第一篇:解决《比的基本性质》重难点教学案例
六年级上册《比的基本性质》重难点教学设计
学习目标:
1.理解并掌握比的基本性质。
2.能应用比的基本性质化简比。
教学重点:比的基本性质,化简比的方法。
教学难点:化简比与求比值的区别。
教学过程:
一、激情导课
1、复习导入;
上节课我们学习了比,说说你对比的理解?怎样求比值?
你还记得除法有什么性质? 分数又有什么性质吗?
除法有商不变的性质,分数有分数的基本性质,联系比和除法、分数的关系,同学们猜想一下在比中是否也有类似的性质呢?
2.学习目标:(1)理解比的基本性质。
(2)会运用比的基本性质化简比。
二、民主导学
1.探究比的基本性质
温馨提示:
自学书上50页的内容,可以利用比和除法的关系来研究,也可以根据比和分数的关系来研究。
(1)小组合作学习。
(2)全班汇报交流。
(3)总结归纳:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(4)根据商不变性质,我们可以进行除法的简算。根据分数的基本性质,我们可以把分数化成最简单的整数比,即化简比。
理解最简单的整数比的意义。
①举例: :6
= 2 :3
前项、后项同时除以2,前、后项必须是整数,而且互质
符合最简单的整数比要符合两个条件:一是比的前项,后项必须是整数,二是这两个整数必须是互质数,也就是这两个整数只有公约数1。
②判断:下面哪些比是最简比
6:9
2:9
4:22
7:13
2.探究化简比的方法。
出示例题:
(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。
①学生尝试完成,师巡视指导,要求写出化简过程。
②师生共同讲评:教师板书过程。问:化简比的结果是什么?
让学生明确还是一个比。
(2)把下面各比化成最简单的整数比。
0.75:2
:
观察0.75:2
这个比,并与例1比较,有什么不同之处,怎样把小数转化成整数,比值不变?
引导学生可以乘整十整百的数,变成整数。学生独立完成。
除此之外还有没有其他的方法?
可以把0.75转化成分数,:2怎样化简呢?
引导学生想办法去掉分母,前项和后项可以同时乘4。最后出示:,想一想怎样化简?
总结归纳:①化简比的方法
②不管选择哪种方法,最后的结果都是一个最简单的整数比,而不是一个数。
三.检测导结
1.化简下列各比。
15:21
0.12:0.43
(2):2(1)
1: 3(2)
2.判断 :下面说法对吗?
(1)0.48∶0.6化简后是0.8。
()
(2)4(3): 2(1)化简后是12(1)。
()
(3)0.4∶1化简后是2:5。
()
3.连线:帮小蜗牛找家
4.写出各杯子中糖与水的质量比。
这几杯糖水有一样甜的吗?
四.反思总结:
这节课我们学习了什么知识?
和同学们分享一下你的收获吧。
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
求比值:结果是一个数
化简比:结果是一个比
第二篇:比的基本性质教学案例
比的基本性质教学设计
教材分析
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。学情分析
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。教学内容
新课标人教版第十一册教材第50~51页例1及相应的“做一做” 教学目标
1、理解和掌握比的基本性质。
2、会化简比,能区分化简比和求比值。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。教学重难点
重点:发现理解比的基本性质。难点:应用比的基本性质化简比。教学过程
一、故事引入 引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?
让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少? 教师根据学生的回答板书:
3÷4
6÷8
9÷12 3:4
6:8
9:12 学生观察算式,思考:
1、三个除法算式有什么关系?
2、三个分数的值相等吗?
3、三个比相等吗?(相等)为什么?
4、猴王的分配公平吗?(公平)为什么? 板书:
3÷4 =6÷8=9÷12 3:4=6:8=9:12 是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。
【设计意图:以故事、质疑导入,复习旧知识,引出新知识,激发学生的学习兴趣,一举多得。】
二、探讨规律
观察等式,有什么特点?
