§3.3 几种常见的磁场(教案)

时间:2019-05-12 23:22:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《§3.3 几种常见的磁场(教案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《§3.3 几种常见的磁场(教案)》。

第一篇:§3.3 几种常见的磁场(教案)

第三节 几种常见的磁场

教学目标

知识与技能

1、知道什么是磁感线。知道5种典型磁场的磁感线分布情况。

2、会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。

3、知道安培分子电流假说是如何提出的,会利用安培假说解释有关的现象。

4、理解磁现象的电本质。

5、知道磁通量定义,知道Φ =BS的适用条件,会用这一公式进行计算。过程与方法

1、通过模拟实验体会磁感线的形状,培养学生的空间想象能力。

2、由电流和磁铁都能产生磁场,提出安培分子电流假说,最后都归结为磁现象的电本质。

3、通过引入磁通量概念,使学生体会描述磁场规律的另一重要方法。情感、态度与价值观

1、通过讨论与交流,培养对物理探索的情感。

教学重点

会用安培定则判断磁感线方向,理解安培分子电流假说。

教学难点

安培定则的灵活应用即磁通量的计算。

教学方法

类比法、实验法、比较法

教具

条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源

教学过程

(一)引入新课

电场可以用电场线形象地描述,磁场可以用什么来描述呢?

那么什么是磁感线?又有哪些特点呢?这节课我们就来学习有关磁感线的知识。

(二)进行新课

1、磁感线

磁感线是在磁场中画一些有方向的曲线,曲线上每一点的切线方向表示该点的磁场方向。

[演示]在磁场中放一块玻璃板,在玻璃板上均匀地撒一层细铁屑,细铁屑在磁场里被磁化成“小磁针”,轻敲玻

共5页

第1页

璃板使铁屑能在磁场作用下转动。

[现象]铁屑静止时有规则地排列起来,显示出磁感线的形状。如图3.3-1所示: [用投影片出示条形磁铁和蹄形磁铁的磁感线分布情况]

如图所示:

(1)磁铁周围的磁感线

磁铁外部的磁感线是从磁铁的北极出来,进入磁铁的南极。

磁感线是闭合曲线:磁铁外部从北极到南极,内部是从南极到北极。[用投影片出示通电直导线周围的磁感线分布情况]如图3.3-2所示:

(2)通电直导线周围的磁感线

直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。

问题:直线电流的方向跟电的磁感线方向之间的关系如何判断呢?

[出示投影片]直线电流的方向和电的磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

[出示投影片]环形电流的磁场。如图3.3-3所示:

(3)环形电流的磁感线

环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让

共5页

第2页

右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。

(4)通电螺线管的磁场

如图3.3-4所示:[出示投影片]

外部的磁场:与条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极。

内部的磁场:通电螺线管内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线。

如何判断通电螺线管的极性?

[学生回忆得]通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向。

问题:磁感线和电场线有何区别?

[教师引导学生分析得](1)电场线是电场的形象描述,而磁感线是磁场的形象描述(2)电场线不是闭合曲线,而磁感线是闭合曲线(3)切线方向均表示方向(4)疏密程度均表示大小

电流的磁场用途很广泛,如电磁起重机、电话、电动机、发电机以及在自动控制中得到普遍应用的电磁继电器。

2、安培分子电流假说

磁铁和电流都能产生磁场。通电螺线管和条形磁铁的磁场分布十分相似,安培由此受到启发,提出了著名的分子电流假说。

分子电流假说的内容:在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极,这就是分子电流假说。

[投影片出示课本图3.3-6]以进一步理解安培分子电流假说。

用安培假说可以解释磁现象

让学生阅读课文,回答以下问题。(1)一根铁棒在未被磁化时为什么对外界不显磁性?(2)什么是磁化?如何去理解磁化和磁极?

(3)永磁体为什么具有磁性?为什么有时会失去磁性?(4)为什么无论把磁棒折成多小的一段,它总有两个磁极?(5)分子电流是如何形成的?

3、匀强磁场

共5页

第3页

实物投影课本图3.3-

7、图3.3-8 ①定义:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。

②产生方法:距离很近的两个异名磁极之间的磁场,通电螺线管内部的磁场(除边缘部分外)都可认为是匀强磁场。

③磁感线的特点:匀强磁场的磁感线是间距相等的平行直线。

4、磁通量

研究电磁现象时,有时需要研究穿过某一面积的磁场和它的变化,为此,物理学上引入了一个新的物理量——磁通量。(1)定义:一个面积为S的平面垂直一个磁感应强度为B的匀强磁场放置,则B与S的乘积叫做穿过这个面的磁通量。(2)公式:Ф=B·S

(3)单位:韦伯(Wb)1Wb=1T·1m2=1V·s(4)物理意义:磁通量表示穿过这个面的磁感线条数。

注意:当平面跟磁场方向不垂直时,穿过该平面的磁通量等于B与它在磁场垂直方向上的投影面积的乘积.即Ф=B·Ssinθ,(θ为平面与磁场方向之间的夹角)(如图所示)

将磁通量的定义式Ф=B·S变形得:B=

,B为垂直磁场方向单位面积上的磁通量,S反映磁场的强弱。又叫磁通密度。单位Wb/m2 课堂训练

1、一细长的小磁针,放在一螺线管的轴线上,N极在管内,S极在管外。若此小磁针可左右自由移动,则当螺线管通以图所示电流时,小磁针将怎样移动?

