示范教案(细胞的能量“通货”——ATP)

时间:2019-05-13 00:13:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《示范教案(细胞的能量“通货”——ATP)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《示范教案(细胞的能量“通货”——ATP)》。

第一篇:示范教案(细胞的能量“通货”——ATP)

http://www.xiexiebang.com 或http://www.xiexiebang.com

第2节 细胞的能量“通货”——ATP

●从容说课

《细胞的能量“通货”——ATP》主要介绍了ATP分子的组成和结构特点,ATP具有与ADP相互转化的特性,以及ATP在细胞生命活动中的作用等内容。

关于ATP与ADP的相互转化既是本节的重点也是难点。教师可以继续利用前面的比喻,将细胞中的能量通货比作我们日常生活中的零用钱,它会随着每天的花销而减少,因此要维持正常生活必须不断破开大面值的钞票给予补充,细胞中的大面值钞票主要是糖类等有机物。在有机物分解时释放出的能量能被用来合成ATP,这个过程通过ATP与ADP的相互转化来实现。教师在介绍这部分内容时可以充分利用教材上的图解,告诉学生ATP水解时,远离腺苷的磷酸键断裂时释放出较多的能量,是一种放能的过程,所以当ADP与磷酸再次结合形成ATP时,必然从周围吸收相同的能量,而且这个过程在细胞中时刻发生,这就是为什么ATP可以作为一种能量的“小票”而在细胞中流通使用的原因。

关于ATP的利用,一是要讲清楚吸能反应和放能反应与ATP的分解和合成的关系,二是要充分利用教材上的图解,让学生在看懂图解的基础上,讨论ATP还有哪些用途,从而对该图解进行补充和完善。

●三维目标

1.知识与技能

(1)简述ATP的化学组成和特点。(2)写出ATP的分子简式。

(3)解释ATP在能量代谢中的作用。2.过程与方法

(1)通过ATP与ADP相互转化关系的多媒体动画,认识ATP在细胞中作为能量流通的原因。

(2)通过分析,比较在生物体生命活动中,ATP如何生成又如何消耗,找出能量代谢的规律。

3.情感态度与价值观

(1)激发学生的学习兴趣和渗透热爱自然和生命的情感教育。

(2)通过对课本P90图5-7进行补充和完善,以调动学生学习积极性,培养主动参与的学习态度,培养用准确的科学术语阐述观点和进行合作学习的态度。

●教学重点

1.ATP化学组成的特点及其在能量中的作用。2.ATP与ADP的相互转化。●教学难点

ATP与ADP的相互转化。

●教具准备

1.教师课件。

2.ATP结构式挂图。

●课时安排

1课时

●教学过程 [课前准备]

思考问题:在人类的生产和生活中是怎样解决能量的“稳定储存”和“灵活利用”这一

中鸿智业信息技术有限公司

http://www.xiexiebang.com 或http://www.xiexiebang.com

矛盾的?例如,发电厂是如何转化能量的?人们是如何从农产品转化成各种生活用品的? [情境创设]

1.老师提出问题,学生讨论(1)萤火虫发光需要能量吗?

(2)细胞中的糖类、蛋白质等有机物都储存着大量稳定化学能,生物的生命活动需要能量能直接利用它们吗?

2.教师讲解

从课文中的唐诗中我们知道,生物的生命活动需要能量。实际上,细胞中还有许多化学反应是需要能量的,这些能量是从哪里来的呢?我们知道,细胞中的糖类、蛋白质等有机物都储存着大量稳定化学能,这些能源物质的稳定性,利于大量地储存,但它们不能直接为细胞的生命活动提供能量,细胞是怎样解决“稳定储存”和“灵活利用”这一矛盾的?细胞把稳定的能量转化成另一种能直接给细胞的生命活动提供能量的有机物——ATP,解决了这一问题。ATP什么物质呢?

[师生互动]

1.ATP分子结构特点

学生阅读课本P88相关内容后,教师讲解:

(1)展示ATP结构式挂图,向学生介绍腺嘌呤、核糖(两者结合而成腺苷)、磷酸。(2)ATP是三磷酸腺苷的英文名称的缩写。ATP分子的结构可以简写成A—P~P~P,其中A代表腺苷,P代表磷酸基团,T代表三,~代表一种特殊的化学键,叫做高能磷酸键,ATP分子中大量的能量就储存在高能磷酸键中。ATP水解时高能磷酸键可以水解放出大量的能量,达到30.54 kJ/mol。所以说,ATP是细胞内的高能磷酸化合物。

2.ATP与ADP相互转化

(1)学生阅读课本P88~P89页相关内容,回答问题:ATP与ADP是怎样相互转化的?(2)教师讲解:ATP的化学性质不稳定。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键很容易水解脱离开来,形成游离的Pi(磷酸),同时,储存在这个高能磷酸键中的能量释放出来,ATP就转化成ADP(二磷酸腺苷的英文名称的缩写)。在有关酶的催化作用下,ADP可以接受能量,同时与一个游离的Pi结合,重新形成ATP(播放多媒体课件:ATP与ADP相互转化)。