一个比的前项发生变化,后项也相应变化,变化规律是怎样的呢? 学生分组讨论,寻找变化规律。小组汇报、交流。
1、从左往右观察前后项的变化: 前项3→6(3→9、6→9)后项4→8(4→12、8→12)3:4=(3×2):(4×2)=6:8 3:4=(3×3):(4×3)=9:12 6:8=(6×1.5):(8×1.5)=9:12
用一句概括性的语言表达上述变化规律,学生讨论回答,教师板书。
2、从右往左观察前后项的变化: 9:12=(9÷3):(12÷3)=3:4 6:8=(6÷2):(8÷2)=3:4 9:12=(9÷1.5):(12÷1.5)=6:8 用一句概括性的语言表达上述变化规律,学生讨论回答,教师板书。指名回答小组交流的结果.引导学生用语言表述: 比的前项和后项同时乘上或者同时除以同一个数(0除外),比值不变.
3、讨论:上面同乘以或除以的“数”是不是任何数都可以? 归纳并完善变化规律。
4、联系已学过的知识给你发现的规律起个名称。师板书:比的基本性质。
5、尝试:
(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该()。(2)、如果3:2的后项变成15,要使比值不变,比的前项应该为()。【设计意图:通过“观察——思考——讨论”,让学生自主发现规律,自然生成新知。归纳变化规律时,在关键处点拨,使学生在实践中得到提高。】
三、运用规律
思考:最简整数比是什么样的比
像(3:4)这种前后项为互质数的比叫最简整数比(简称最简比)。(板书)
1、化简比。
出示例1:把下面各比化成最简单的整数比。
(1)14:21
(2)1/6:2/9
(3)0.25:1.2
30:10 讨论14:21如何化简?学生汇报。
2、小结化简比的方法。如何化简分数比和小数比?
师根据学生的回答补充归纳。(允许方法多样化)学生尝试化简。
3、比较化简比和求比值的异同。完成练习十一第3题。
讨论求比值和化简比的区别是什么?
强调:比值是一个数,化简比仍是一个比。(板书)
【设计意图:先了解最简整数比,讨论化简方法,再尝试练习,引导学生重视学习方法,不盲目动笔。通过对比学习,区分化简比和求比值,正确掌握知识,形成技能。】
五、强化认识
1、完成教材第46页“做一做”
2、判断:①、1/2:1/4化简后得2()
②、比的前项和后项同时乘以或除以相同的数,比值不变()
③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3()
④、圆周率表示一个圆的周长和直径的比
()
3、填空。(小黑板出示)
(1)、3÷4=()/()=()÷()=21:()(2)、两个的比值是5/6,这两个数的最简比是()。
4、甲数是乙数的50%,用比的角度来描述这两个数的关系。
5、А,Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比。
【设计意图:通过练习实现知识的迁移,使知识融会贯通。在应用中强化认知。】
六、总结全课
谈谈本节课的学习心得。
七、布置作业 教材53页4、5题
板书设计
比的基本性质
3:4=(3×2):(4×2)=6:8 3:4=(3×3):(4×3)=9:12 6:8=(6×1.5):(8×1.5)=9:12 9:12=(9÷3):(12÷3)=3:4 6:8=(6÷2):(8÷2)=3:4 9:12=(9÷1.5):(12÷1.5)=6比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
教学反思
“兴趣是最好的老师”。本案例中用学生喜听的故事引入,来代替书本的内容。当学生一听到猴子分桃子的故事,兴趣倍增,纷纷发表自己的看法,列出每只猴子可得到桃子的只数,调动学生学习数学的主动性和积极性,真正发挥了学生的主体作用,循序渐进地进行知识的自然过渡。渗透曾经学过的商不变的性质和分数的基本性质,启发学生类推出比的基本性质,为下一步的猜想和类推做好知识上的准备,这样不仅使学生自然而然地生成新知,理解并概括出比的基本性质,课堂上,通过让学生观察思考、启发引导、提问设疑、探讨比较、讨论总结、观察概括等方法探讨“比的基本性质”这一规律,然后让学生总结出完整的规律,通过对比总结、概括归纳的方法,使学生掌握知识。应用比的基本性质化简比这一环节,采用讲练结合的方式引导学生尝试练习,深化新知,形成清晰的知识体系,培养学生的创新能力和探索精神。
比的基本性质教学设计
大柳树小学
王丽霞
2015.12.15
第三篇:比的基本性质
《比的基本性质》教学设计
教学内容: 人教版六年级上册数学教材第45、46页的内容及练习十一的第4—7题。教学目标: 知识与技能:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。过程与方法:
1、利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。情感态度与价值观:
初步渗透事物是普遍联系的辩证唯物主义观点。
教学重点:理解比的基本性质,推倒化简比的方法,正确化简比。教学难点:正确化简比。
教具准备:写有例题和练习题的小黑板。教学过程:
一、情境导入
1、比与分数、除法的关系。
师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的关系,哪位同学愿意说说比和分数、除法之间有什么联系?