SNSNIababII2、如图所示,一束带电粒子沿水平方向飞过小磁针的上方,并与磁针指向平行,能使小磁针的N极转向读者,那么这束带电粒子可能是_______ A.向右飞行的正离子束 B.向左飞行的正离子束 C.向右飞行的负离子束

D.向左飞行的负离子束

3、关于磁现象的电本质,下列说法中正确的是_______ A.磁与电紧密联系,有磁必有电,有电必有磁

B.不管是磁体的磁场还是电流的磁场都起源于电荷的运动 C.永久磁铁的磁性不是由运动电荷产生的

共5页

第4页

D.根据安培假说可知,磁体内分子电流总是存在的,因此,任何磁体都不会失去磁性

作业

1、课下阅读课本第94页科学漫步《有趣的右螺旋》

2、完成P95“问题与练习”第1、2、3题。书面完成第4题。

共5页

第5页

第二篇:3.3几种常见的磁场教案

3.3、几种常见的磁场(1.5课时)

一、教学目标

(一)知识与技能

1.知道什么叫磁感线。

2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况

3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算

(二)过程与方法

通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。

(三)情感态度与价值观

1.进一步培养学生的实验观察、分析的能力.2.培养学生的空间想象能力.二、重点与难点:

1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向.2.正确理解磁通量的概念并能进行有关计算

三、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源

四、教学过程:

(一)复习引入

要点:磁感应强度B的大小和方向。

[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? [学生答]磁场可以用磁感线形象地描述.-----引入新课

(老师)类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向

(二)新课讲解 【板书】1.磁感线

(1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。

(2)特点:

A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极.B、每条磁感线都是闭合曲线,任意两条磁感线不相交。C、磁感线上每一点的切线方向都表示该点的磁场方向。D、磁感线的疏密程度表示磁感应强度的大小

【演示】用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。【注意】①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。2.几种常见的磁场 【演示】

①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。

②用投影片逐一展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁)(图5)、※辐向磁场(图6)、还有二同名磁极和二异名磁极的磁场。

(1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图

1、图2)(2)电流的磁场与安培定则

①直线电流周围的磁场

在引导学生分析归纳的基础上得出

○直线电流周围的磁感线:是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上.(图3)

○直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.②环形电流的磁场

○环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直(图4)。

[教师引导学生得]

○环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向.③通电螺线管的磁场.○通电螺线管磁场的磁感线:和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极;内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线(图5)

○通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,则大拇指所指的方向就是螺线管的北极(螺线管内部磁感线的方向).③电流磁场(和天然磁铁相比)的特点:磁场的有无可由通断电来控制;磁场的极性可以由电流方向变换;磁场的强弱可由电流的大小来控制。

【说明】由于后面的安培力、洛伦兹力、电磁感应与磁感应强度密切相关,几种常见磁场的磁感线的分布是一个非常基本的内容,不掌握好,对后面的学习有很大影响。3.安培分子电流假说

(1)安培分子电流假说(P92)

对分子电流,结合环形电流产生的磁场的知识及安培定则,以便学生更容易理解“它的两侧相当于两个磁极”,这句话;并应强调“这两个磁极跟分子电流不可分割的联系在一起”,以便使他们了解磁极为什么不能以单独的N极或S极存在的道理。(2)安培假说能够解释的一些问题

可以用回形针、酒精灯、条形磁铁、充磁机做好磁化和退磁的演示实验,加深学生的印象。举生活中的例子说明,比如磁卡不能与磁铁放在一起等等。

【说明】“假说”,是用来说明某种现象但未经实践证实的命题。在物理定律和理论的建立过程中,“假说”,常常起着很重要的作用,它是在一定的观察、实验的基础上概括和抽象出来的。安培分子电流的假说就是在奥斯特的实验的启发下,经过思维发展而产生出来的。(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的.

4.匀强磁场

(1)匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。匀强磁场的磁感线是一些间隔相同的平行直线。

(2)两种情形的匀强磁场:即距离很近的两个异名磁极之间除边缘部分以外的磁场;相隔一定距离的两个平行线圈(亥姆霍兹线圈)通电时,其中间区域的磁场P92图3.3-7,图3.3-8。

5.磁通量

(1)定义: 磁感应强度B与线圈面积S的乘积,叫穿过这个面的磁通量(是重要的基本概念)。

(2)表达式:φ=BS 【注意】①对于磁通量的计算要注意条件,即B是匀强磁场或可视为匀强磁场的磁感应强度,S是线圈面积在与磁场方向垂直的平面上的投影面积。②磁通量是标量,但有正、负之分,可举特例说明。(3)单位:韦伯,简称韦,符号Wb 1Wb = 1T·m(4)磁感应强度的另一种定义(磁通密度):即B =φ/S