资料显示,正常人每天ATP的转变量几乎接近于体重,但在体内存在的ATP的量是很少的。ATP和ADP在体内总是处于不断转化的动态平衡之中。如下所示:

3.ATP的形成途径

(1)学生阅读课本P89相关内容后,分组讨论:动植物ATP的形成途径有哪些?(2)教师讲解:对于绿色植物来说,ADP转化成ATP时所需的能量来自于呼吸作用和光合作用;对于人、高等动物、真菌和大多数细菌来说,ADP转化成ATP时所需的能量除来自于呼吸作用外,人和高等动物还可以来自磷酸肌酸的转移。

4.ATP的利用

(1)教师讲解:吸能反应总是与ATP水解的反应相联系,由ATP水解提供能量;放能反应总是与ATP的合成相联系,释放的能量储存在ATP中。能量通过ATP分子在吸能反应和放能反应之间循环流通。

(2)学生看课本图,讨论ATP还有哪些用途,从而对该图进行补充和完善。

[教师精讲]

中鸿智业信息技术有限公司

http://www.xiexiebang.com 或http://www.xiexiebang.com

1.细胞内储存能量的物质有糖类、脂肪、蛋白质等。细胞内消耗能源物质的顺序是:糖类脂肪蛋白质。一般情况下生物体内细胞利用的能源物质是糖类,而且糖类中的能量需要分解释放传递给ATP,转变成活跃的化学能,才能供给各种生命活动利用,从而解决能量的“稳定储存”和“灵活利用”的矛盾。

2.直接供给生命活动能量的能源物质是ATP。在生物体内能量的转换和传递中,ATP是一种关键物质。ATP是生物体内能量转换的“中转站”,它有利于能量的运输和协调供给,如线粒体呼吸释放能量合成的ATP,可以转移到细胞膜用于主动运输,也可以进入细胞核推动DNA的复制等等,从而解决“产能”和“用能”在空间上的矛盾。

3.ATP的结构与物理、化学知识有密切联系,ATP中的能量可以转变成机械能(如肌肉收缩、鞭毛摆动)、化学能、电能(如神经冲动的传导)、渗透能(如主动运输的能量)、光能等其他形式的能量。

4.胞内供能物质有ATP和磷酸肌酸,ATP普遍存在,但含量不多,当ATP大量消耗时,则磷酸肌酸释放能量供ADP和Pi合成ATP。磷酸肌酸的存在对ATP含量的相对稳定起缓冲作用。

[评价反馈]

学生做课本练习题、教师检查评讲。[课堂小结]

全称:三磷酸腺苷结构简式:A—P~P~P酶 与ADP相互转化:ADP+Pi+能量 ATP光合作用(绿色植物)形成途径ATP呼吸作用(细胞生物)其他高能化合物的转移(动物)ATP能源物质与新陈代谢的关系氧化分解释放能量肌肉收缩(机械能)神经传导及生物电(电能)合成代谢(化学能)ADP+Pi吸收分泌(渗透能)

CO + H O等2 2 [课后拓展]

1.其他高能磷酸化合物

在动物和人体细胞(特别是肌细胞)内,除了ATP外,其他的高能磷酸化合物还有磷酸肌酸(可用C~P代表)。磷酸肌酸的结构式是:

当动物和人体细胞由于能量的大量消耗而使细胞内的ATP含量过分减少时,在有关酶的催化作用下磷酸肌酸中的磷酸基团连同能量一起转移给ADP,从而生成ATP和肌酸(可用C代表);当ATP含量比较多时,在有关酶的催化作用下,ATP可以将磷酸基团连同能量一起转移给肌酸,使肌酸转变成磷酸肌酸。

中鸿智业信息技术有限公司

http://www.xiexiebang.com 或http://www.xiexiebang.com

对于动物和人体细胞来说,磷酸肌酸只是能量的一种储存形式,而不能直接被利用。由此可见,对于动物和人体细胞来说,磷酸肌酸在能量释放、转移和利用之间起着缓冲的作用,从而使细胞内ATP的含量能够保持相对的稳定,ATP系统的动态平衡得以维持。

2.萤火虫发光的原理和意义 萤火虫不论雄性的还是雌性的,夏秋的夜晚都会一闪一闪地发光。雄虫比雌虫的个体小一些,但发出的闪光却亮一些。萤火虫发出的闪光,主要是求偶的信号,用来吸引异性前来交尾。萤火虫有许多种,如平家萤火虫、姬萤火虫等。不同种类的萤火虫会发出各自特定的闪光信号。雌虫看到飞舞着的同种雄虫发出的闪光信号后,就会以特定的闪光信号回应。雄虫的每一组闪光信号是由几个节奏组成的,每个节奏都包括闪光的次数、闪光的频率和每次闪光的时间,这些都是雌虫能够识别的。如果雌虫顺利地回应了闪光信号,则雄虫就会前来交尾,以繁衍后代。有的科学家准确分析出某种雄性萤火虫的闪光规律后,用手电筒模拟这种闪光信号,竟然发现同种的雌虫会迎光而来。