2、复习分数的基本性质和商不变的性质。
师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?(指名回答)
二、探究新知
1、猜想:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的? 汇报时,让学生说说猜想的根据。
2、验证:以小组为单位,讨论、验证一下刚才的猜想是否正确。学生汇报。
3、小结:经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。板书课题:比的基本性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。出示例1的第(1)题。(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,(前面展示过),另一面长180cm,宽120cm。这两面联合国旗长和宽的最简单的整数比分别是多少?
让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120 提问:你怎样理解最简单的整数比这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。15:10=(15÷5):(10÷5)=3:2 180:120=(180÷60):(120÷60)=3:2 提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)
出示例1的第(2)题。
(2)把下面各比化成最简单的整数比。1/6:2/9 0.75:2 让学生独立试做,教师巡视指导,请两名学生在黑板上板演。师生共同讲评。
1/6:2/9 =(1/6×18):(2/9×18)=3:4 提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。0.75:2=(0.75×100):(2×100)=75:200=3:8或(0.75×4):(2×4)=3:8 老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
5、反馈练习。
(1)完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。
(2)完成教材第48页练习十一的第4—6题。
三、巩固提高
1、把下面各比化成最简单的整数比。24:28 51:17 1/4:2/3 1:1.2 4/5:4/7 3:3/4 0.4:0.5 2:0.2
2、改错。
(1)0.48:0.6化简后是0.8。(2)21:12化简后是21:12。(3)1:0.4化简后是2/5。
3、有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?
四、课堂小结
学完这节课,我们知道了比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。我们还能够根据比的基本性质,熟练地把比化成最简单的整数比。
五、作业: 练习十一第4、5题
教学反思:
本节课充分体现了以学生为主。教学中,由除法的“分数的基本性质”和“商不变的性质”就能自然而然地联想到是否也存在着“比的基本性质”。对此,我没有束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只是在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣浓,积极性高,成就感足,理解和记忆也就自然较为深刻。
第四篇:学科重难点的教学解决策略
学科重难点的教学解决策略
宾小
周礼兵
在日常教学中,每一节课的教学中,制定怎样的教学重、难点及如何突破这一重、难点成为课堂教学是否能够良好进行,达到预期教学目标的一个评判标准。也时常作为评价一名合格教师的教学手段、教学方法,也是教学理念是否符合时代要求的标志。通过长期的小学美术课堂教学实践,使我对突破教学重难点有了一定的心得、体验,现将其整理归纳为以下几点:
一、通过多媒体教学,突破教学重难点。
