第一篇:苏教版倍数与因数教学设计
倍数与因数
教学内容: 苏教版小学数学第八册第70-72页的例题和“试一试”第72-73页“想想做做”第1-4题。
设计思路: 新课标指出:“动手操作,自主探究、合作交流是学生学习的主要方式”。这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数,教材安排了三道例题,两道“试一试”。例1通过用让学生用12个完全相同的正方形拼成不同的长方形的操作,写出不同的乘法算式,让学生经历动手操作活动,从具体到抽象,不但可以充分调动学生学习的积极性,还可以很好的帮助学生理解倍数和因数的概念。让学生亲历数学知识的形成过程,由被动变为主动,有利于积累数学活动的经验,发展创新思维。确保了学生的主体地位。例2教学通过自学找一个数倍数的方法,接着通过“试一试”让学生再找出两个数的倍数,并引导学生观察这三个例子,发现一个数的倍数中最小的数、最大的数及其个数方面的特征。例3教学找一个数的因数是本节课的难点,教师利用乘除法算式目的有两个:
一、可以很好的巩固倍数和因数的意义,二、有利于学生发现一个数因数的找法,使学生的思维更加接着通过“试一试”让学生再找出两个数的因数,再引导学生观察这三个例子,发现一个数的因数中最小的数、最大的数及其个数方面的特征。想想做做第1题利用倍数和因数的概念阐述两个数的关系;第2、3题结合现实生活加深对倍数、因数意义的理解,初步体会倍数、因数在现实生活中的运用;第4题让学生练习写出几个数的倍数和因数,巩固找一个数倍数和因数的方法。第五题游戏设计目的有三个:
一、可以再次调动学生学习积极性。
二、复习倍数和因数的意义
三、还可以巩固找一个数倍数和因数的方法。学生通过不同形式的练习,加深了对倍数、因数概念以及一个数倍数和因数求法的理解,获取快速的找出一个数的因数和倍数的最佳解题策略。最后的游戏安排,既让学生感到轻松愉快,又在娱乐中体会到今天学习的知识蕴含在其中
教学目标:1.让学生理解倍数和因数的意义,掌握找一个数倍数和因数的方法,发现一个数倍数、因数中最大的数、最小的数及其个数方面的特征。
2.让学生初步意识到可以从一个新的角度来研究非0自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力。
3.使学生体会数学内容的奇妙、有趣,产生对数学的好奇心。
教学重点:理解倍数与因数的关系。求一个数倍数和因数的方法 教学难点:求一个数的因数
教学准备:12个大小相同的正方形,多媒体课件 教学过程:
一、建立表象,直观描述
1、经历动手操作活动,教学倍数和因数的意义
每组同学的桌子上都有12个同样大小的正方形请
你用它,拼成一个长方形。想想看有多少种不同的拼法?每排摆几个?摆了几排?并且用乘法算式把自己的摆法表示出来,填在老师发给你的这张表里面,并在小组内交流。
(1)、每排4个,摆3排。4×3=12。
(2)、每排6个,摆2排。6×2=12(3)、每排12个,摆1排。12×1=12 因为 4×3=12,所以4是12的因数,3也是12的因数,12是4的倍数,12也是3的倍数。(学生读)根据这种说法,你能说说6×2=12和12×1=12吗?
试一试:
因为6×2=12 所以。
因为12×1=12所以。
学生出题回答2-3题
2、自主探索,合作交流教学求一个数的倍数和因数(1)、教学求一个数的倍数
18÷6=3你能说出谁是谁的因数谁是谁的倍数 在刚刚交流的过程中我们知道12是3的倍数18也是3的倍数那么3的倍数是不是只有12和18这两个呢?那还有没有其他3的倍数了?
学生自学。
(2)反馈:一个数的倍数有那些特点?