2上式表示磁感应强度等于穿过单位面积的磁通量,并且用Wb/m做单位(磁感应强度的另一种单位)。所以:1T = 1 Wb/m= 1N/A·m

(三)小结:对本节各知识点做简要的小结。并要求学生课外按P93【做一做】

巩固练习

1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右.试判定电源的正负极.解析:小磁针N极的指向即为该处的磁场方向,所以在螺线管内部磁感线方向由a→b,根据安培定则可判定电流由c端流出,由d端流入,故c端为电源的正极,d端为负极.注意:不要错误地认为螺线管b端吸引小磁针的N极,从而判定b端相当于条形磁铁的南极,关键是要分清螺线管内、外部磁感线的分布.2.如图所示,当线圈中通以电流时,小磁针的北极指向读者.试确定电流方向.电流方向为逆时针方向.(四)巩固新课(1)复习本节内容(2)阅读“科学漫步”

(3)指导学生完成“问题与练习”1--4

第三篇:高中物理新课标版人教版选修3-1优秀教案:3.3 几种常见的磁场

教学设计

整体设计

教学目标

1.知识与技能

(1)知道什么是磁感线;

(2)知道条形磁铁、蹄形磁铁、直线电流、环形电流和通电螺线管的磁感线分布情况;(3)利用安培定则判断直线电流、环形电流和通电螺线管的磁场方向;(4)知道安培分子电流假说,并能解释有关现象;(5)利用安培假说解释有关的现象;

(6)理解匀强磁场的概念,明确两种情形的匀强磁场;

(7)知道磁通量的定义,知道Φ=BS的适用条件,利用公式进行简单计算。2.过程与方法

(1)通过模拟实验和学生动手(运用安培定则)、类比的方法体会磁感线的形状,培养空间想象能力;

(2)由电流和磁铁都能产生磁场,提出安培分子电流假说,最后都归结为磁现象的电本质;

(3)通过引入磁通量概念,使学生体会描述磁场规律的另一重要方法。3.情感、态度与价值观

(1)通过讨论与交流,培养对物理探索的情感;(2)领悟物理探索的基本思路,培养科学的价值观。教学重点

利用安培定则判断直线电流、环形电流及通电螺线管的磁场分布,理解安培分子电流假说。

教学难点

安培定则的灵活应用及磁通量的计算。教学方法

类比法、实验法、比较法。教学用具

条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源。

教学过程 导入新课

要点:磁感应强度B的大小和方向。

[启发学生思考]电场可以用电场线形象地描述,磁场可以用什么来描述呢? 类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向。

教师:那么什么是磁感线?又有哪些特点呢?这节课我们就来学习有关磁感线的知识。推进新课

1.磁感线

问题:什么是磁感线呢? 答:所谓磁感线是在磁场中画一些有方向的曲线,曲线上每一点的切线方向都表示该点的磁场方向。

演示:在磁场中放一块玻璃板,在玻璃板上均匀地撒一层细铁屑,细铁屑在磁场里被磁化成“小磁针”,轻敲玻璃板,使铁屑能在磁场作用下转动。

现象:铁屑静止时有规则地排列起来,显示出磁感线的形状。(1)条形磁铁和蹄形磁铁的磁感线分布情况,如图所示:

条形磁铁

蹄形磁铁

问题:磁铁周围的磁感线方向如何?

答:磁铁外部的磁感线是从磁铁的北极出来,进入磁铁的南极,磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极。

(2)电流的磁场与安培定则

引导学生在分析归纳的基础上得出通电直导线周围的磁感线分布情况,如图所示:

直线电流的磁场

问题1:通电直导线周围的磁感线如何分布?

问题2:直线电流周围的磁感线分布和什么因素有关系?

问题3:直线电流的方向跟磁感线方向之间的关系如何判断呢? ●直线电流周围的磁感线:是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。(上图甲)●直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。(上图乙)(3)环形电流的磁场,如图所示:

环形电流的磁场 ●环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直。(上图甲)[教师引导学生得] ●环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。(上图乙)(4)通电螺线管的磁场,如图所示:

问题1:通电螺线管外部的磁场和什么相似? 问题2:通电螺线管内部的磁场如何?

问题3:通电螺线管的磁感线方向和什么因素有关系? 问题4:如何判断通电螺线管的极性?

●通电螺线管磁场的磁感线:和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极;内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线。(如下图)

通电螺线管的磁场

●通电螺线管的电流方向和它的磁感线方向之间的关系,也可用安培定则来判定:用右手握住螺线管,让弯曲四指所指的方向和电流的方向一致,则大拇指所指的方向就是螺线管的北极(螺线管内部磁感线的方向)。

【说明】 由于后面的安培力、洛伦兹力、电磁感应与磁感应强度密切相关,几种常见磁场的磁感线的分布是一个非常基本的内容,不掌握好,对后面的学习有很大影响。

2.磁感线和电场线有何区别

(1)电场线是电场的形象描述,而磁感线是磁场的形象描述。(2)电场线不是闭合曲线,而磁感线是闭合曲线。

(3)电场线上每一点的切线方向都跟该点的场强方向一致,磁感线上每一点的切线方向都跟该点的磁感应强度方向一致。

(4)电场线的疏密程度表示电场强度的大小。磁感线的疏密程度表示磁感应强度的大小。3.电流磁场和天然磁铁相比有何特点(1)电流磁场的有无可由通断电来控制。(2)电流磁场的极性可以由电流方向变换。(3)电流磁场的强弱可由电流的大小来控制。问题:电流的磁场有何用途?