多媒体课件可以直观、形象、生动的将相关内容展现在学生面前,学生可以进行再认识、拓宽学生的视野。在备课时,认真研究教学目标与内容,充分利用多媒体这一优点,选取最能体现该课目标的教学媒体变抽象为直观;变静为动;化难为易,让学生在轻松的学习氛围中掌握本课的重难点。例如:人教版第三册中《节日的装饰》这课的重难点是让学生认识各地区不同的节日装饰,以及了解各种类型、形式的装饰方法。虽说新疆是一个多民族的地方,但我团绝大多数都是汉族,节日的气氛也不浓。我们这有些学生一直都呆在团场,从没见过其他民族和地方过节,对节日的印象只停留在吃好的、穿新衣裳、贴对联的基础上。我在课件用视频的形式展现了不同民族的节日活动,让他们用语言来描述自己看到的节日里的人们,穿着与生活中的衣着有什么不同?学生都争先恐后的表达自己的观点。在通过课件展示节日的夜晚、节日的年画等方面的内容,有效突破重难点,提高课堂教学效果,从而达到教学目的。
二、通过自主探究,突破教学重难点。
即能有效地促进学生发展的学习,都是自主学习。对美术学习内容和学习过程具有自觉的意识和反应的学习方式。我认为在美术教学中,充分发挥学生自主学习的能动行。让学生有明确的探究目标;该课的知识让学生尽可能的自己去发掘;教学过程让学生参与尽可能的;方法尽可能让学生掌握;让学生尽可能的探究并解决重难;学生 能描述老师不替代;学生能创造老师不示范。以《设计生活标志》为例,教师课前让学生收集大量的生活中的标志,课前并要求学生对自己收集的标志进行深入的了解。在教学过程中引导学生欣赏各种图形标志,让学生在欣赏、观察中发现问题、质疑问题、提出问题,真正深入到探究图形标志的认知过程,进而以小组讨论的形式,探究图形标志的设计意图和设计特点。通过生生间、师生间的讨论、探究,全面了解图形标志的艺术特点,达到取长补短,教学互补以此突破本课的重难点。
三、通过分析学生作品,突破重难点。
通过欣赏教材中的优秀学生作品、学生互评有问题的作业、拆组优秀手工作业等,一系列的学生欣赏、分析好坏的不同层次的作品引导学生突破重难点,同事拓宽学生的思路,激发学生的动手欲望。以《提袋的设计》为例,“掌握提袋的结构设计与制作方法并发挥想象力,设计制作出造型新颖美观的手提袋”,这是本课的重难点。通过让学生欣赏教材和课件中的提袋引导学生从提袋的结构设计拓宽思维,在通过让学生拆自带的纸纸提袋来探究制作步骤和方法,再通过我准备的制作方面存在问题的提袋,让学生分析问题出在哪?该如何去改正?在制作过程中我们要避免哪些问题?学生在欣赏和分析的基础上将本课的重难点突破。
四、通过学科间联系教学,突破教学重难点。
新课程标准中指出“以融合学科教学的方式改革我们的课堂教学,突破教学重难点。课程设计就要摆脱旧的教学模式,不应再是单纯的美术课,而是在教学内容上综合了音乐、语文、数学、自然及科学等学科知识。”所以,我们在满足学生表现欲的同时,更要提高学生的创造力。例如:对历史知识的了解可以让学生更深刻地欣赏美术名作,借助语言文字的描述可以激发学生丰富的想象能力;通过音乐欣赏可以使画面充满韵律感;在教学中可以巧妙利用美术与语文学科联系,进行故事插画、日记画、诗配画……;这一堂堂与其他学科沟通、联系的教学内容,是学科间知识相互渗透、有机结合,既是突破重难点的好策略,更是美术教学内容更新的一种好方法。
总之,在美术教学过程中,只要我们不断地研究、发现,设置行之有效的教学方法、方式,就能优化课堂教学,突破教学难点、解决教学重点。并有效提高教学效果,丰富学生的感性认识、开拓视野、激发兴趣,促进学生的可持续发展。让我们以自己的激情、智慧和创造性劳动来共同描绘新课程绚丽多彩的“教学景观”!
第五篇:比的基本性质教学反思
比的基本性质教学反思
作者:赵福丽 来源:尹庄镇中心小学 点击:4612次 评论:0条
比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!
注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出“比的基本性质”这一规律时,我马上出示:尝试:(1)、4:5的前项扩大2倍,要使比值不变,比的后项应该()(2)、如果3:2的后项变成10,要使比值不变,比的前项应该为()这两题,如果学生会完成了,这个基本性质也理解了。再如:我出示的例1中的3道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。
俗话说:“兴趣是最好的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。
总之,教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。