刚刚我们在找3的倍数的时候,有的找前面去了,有时候找后面去了你能不能找到找3的倍数的好方法呢?学生回答,补充。
(3)教师小结求一个数倍数的方法。a、试一试
2的倍数有:。50以内5的倍数有:。
b.判断:
(1)、17的最小倍数是34.(2)、6既是2的倍数.又是3的倍数(3)、6是倍数
3、合作交流,教学求一个数的因数 小组合作交流,找出36的因数;
()×()=36 36÷()=()()×()=36 36÷()=()()×()=36 36÷()=()()×()=36 36÷()=()()×()=36 36÷()=()让学生说说是怎么想的,比较方法(按顺序一组一组的找),你能按从小到大的的顺序说出36的因数吗?你能不能找出一个数因数它有那些特点呢?也从这三方面讨论一下,教师小结一个数因数的求法以及因数的特点。
练习: 找出16的因数? 学生回答,指名补充,教师板书。
指明:我们在研究倍数和因数的时候指的是不为0的自然数
三、强化练习,巩固加深倍数和因数的相关知识:
1、想想做做第2题
学生独立完成,同桌互相核对。在班内交流
2、想想做做第3题 独立完成,指名展示交流
3、选做题想想做做第4题
指名交流,说说是怎样判断的
4、游戏: 快乐大转盘。(出示多媒体课件)
两个同心圆:内圆数字:8; 外圆数字:1、24、2、48、4、16、32、80。
①转盘转动,停下时指针指着数字几,指名学生说8和这个数字的倍数因数关系。
师:就这样玩还不够,我们再来个比赛,敢不敢接受比赛? 规则:如果转到数是8的倍数,我和听课的老师就赢了;如果转到数是8的因数,你们就赢了。生强烈抗议:我们不划算!
生:8的因数只有3个,而8的倍数有5个。
师:这种情况你们自己来设计。请你自己设计出来的数,不管怎么转,都是自己赢。要用到今天的知识,并且数字不能重复。
②组织学生自己设计大转盘,老师给出中间数字是36,要求:必须保证每次比赛结果都是学生赢。
③给出中间数字24,要求:要保证每次比赛结果让老师赢。④给出中间数字10,要求:每次比赛结果赢的机会老师和学生一样多。
四、全课总结
这节课我们学习了什么内容?你有什么收获?
第二篇:《因数与倍数》教学设计
《因数与倍数》教学设计
编制者:李伊丹 学校:杭州市丁信小学
【教学内容】
教材第5页例1
【教学目标】
1.通过整数除法的算式分类,在观察比较的基础上,理解因数和倍数的概念。
2.通过举例证明,体会“因数与倍数是互相依存的”。
3.知道“在研究因数和倍数时,所说的数是指自然数(一般不包括0)”。
【教学重难点】
重难点:理解因数和倍数的概念。
【教学过程】
一、课前活动,直面难点
1.同学们喜欢玩脑筋急转弯吗?有三个人,其中有两个爸爸,两个儿子,你能说出他们之间的身份关系吗?
(引导学生说清三个人的关系,重点强调:谁是谁的爸爸,谁是谁的儿子)
2.生活中有这种相互依存的关系,在我们数学王国里,数与数之间也存在着这种相互依存的关系。
(呈现课题: 因数和倍数)
二、观察分类,感知概念
1.出示教材第5页例1。
(1)观察引导:请你观察这些算式有什么共同的特点?
(都是除法算式,除数和被除数都是整数)
(2)分类引导:你能不能按照算式的商把这些除法算式分分类?
左边这一类:商是整数并且没有余数,
2.现在我们把目光聚焦在第一类算式上,5题都是整数除法,而且它们的商也都是整数没有余数,在这样的整数除法算式里,它们就存在着因数和倍数的关系。
3.到底什么是因数,什么是倍数呢?它们的关系到底是怎样的呢?
三、结合算式,理解概念
1.明确因数与倍数的意义。(教学例1)
(1)观察这些算式,他们的被除数、除数和商有什么特点?
小结:在整数除法中,如果商是整数而没有余数,都是整数,在这样的整数除法中,我们就说被除数是除数的倍数,除数是被除数的因数。
例如12÷2=6这个算式,我们就说12是2的倍数,2是12的因数
30÷6=5这个算式,我们就说30是6的倍数,6是30的因数
(2)学生尝试。三个算式中,谁是谁的因数?谁是谁的倍数?