答:电流的磁场用途很广泛,如电磁起重机、电话、电动机、发电机以及在自动控制中得到普遍应用的电磁继电器。

4.安培分子电流假说

磁铁和电流都能产生磁场。它们的磁场有什么关系呢?我们已经知道,通电螺线管和条形磁铁的磁场分布十分相似,安培由此受到启发,提出了著名的分子电流假说。

分子电流假说的内容:在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极,这就是分子电流假说。课本图3.3-6,理解安培分子电流假说,用安培假说可以解释磁现象。

分子电流的取向是否有规律,决定了物体对外是否显磁性

阅读课文,回答以下问题。

问题1:一根铁棒在未被磁化时为什么对外界不显磁性?

答:铁棒未被磁化时,内部各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外界不显磁性。

问题2:什么是磁化?如何去理解磁化和磁极?

答:使原来没有磁性的物体获得磁性的过程叫磁化。在有外界磁场的作用时,某些物质内部各分子电流的取向会变得大致相同,这个过程就是磁化,这些物质被磁化后,各分子电流的磁场互相叠加,对外界显示出较强的磁作用,在两端形成磁极。

问题3:永磁体为什么具有磁性?

答:永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐。问题4:永磁体如何失去磁性? 答:永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。

问题5:为什么无论把磁棒折成多小的一段,它总有两个磁极?

答:每个环形分子电流的两个侧面必定同时出现,一面相当于N极,另一面相当于S极。

总结:安培分子电流假说揭示了磁现象的电本质。问题6:分子电流是如何形成的?

答:分子电流是由原子内部电子的运动形成的。

结论:磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的。5.匀强磁场 问题1:什么是匀强电场?匀强电场的产生条件是什么?匀强电场的电场线有何特点? 答:在电场的某一区域,如果场强的大小和方向都相同,这个区域的电场叫做匀强电场;两块靠近的平行金属板,大小相等,互相正对,分别带有等量的正负电荷,它们之间的电场除边缘附近外就是匀强电场;匀强电场的电场线是距离相等的平行直线。

问题2:什么是匀强磁场?它的产生条件是什么?匀强磁场的磁感线又有什么特点?观察课本图3.3-

7、图3.3-8。

甲 永磁铁两个平行的乙 螺线管两部分中

异名磁极间的匀强磁场

间的磁场是匀强磁场

(1)匀强磁场的定义:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫匀强磁场。(2)产生方法:距离很近的两个异名磁极之间的磁场、通电螺线管内部的磁场(除边缘部分外)可认为是匀强磁场。

(3)磁感线的特点:匀强磁场的磁感线是间距相等的平行直线。6.磁通量

研究电磁现象时,有时需要研究穿过某一面积的磁场和它的变化。为此,物理学引入了一个新的物理量——磁通量。阅读教材,说出磁通量的定义、公式、单位以及物理意义。

(1)定义:一个面积为S的平面垂直于一个磁感应强度为B的匀强磁场,则B与S的乘积叫做穿过这个面的磁通量。

(2)定义式:Ф=B·S(3)单位:韦伯(Wb),1 Wb=1 T·1 m2

(4)物理意义:磁通量表示穿过这个面的磁感线条数。对于同一个平面,当它跟磁场方向垂直时,磁场越强,穿过它的磁感线条数越多,磁通量就越大。当它跟磁场方向平行时,没有磁感线穿过它,则磁通量为零。注意:当平面跟磁场方向不垂直时,穿过该平面的磁通量等于B与它在磁场垂直方向上的投影面积的乘积,即Ф=B·Ssinθ(θ为平面与磁场方向之间的夹角,如图所示)。

Φ教师:将磁通量的定义式Ф=B·S变形得:B=,这个比值反映了什么意义?单位是

S⊥什么?

学生:B为垂直磁场方向单位面积上的磁通量,反映磁场的强弱。又叫磁通密度。单位Wb/m2。

7.课堂小结 8.实例探究 安培定则的应用

例1一细长的小磁针,放在一螺线管的轴线上,N极在管内,S极在管外。若此小磁针可左右自由移动,则当螺线管通以图所示电流时,小磁针将怎样移动?

