正负数表示生活中具有相反意义的量是难点。
四、课时安排
1课时
五、教学方法
讨论法、探究法、讲授法、观察法.
六、教学思路
(一)情景导学、提出问题:
通过电脑动画情节的观看,让学生了解新数.
动画内容:
评分标准是:答对一题加10分、答错一题扣10分,不回答得0分;每个队的基本分均为0分.
四个代表队答题情况如下表:
这样,我们就可以用带有“+”号与“-”号的数表示各队的得分情况.
(二)自主学习、尝试解决:
(1)学生阅读课本2页观察与思考部分,学生独立完成导学卡的自主学习问题.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物8吨,今天运出货物3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与下列各量具有相反意义的量: 1气温为零下11度.2向南走200米。
3甲地低于海平面300米 4股票第一天涨0.66元.(三)讨论交流、合作解决:
1如何用符号表示具有相反意义的量? 2.再议一议.
3做—做:用正数和负数表示一些意义相反的量.
出示例 1:(1)在知识竞赛中,如果用+10分表示加 10分,那么扣20分怎样表示?
(2)某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:
1.先想一想具有相反意义的量,然后教师提出:怎样区别相反意义的量才好呢?(五)巩固达标、扩展延伸:
1用符号表示下列意义相反的量.
(1)在知识竞赛中,如果用+10分表示加 10分,那么扣20分怎样表示?
(2)某人转动转盘,如果用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?
2课堂作业练习第2小题
第五篇:1.1正数和负数教学设计
1.1 正数和负数
〔教学目标〕
1、了解负数的产生是生活、生产的需要;
2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;
3、理解具有相反意义的量的含义;
4、熟练地运用正、负数描述现实世界具有相反意义的量;
5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。
〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。
〔教学过程〕
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3„„;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题。
[投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?
3.2006年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?
上面三个问题中,哪些数的形式与以前学习的数有区别?
数-
3、-
2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示1 增长2.7%。
像3、2、2.7%这样大于零的数叫做正数;像-
3、-
2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+
3、+
2、+0.5、+1/3,„就是3、2、0.5、1/3,„。
这样,一个数由两部分组成,数前面的“+” “-”号叫做它的符号,后面的部分叫做这个数的绝对值。
请你指出数-3.2,5,-2/3的符号和绝对值。
二、对数“0”的重新认识
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢? 数0既不是正数,也不是负数,它是正数和负数的分界。
我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。
0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。
三、用正负数表示相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。
请大家看课本第3面的图1.1-
2、1.1-3。你能解释上面图中正数和负数的含义吗?
图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。
你能再举一些用正负数表示数量的实际例子吗?
通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。
四、巩固练习
课本第3页练习1、2、3、4。
五、实际问题
[投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。写出这些国家2001年进出口总额的增长率。
分析:首先我们来弄清楚增长-1是什么意思?增长-6.4%是什么意思? 增长-1表示减少1;增长-6.4%表示减少6.4%。
解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。(2)六个国家2001年商品进出口总额的增长率:
美国 -6.4%,德国 1.3%,法国 -2.4%,英国 -3.5%,意大利 0.2%,中国 7.5%。
注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2 “牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查产品的容量是否合格?
分析:“+30”是什么意思?“-30”是什么意思?
解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。抽查产品的容量都在470~530之间,所以都合格。
六、巩固练习
课本第5页第8题。
[投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适。
七、课堂小结
1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。
2、正数和负数起源于表示两种相反意义的量。
3、正、负数在生产、生活和科研中有着广泛的应用。