(3)深化认识。师:63÷9=7这个算式,有的同学把9是63的因数简单的说成9是因数,可以吗?
(对比呈现)小结:为什么都要说谁是谁的因数呢?因数和倍数的关系是什么呢?
因数和倍数的关系,也像刚开始我们谈到的爸爸和儿子的关系一样,它们也是相互依存,相互联系的。必须要说谁是谁的倍数,谁是谁的因数,二者不能单独存在。
(4)即时练习。谁是谁的倍数?谁是谁的因数?
解析:
第1个算式:56÷7=8 56是7的倍数,7是56的因数
延伸:56也是8的倍数,8也是56的因数,为什么?
小结:根据除法的关系,可以把这个算式转化成 56÷8=7,所以被除数即是除数的倍数,也是商的倍数。而除数和商都是被除数的因数
第2个算式:6×7=42,你知道这个算式中:谁是谁的倍数?谁是谁的因数吗?
根据乘除法的关系,可以根据这个算式写出两个除法算式:42÷6=7 42÷7=6
所以:42是6和7的倍数,6和7是42的因数
第3个算式:4.2÷0.6=7 4.2是0.6的倍数,这样说对吗?
小结:不对,我们前面研究因数和倍数时,所说的数都是指整数,而这里的4.2和0.6是小数
四、启思导疑,构建模型
1.像上面那样的算式有很多,你能不能用一个字母式子表示出这样的除法算式呢?
α÷b=c(α、b、c是非0的自然数)。
2.延伸练习:在这个算式中,你能说出因数和倍数的关系吗?
(a)是(b)和(c)的倍数
(b)和(c)是(a)的因数
五、实践应用,拓展思维
1.动口说一说
(1)像0,1,2,3,4…这样的数是(),最小的自然数是()。
(2)在20÷4=5中,()是()和5的倍数,()和()是()的因数。
(3)在3×6=18中,3和6是18的(),18是()和()的()。
2.用心判一判。
(1)36÷9=4,所以36是9的倍数。()
(2)15是倍数,3是因数。()
(3)5.7是3的倍数。()
3.动脑想一想。
妈妈买来30个苹果,让小明把苹果放入篮子中。不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后一个不剩,小明共有几种拿法?每种拿法每次各拿几个?
六、反思总结,自我构建
请同学们回忆一下,这节课,你学到了哪些知识?你觉得自己这节课表现怎么样?
第三篇:《倍数与因数》教学设计
《倍数与因数》教学设计
一、教学目标:
1、知识与技能:结合具体情境,联系乘法认识倍数和因数,能在100以内找出10以内某个自然数的所有倍数。
2、过程与方法:经历探索找一个数的倍数的方法的过程,发展合情推理能力。
3、情感态度:积极参与数学学习活动,初步养成乐于思考的良好品质。
二、教学重难点:
重点:掌握理解倍数和因数的概念。难点:理解倍数与因数之间的联系与区别。
三、教学过程:
1、创设情境,导入新课
师:同学们,我们人与人之间存在着各种关系,谁能说一说自己与爸爸的关系是什么?
生1:父子关系。生2:父女关系。
师:那么你们与老师又是什么关系呢? 生:师生关系。
师:能单独说老师是师生关系吗? 生:不能。
师小结:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。
2、自主探究,合作交流
①认识倍数与因数。
(1)课件出示教材31页第一个问题。
师:仔细观察两个班的队形,请你算一算两班各有多少人。(2)交流计算结果。9×4=36(人)5×7=35(人)(3)回顾乘法算式各部分的名称。
师:请你们说一说这两个算式里各部分的名称。(学生任选一题,说出各部分的名称)师(揭题):这些乘数和积之间有什么关系?今天我们就有学习因数与倍数。(板书课题:因数与倍数)
现在请同学们自学教材31页“认一认”,并思考下面的问题。(课件出示教材31页第二个问题)思考: 1)读了智慧老人的话,你知道了什么? 2)关于倍数与因数,你发现了什么? 预设
生1:在算式9×4=36中,36是9和4的倍数,9和4是36的因数。生2:在算式5×7=35中,35是5和7的倍数,5和7是35的因数。生3:倍数与因数指的是乘法算式中积和乘数之间的关系。生4:在学习倍数与因数时,只在非0自然数范围内研究。(4)质疑:在算式5×7=35中,能说5和7是因数,35是倍数吗?为什么? 学生讨论后师指出:倍数与因数是两个数之间的关系,是相互依存的。叙述时一定要说清楚谁是谁的倍数,谁是谁的因数。
(5)出示除法算式:75÷25=3启发学生思考:根据整数除法的算式能不能确定两个数之间的倍数因数关系呢?