解析:正确解题思路是:当螺线管通电后,根据右手螺旋定则判定出管内、外磁感线方向如图所示,管内外a、b两处磁场方向向右,管内b处磁感线分布较密,管外a处磁感线分布较稀。根据磁场力的性质知:小磁针N极在b处受力方向向右,且作用力较大;小磁针S极在a处受力向左,且作用力较小,因而小磁针所受的磁场力的合力方向向右。“同名磁极相斥、异名磁极相吸”只适合于磁体间外部相互作用的情形,适用情形存在局限性;而磁场力的性质:“磁体N极受力方向与所在处磁场方向相同”对于磁极间内部或外部作用总是普遍适用的。

答案:见解析

例2如图所示,一束带电粒子沿水平方向飞过小磁针的上方,并与磁针指向平行,能使小磁针的N极转向读者,那么这束带电粒子可能是 „()

A.向右飞行的正离子束 B.向左飞行的正离子束 C.向右飞行的负离子束 D.向左飞行的负离子束

解析:小磁针的N极指向读者,说明小磁针所在处的磁场方向是指向读者,由安培定则可确定出带电粒子形成的电流方向向左,这向左的电流可能是向左飞行的正离子形成,也可能是向右飞行的负离子形成,故答案为B、C。

答案:BC 对安培分子电流假说的理解

例3关于磁现象的电本质,下列说法中正确的是()A.磁与电紧密联系,有磁必有电,有电必有磁

B.不管是磁体的磁场还是电流的磁场都起源于电荷的运动 C.永久磁铁的磁性不是由运动电荷产生的

D.根据安培假说可知,磁体内分子电流总是存在的,因此,任何磁体都不会失去磁性 解析:磁与电是紧密联系的,但“磁生电”“电生磁”都有一定的条件,运动的电荷产生磁场,但一个静止的点电荷的周围就没有磁场,分子电流假说揭示了磁现象的电本质,磁铁的磁场和电流的磁场一样都是由运动电荷产生的,磁体内部只有当分子电流取向大体一致时,就显示出磁性,当分子电流取向不一致时,就没有磁性,所以本题的正确答案为B。

答案:B 9.作业

(1)阅读课本第90页科学漫步《有趣的右螺旋》。(2)完成P90练习3、4。备课资料

磁现象的电本质

1.美国科学家罗兰的实验

罗兰把大量的电荷加在一个橡胶圆盘上,然后使圆盘绕中心高速转动,在盘的附近用小磁针来检验运动电荷产生的磁场,结果发现小磁针果然发生了偏转,而且改变盘的转动方向或改变电荷的正负时,小磁针的偏转方向也改变,磁针偏转方向跟运动电荷所形成的电流方向间的关系同样符合安培定则。

这个实验证明了运动电荷确实产生磁场。2.安培分子电流假说

磁铁的磁场是否也是由运动电荷产生的呢?法国科学家安培根据环形电流的磁场和磁铁相似提出了著名的分子电流假说。

用安培分子电流假说解释以下几种现象:(1)软铁棒被磁化。演示:夹在铁架台上的软铁棒被条形磁铁磁化后可以吸起大头针。(2)磁铁受到高温或猛烈的敲击为什么会失去磁性? 让学生自己归纳出磁现象的电本质。3.磁现象的电本质

运动的电荷(电流)产生磁场,磁场对运动的电荷(电流)产生磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)之间通过磁场而发生的相互作用。

物质磁性的分类

1.抗磁性

当磁化强度M为负时,固体表现为抗磁性。Bi、Cu、Ag、Au等金属具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱。

2.顺磁性

顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致,而且严格地与外磁场H成正比。

顺磁性物质的磁性除了与H有关外,还依赖于温度。其磁化率H与绝对温度T成反比。顺磁性物质的磁化率一般也很小。一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。

3.铁磁性

-对诸如Fe、Co、Ni等物质,在室温下磁化率可达103数量级,称这类物质的磁性为铁磁性。

铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性。其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小。

铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域——磁畴。每个磁畴大约有1015个原子。这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为“分子场”的内场,“分子场”足以使每个磁畴自动磁化达饱和状态。这种自生的磁化强度叫自发磁化强度。由于它的存在,铁磁物质能在弱磁场下强烈地磁化。因此自发磁化是铁磁物质的基本特征,也是铁磁物质和顺磁物质的区别所在。

铁磁体的铁磁性只在某一温度以下才表现出来,超过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发磁化强度变为0,铁磁性消失。这一温度称为居里点。在居里点以上,材料表现为强顺磁性,其磁化率与温度的关系服从居里—外斯定律。

4.反铁磁性

反铁磁性是指由于电子自旋反向平行排列。在同一子晶格中有自发磁化强度,电子磁矩是同向排列的;在不同子晶格中,电子磁矩反向排列。两个相邻子晶格中自发磁化强度大小相同,方向相反,整个晶体磁化强度几乎为0。反铁磁性物质大都是非金属化合物,如MnO。

不论在什么温度下,都不能观察到反铁磁性物质的任何自发磁化现象,因此其宏观特性是顺磁性的,M与H处于同一方向,磁化率为正值。温度很高时,极小;温度降低,逐渐增大,在一定温度时,达最大值,称为反铁磁性物质的居里点或尼尔点。对尼尔点存在的解释是:在极低温度下,由于相邻原子的自旋完全反向,其磁矩几乎完全抵消,故磁化率几乎接近于0。当温度上升时,使自旋反向的作用减弱。当温度升至尼尔点以上时,热骚动的影响较大,此时反铁磁体与顺磁体有相同的磁化行为。

第四篇:磁场教案

磁场教案

通过上节课的研究,我们已经对磁现象有了一定的了解,下面,请利用你们手中的小磁针辨别教室里的南北方向。看看哪面是北,哪面是南? 指定学生回答

问题:你是怎么判断的?

在上节课里,我们已经知道,磁体具有指向性,根据磁体的指向性,我们可以来辨别方向,指南针就是利用这个原理来工作的。

现在,我把手放在小磁针的旁边,注意,小磁针还继续指示南北方向吗?放这只呢? 问:这是为什么呢?

学生诧异,教师缓缓把手伸开,问:大家发现了什么? 学生:发现手里有一个磁体。

教师:原来啊,就是这个磁体在作怪。

提出问题:小磁针在刚才的那个空间里能够指示南北,但到了磁体周围的空间里就不再指示南北了,这一现象说明磁体周围的空间与其他的空间有所不同,那么,有什么不同呢?带着这个问题,我们来学习今天的课程,《磁场》。板书:二 磁场

大家阅读课本第一自然段,找出磁体周围的空间与其他空间的不同之处!

原来啊,在磁体周围的空间里存在着一种我们看不见,也摸不到的物质,我们叫它磁场。磁极间的相互作用,就是通过磁场施加的。磁场是真实存在,那么我们怎么就知道它是真实存在呢?请同学们思考这样一个问题:在现实生活中风也是看不见、摸不到的,大家请看!(拿出吹风机,插上电源,吹风。)我们怎么证实有风存在呢?

(学生把一个纸条放在风口上,纸条被吹动了。)这就说明了有风存在。

由这个现象,我们可以想到:磁场虽然看不见、摸不到,但我们可以像认识风一样借助其它物体来证实它的存在,借助什么呢? 小磁针

是我们可以把小磁针放在磁场中,通过观察小磁针的运动情况,来证实磁体周围存在磁场。接下来大家做一个实验:将条形磁体的一端靠近小磁针,观察小磁针的运动情况.问:你们有什么发现?(询问不同组的情况)

教师总结:有的组出现了吸引现象,有的组出现了排斥现象,总之,小磁针受到了力的作用,这就说明在磁体周围有磁场存在.教师:那为什么是借助小磁针这种具有磁性的物体而不是其他物体呢? 原来啊,磁场有一种基本性质

磁场的性质:磁场对放入其中的磁体有力的作用。

所以我们可以把小磁针放在磁场中,通过观察小磁针的运动情况,来认识磁体周围的磁场。像这种借助其它物体认识磁场的方法叫转换法。

老师:接下来,同学们,请跟我一起用转换法来研究磁场。请看实验要求:(1)把不同的小磁针放在磁场中的同一个点上,仔细观察; 老师:请同学们把你观察到的现象说出来。

生:把不同的小磁针放在磁场中同一个点上的时候,小磁针的指向是一样的。(2)把同一个小磁针放在磁场中不同的点,仔细观察。

生:把同一个小磁针放在磁场中不同的点上的时候,小磁针的指向是不一样的。

老师:同学们观察得很认真,以上实验说明了磁场是有方向的,物理学中把小磁针静止时北极所指的方向定为那点的磁场方向。

通过以上研究,谁能给老师总结一下磁场方向的特点呢 学生总结结论:磁场中,同一位置磁场的方向相同

磁场中,不同位置磁场的方向相一般不同

老师:好,总结得很好,给点掌声,接下来,同学们请思考这样一个问题:既然磁场中各点的方向不一样,那么我们如何把磁场中各点的方向都能很好地描绘出来呢?

生:如果在磁场中的各点都放上小磁针,那么磁场中各点的磁场方向都能很好地描绘出来。教师:很好,在磁场中的各点都放上小磁针,那么磁场中各点的磁场方向都能很好地描绘出来了。

教师:磁场是看不见,摸不到的物质,那么磁体周围的磁场是如何分布的呢?下面,来看一个实验。

边说边做:在桌面上放上一张纸,在纸的上面放上一块条形磁铁,在磁铁的上面放上一块玻璃板,在玻璃板上面,撒上一些铁粉。轻敲玻璃板,观察铁粉形状的变化)老师:同学们,你们看,这些铁粉的形状是不是发生了变化? 老师:那为什么铁粉会形成这样的形状呢?

学生:放在磁场中的铁粉,它们被磁化后成了一个个的小磁体,这些小磁体之间由于同名磁极相互排斥,异名磁极之间相互吸引。所以就形成了这些美丽的图案。

这个图案就是条形磁体周围磁场分布的一个平面图,以上我们看到的是条形磁体的磁场分布,接下来,我们换用蹄形磁铁重做实验。(学生动手做实验,教师展现)

师:同学们,由以上这样的图案大家想一想,我们怎么样就能把这些图案展现在书面上,用来体现磁场分布呢?

生:我们可以把图中的这些线画下来,用来描绘磁场。

师:这描绘出来的仅仅是磁场的形状,可是磁场是有方向的,那又该怎么办呢?