②你写我说:同桌间互相写算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数,可以是乘法算式也可以是除法算式。③深入探究,拓展延伸。
出示问题:找一找下面哪些数是7的倍数,说说你是怎样找的。(请学生先独立思考,小组交流后再全班交流判断的方法)7,14,17,25,77 预设
生1:7的倍数有7,14,77,我是用除法找的。生2:我是用乘法找的,7的倍数有7,14,77。
师:通过用除法找7的倍数,你发现了什么?(引导学生发现,在整除的情况下,因数和倍数的关系才成立)师:7的倍数是不是只有这些呢?要想找到100以内7的所有倍数,用哪种方法比较好?(体会用乘法比较好,有序思考可以做到不重复不遗漏)7的其他倍数有多少个?(学生操作之后汇报明确一个数的倍数有无穷多个,最小的倍数是它本身。)师:质疑:一个数的倍数有无数个,那一个数的因数的个数也是无数个的吗?(不是)
小结找一个数的倍数的方法:把这个数从1乘起,所得的这个积就是这个数的倍数。一个数的倍数有无数个,其中最小的是它本身。因数的个数是有限的,最大的是它本身,最小的是1。
3、课堂练习,反馈提升 教材32页1-6题
四、板书设计
倍数与因数(相互依存)
9×4=36
5×7=35 36是9和4的倍数。
35是5和7的倍数。9和4是36的因数。
5和7是35的因数。一个数的倍数有无穷多个,最小的倍数是它本身。
第四篇:《倍数与因数》教学设计
《倍数与因数》教学设计
教学目标:
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
教学重难点:
重点:结合具体情境,认识倍数和因数。
难点:理解倍数和因数的含义,掌握找一个数的倍数的方法。教学过程:
一、情境导入,探索新知
1、我们生活在一个充满数的世界里。请同学们观察这些数,按照它们的特征可以怎样分类呢?它们各属于哪一类呢?
引导学生揭示自然数、整数等概念。
2、你在生活中都遇到过哪些数?把你想到的数与小组同学交流一下,看看它们是哪一类数?
二、情境激趣,探究新知
1、认识倍数与因数
出示教材上的队形图。从解决书上提出的问题的过程中引出算式。9×4=36 5×7=35 说说在算式中每个数字的名称以及所表达的意义。
2、认一认
以算式为例,说明倍数和因数的含义。
引导思考:在乘法9×4=36中,9和4是什么数?36是什么数?它们之间有怎样的关系?
发现:9和4是乘数,36积,关系:乘数×乘数=积
指出:由于解决问题的需要,当我们探讨乘法算式各部分之间的关系时,可以说20是4和5的倍数,4和5是20的因数。因数和倍数是相互依存的。
这里出现了两个新的概念:倍数和因数。
师:根据5×7=35,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因
数吗?
你能根据乘法算式18÷6=3这个算式来确定两个数之间的倍数和因数的关系吗?
说明:在研究倍数和因数时,范围限制为不是零的自然数。
3、根据算式说一说哪个数是哪个数的倍数,哪个数是哪个数的因数。出示25×3=75,20×5=100 4.找7的倍数。
找到后,小组内交流自己的想法。
三、巩固练习,拓展提升
1、课本第32页第2题。
2、游戏
同学们,要下课了,让我们一起做一个游戏。
规则:老师出示一张卡片,如果你的学号是卡片上的数倍数,你就可以出教室,但要到讲台前大声说一句“几是几的倍数,或几是几的因数”。
四、课堂总结:本节课你有什么收获?你想提示大家注意什么问题?
五、、布置作业
第五篇:《倍数与因数》教学设计
教学目标:
1、使学生结合整数乘法算式,让学生初步认识倍数和因数的含义。
2、自己探索出求一个数倍数和因数的方法。
3、使学生在认识倍数和因数以及探索一个数的倍数或因数过程中,进一步体会数学知识之间的内在联系。
教学重难点:
1、认识倍数和因数的含义,理解它们之间是相互依存的关系。
2、探索出求一个数倍数的方法。
一、创设情境,提出问题。
1.同学们一年一度的秋季运动会就要开始了,淘气与笑笑所在的班级分别排出了下面两种队形,你能算一算他们两个班各有多少人吗?9×4=36(人)5×7=35(人)
2.大家别小看了这两道很普通的乘法算式,里面却蕴含了丰富的学问,咱们就以9×4=36为例,在这道算式中,4、9、36分别叫什么?乘数和积之间还有一种更具体的关系,想知道吗?请翻开教材31页自学“认一认”部分。
二、探究发现,建立模型。
(一)认识倍数与因数 1.学生自学。
2.通过自学,发现4、9和36有什么样的关系了吗? 3.学生汇报。
4.在这两句话中出现了两个数学名词,它们是?(因数和倍数)5.揭题:这就是我们今天所要研究的内容——倍数与因数。(板书课题)
6.刚才在你自学的时候,智慧老人告诉我们一句很关键的话,你注意到了吗?
我们只在自然数(零除外)范围内研究倍数和因数。什么是自然数?那也就是在1、2、3„„这些自然数的基础上研究倍数与因数。
7.那你还能根据其它的乘法算式说一说谁是谁的倍数?谁是谁的因数吗?
请个别同学说乘法算式,其他同学来回答倍数与因数的问题。8.老师这有两道算式,谁来试一试。45÷5=9 1×36=36 用心倾听的同学一定会发现,1×36=36 说因数和倍数时,有两句话特别拗口,就像绕口令一样,是哪两句?
36是36的因数,36是36的倍数。
既然这两么拗口,那能不能直接说36是因数,36是倍数呢?(不能)这样的话就不知道36是谁的因数,36是谁的倍数了,因数与倍数在数学中一种相互依存的关系,所以我们在表达时一定要讲清谁是谁的因数,谁是谁的倍数。
通过这道题你还有发现吗?
一个数是它本身的因数,也是它本身的倍数。
(二)找倍数
1.刚才我们是根据乘法或除法算式来判断谁是谁的倍数,谁是谁的因数。那现在老师如果给你几个数,你能判断一下谁是7的倍数吗?注意要说清你的理由。7、14、17、25、77 2.与同桌交流一下你的想法。3.学生汇报。
4.其实要找出7的倍数并不难,难的是你能不能找出7的所有倍数?下面就请小组合作来找7的倍数,不过在找之前,老师要给大家一个温馨提示:想一想怎样才能有顺序、不重复、不遗漏地找到7的倍数?老师只给你3分钟的时间,看看哪一个小组找到的数有序、多。
(1)学生找
(2)小组汇报。用7去分别与1、2、3„„相乘,所得的 积就是7的倍数。
(3)小结:如果给你更长的时间,你能把7的倍数全部写出来吗?(不能)
为什么?因为7的倍数有无数个。所以我们在找一个数的倍数时,可以背这个数的乘法口诀!如一七得七„„,一般可以从小到大写5个,后面用省略号表示。
5.请同学们快速写出100以内8的倍数。(师板书)
6.根据板书,观察7、8的倍数你有什么发现吗?最小的倍数都是它本身。没有最大的倍数。
三、理解应用,强化体验。
1、知道了找倍数的方法,现在就让我们来帮助小兔子回家吧!
完成32页第3题。
2.我们再来找找4和6的倍数。
完成练一练的第5题。连线即可。
3.现在我们再来玩一个动脑筋出教室的游戏。我们每个同学都有自己的学号。老师出示一张卡片,你要说出自己的学号与老师这张卡片存在的倍数与因数的关系,才可以走出教室。
例如;老师出示5,如果你的学号是10,你就可以说:我的学号是10,10是5的倍数,5是10的因数。