生:我们给这些线,画上方向。

师:怎么画?

学生:给这些线上标上箭头,表示方向 教师:那这个方向该怎么标呢?

生:在这些线上,我们放上小磁针,观察一下小磁针的指向。标出N极指向,教师:哎,那这些线就形成了一条条带有箭头的曲线,箭头指向磁针N极指向,这样就可以形象地描绘磁场了,物理学中把这样的曲线叫做磁感线。接下来,大家试着画出条形磁体和蹄形磁体的磁感线分布情况。课件显示条形磁体、蹄形磁铁的磁感线分布情况

那同名磁极、异名磁极间的磁感线分布又是怎样的呢?大家试着把它画一下。

教师:磁感线是为了研究磁场的方便,人为引进的一种物理模型,实际上它并不存在。大家回忆一下,在前面的学习过程中,我们曾今也学习过一种人为引进的物理模型,那它是什么呢? 生:光线

教师:好,很好,就是光线,它也是人为引进的一种物理模型,实际上,光线并不存在。好接下来,大家纵观磁体的磁感线分布,它有什么特点?? 生:磁体两极处的磁感线最密集,中间的最稀疏。生:磁性最强,中间最弱

教师:那也就是说,磁感线不仅仅可以表示磁场分布,磁场方向,还可以表示磁场强弱。除此之外,你还发现了什么?

生:磁体的磁感线总是从N极出发,回到S极。生:磁感线永不相交,生:磁感线布满磁体周围的整个空间,是立体的

教师:对,任何磁体的磁感线都是从N极出发,回到S极的。教师总结磁感线的特点:

教师:通过以上研究,我们发现,磁针在磁场中受力转动是磁场的作用,那么,磁针在世界

各地都能指示南北方向又是谁的磁场在施加作用呢? 生:地球

教师:对,就是地球,地球是一个巨大的磁体,在它周围就有磁场,地球的磁场我们把它叫做地磁场。板书:地磁场

阅读课本地磁场,回答以下问题 1地磁场的形状与生命相似?

2、地磁场的方向与地理的南北极位置有什么关系?

地理的南极是地磁场的北极,地理的北极是地磁的南极,地理的南北极与地磁的南北极不重合,他们之间有偏差。

3、我国最早提出地磁场存在的科学家是谁?

第五篇:几种常见磁场教学案例

第三节

几种常见的磁场

☆教学目标

(一)知识与技能

1.知道什么叫磁感线。

2.知道几种常见的磁场(条形、蹄形,直线电流、环形电流、通电螺线管)及磁感线分布的情况

3.会用安培定则判断直线电流、环形电流和通电螺线管的磁场方向。4.知道安培分子电流假说,并能解释有关现象 5.理解匀强磁场的概念,明确两种情形的匀强磁场 6.理解磁通量的概念并能进行有关计算

(二)过程与方法

通过实验和学生动手(运用安培定则)、类比的方法加深对本节基础知识的认识。

(三)情感态度与价值观

1.进一步培养学生的实验观察、分析的能力.2.培养学生的空间想象能力.☆、重点与难点:

1.会用安培定则判定直线电流、环形电流及通电螺线管的磁场方向.2.正确理解磁通量的概念并能进行有关计算

☆、教具:多媒体、条形磁铁、直导线、环形电流、通电螺线管、小磁针若干、投影仪、展示台、学生电源 ☆、教学过程:

(一)复习引入

要点:磁感应强度B的大小和方向。

1、电场可以用电场线形象地描述,磁场可以用什么来描述呢? 类比电场线可以很好地描述电场强度的大小和方向,同样,也可以用磁感线来描述磁感应强度的大小和方向

(二)新课讲解 1.磁感线

(1)磁感线的定义 2)特点:

①引入磁感线的目的:

②磁感线是闭合曲线,其方向 ③任意两条磁感线不相交。

④可以表示磁场的方向。⑤可以表示磁感应强度的大小。

演示:用铁屑模拟磁感线的形状,加深对磁感线的认识。同时与电场线加以类比。注意:①磁场中并没有磁感线客观存在,而是人们为了研究问题的方便而假想的。

②区别电场线和磁感线的不同之处:电场线是不闭合的,而磁感线则是闭合曲线。2.几种常见的磁场

B A

C

2、几种常见的磁场:

1)条形磁铁和蹄形磁铁的磁场磁感线:

2)直线电流的磁场的磁感线:安培定则

3)环形电流的磁场的磁感线:安培定则

4)通电螺线管的磁场的磁感线

I

3、磁感线的特点

①用铁屑模拟磁感线的演示实验,使学生直观地明确条形磁铁、蹄形磁铁、通电直导线、通电环形电流、通电螺线管以及地磁场(简化为一个大的条形磁铁)各自的磁感线的分布情况(磁感线的走向及疏密分布)。

②展示:条形磁铁(图1)、蹄形磁铁(图2)、通电直导线(图3)、通电环形电流(图4)、通电螺线管以及地磁场(简化为一个大的条形磁铁)(图5)、※辐向磁场(图6)。

(1)条形、蹄形磁铁,同名、异名磁极的磁场周围磁感线的分布情况(图

1、图2)(2)电流的磁场与安培定则 总结:

①直线电流周围的磁场及特点,方向的判定 ②环形电流的磁场及特点,方向的判定 ③通电螺线管的磁场及特点,方向的判定

④电流磁场(和天然磁铁相比)的特点:可由通断电来控制;极性由电流方向变换;磁场的强弱可由电流的大小来控制。

3.例题分析

例1.如图所示,放在通电螺线内部中间处的小磁针,静止时N极指向右,试判断电源的正负极。

例2.如图所示,若一束电子沿y轴正方向移动,则在z轴上某点A的磁场方应该是[

] A.沿x轴的正向

B.沿x轴的负向 C.沿z轴的正向

D.沿z轴的负向

例3.在同一平面内,如图放置六根通电导线,同以相同的电流;方向如图,则在abcd四个面积相等的正方形区域中,指向纸外且磁感应强度最大的区域是。

例4.如果地磁场是由于地球表面带有电荷而产生的,试问:地球表面带何种电荷?

3.安培分子电流假说

(1)安培分子电流假说(P92)

对分子电流,结合环形电流产生的磁场的知识及安培定则,理解“它的两侧相当于两个磁极”; “这两个磁极跟分子电流不可分割的联系在一起”,这就是不存在磁单极的真正原因。(2)安培假说能够解释的一些问题

如回形针、酒精灯、条形磁铁、充磁机做好磁化和退磁的演示实验。再如磁卡不能与磁铁放在一起等等。

(3)磁现象的电本质:磁铁和电流的磁场本质上都是电流产生的. 4.匀强磁场

(1)匀强磁场:

(2)两种情形的匀强磁场:教材P92图3.3-7,图3.3-8。5.磁通量

(1)定义:

(2)表达式:φ=BS 注意①对于磁通量的计算要注意条件。

②磁通量是标量,但有正、负之分,可用磁感线来说明

③在某一面积中存在完全相反的磁场时,磁通量的计算方法。(举例说明)(3)单位:韦伯,简称韦,符号Wb

1Wb = 1T·m

2(4)磁感应强度的另一种定义(磁通密度):即B =φ/S 上式表示磁感应强度等于穿过单位面积的磁通量,并且用Wb/m2做单位(磁感应强度的另一种单位)。所以:1T = 1 Wb/m2 = 1N/A·m 6.例题分析:

试求出下图(1--5)中的磁通量(大圆的半径为R,小圆的半径为r),图6在线圈下落过程中通过线圈的磁通量如何变化

(1)φ=

(2)φ=

(3)φ=

(4)φ=

(5)φ=

(6)φ的变化情况为

(三)巩固练习

1、放在通电螺线管内部中间处的小磁针,静止时N极指向右.试判定电源的正负极.注意:要分清螺线管内、外部磁感线的分布与方向.2、如图,当线圈中通以电流时,小磁针的北极指向读者.试确定电流方向.

下载§3.3 几种常见的磁场(教案)word格式文档
下载§3.3 几种常见的磁场(教案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几种常见磁场教学案例(范文)

    第三節幾種常見の磁場 ☆教學目標 (一)知識與技能 1.知道什麼叫磁感線。 2.知道幾種常見の磁場(條形、蹄形,直線電流、環形電流、通電螺線管)及磁感線分布の情況 3.會用安培定則判斷......

    磁场复习教案

    (教案)年级 ________学科 ___________编写人________日期 __________ 磁场复习(1-4节) 教学目标: 1、磁现象的电本质。 2、磁感强度。磁感线。磁通量。 3、磁场对通电直导线的作......

    磁场教案_yus

    《磁现象 磁场》教学设计 执教者 袁娟 ●教学目标 一、知识目标 1.知道磁体的基本性质,磁体间的相互作用,磁化。 2.知道磁体周围存在磁场,知道磁感线可用来形象地描述磁场,知道磁......

    磁场微教案

    《磁场》微教案 临朐县冶源镇冶源初中孙中福 学习目标:知识目标: 1.知道磁体周围存在磁场; 2.知道磁感线可用来形象地描述磁场,知道磁感线的方向是怎样规定的; 3.知道地球周围有磁场......

    磁场法制教育教案

    磁 场 教学目标 1、知道磁场的基本特性是对处在它里面的磁极或电流有磁场力的作用 2.知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的 3.知......

    教案:几种常见的磁场(公开课)(样例5)

    3.3几种常见的磁场 授课人:《〈〈< 2014.12.25 教学目标1.知识与技能 知道什么是磁感线; 知道条形磁铁、蹄形磁铁、直线电流、环形电流和通电螺线管的磁感线分布情况; (......

    3.3立方根教案

    [教学设计] 3.3 立方根 ● 教材与学生的认知起点分析 “立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算......

    3.3第几教案

    远成文化《课时掌控》《动感课堂》《畅优新课堂》 3、1—5的认识和加减法 【课题】第三课时:第几 【学习目标】 1、通过情景体验和参与,感知自然数序数的含义,知道自然数除了可......