有趣的是,雌虫看到其他种类雄虫的闪光信号后,有时竟能发出该种雌虫的闪光信号,这种闪光信号具有欺骗性,能使该种雄虫误以为可以前去交尾而被雌虫吃掉。雌虫的这一特性,可以使自己获得丰富的营养。这种现象被科学家戏称为“死亡拥抱”。此外,萤火虫发出的荧光还具有一定的警戒作用和照明作用。

萤火虫的发光器官位于腹部后端的下方,该处具有发光细胞。发光细胞的周围有许多微细的气管,发光细胞内有荧光素和荧光素酶。荧光素接受ATP提供的能量后就被激活。在荧光素酶的催化作用下,激活的荧光素与氧发生化学反应,形成氧化荧光素并且发出荧光。顺便说到,荧光是一种冷光,其发光效率可高达98%左右,而热光则发光效率低得多,如太阳的发光效率只有35%左右。

●板书设计

第2节

细胞的能量“通货”——ATP 1.ATP分子结构特点

(1)化学组成:腺嘌呤、核糖、磷酸;(2)ATP(三磷酸腺苷),结构简式A—P~P~P,是细胞内的高能磷酸化合物。2.ATP与ADP相互转化

(1)ATP和ADP在体内总是处于不断转化的动态平衡之中。如下式所示:

ADP+Pi+能量

ATP(2)ATP和ADP能相互转化的原因 3.ATP的形成途径

(1)绿色植物:能量来自于呼吸作用和光合作用;

(2)人、高等动物、真菌和大多数细菌:能量除来自于呼吸作用外,人和高等动物还可以来自磷酸肌酸的转移。

4.ATP的利用(1)运输物质;(2)肌肉收缩;(3)合成物质;(4)生物发电;(5)神经活动。

中鸿智业信息技术有限公司

http://www.xiexiebang.com 或http://www.xiexiebang.com

●习题详解

一、练习(课本P90)

(一)基础题 1.B 2.吸能反应:如葡萄糖和果糖合成蔗糖的反应,需要消耗能量,是吸能反应。这一反应所需要的能量是由ATP水解为ADP时释放能量来提供的。放能反应:如丙酮酸的氧化分解,能够释放能量,是放能反应。这一反应所释放的能量除以热能形式散失外,还可用于ADP转化为ATP的反应,储存在ATP中。

3.在储存能量方面,ATP同葡萄糖相比具有以下两个特点:一是ATP分子中含有的化学能比较少,一分子ATP转化为ADP时释放的化学能大约只是一分子葡萄糖的1/94;二是ATP分子中所含的是活跃的化学能,而葡萄糖分子中所含的是稳定的化学能。葡萄糖分子中稳定的化学能只有转化为ATP分子中活跃的化学能,才能被细胞利用。

(二)拓展题

提示:植物、动物、细菌和真菌等生物的细胞内都具有能量“通货”——ATP,这可以从一个侧面说明生物界具有统一性,也反映种类繁多的生物有着共同的起源。

二、问题探讨(课本P88)

1.萤火虫发光的生物学意义主要是相互传递求偶信号,以便交尾、繁衍后代。2.萤火虫腹部后端细胞内的荧光素,是其特有的发光物质。

3.有。萤火虫腹部细胞内一些有机物中储存的化学能,只有在转变成光能时,萤火虫才能发光。

三、思考与讨论(课本P90)

1.1分子葡萄糖所含的能量,约是1分子ATP所含能量的94倍(指ATP转化为ADP时释放的能量)。

2.有道理。糖类和脂肪分子中的能量很多而且很稳定,不能被细胞直接利用。这些稳定的化学能只有转化成ATP分子中活跃的化学能,才能被细胞直接利用。

四、本节聚焦(课本P88)

1.因为能量通过ATP分子在吸能反应和放能反应之间循环流通。因此形象地把ATP比喻成细胞内流通的能量“通货”。

2.ATP的化学性质不稳定。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键很容易水解脱离开来,形成游离的Pi(磷酸),同时,储存在这个高能磷酸键中的能量释放出来,ATP就转化成ADP(二磷酸腺苷的英文名称的缩写)。在有关酶的催化作用下,ADP可以接受能量,同时与一个游离的Pi结合,重新形成ATP。

ATP与ADP在活细胞中一定条件下循环转化。ATP水解时释放出大量能量,不断地为生命活动提供能源补充,保证了新陈代谢的正常进行;由于ATP在细胞内的含量很少,ADP迅速转化形成新的ATP,使ATP含量处于动态平衡之中,从而使ATP不会因能量的不断消耗而枯竭,保证了生命活动能够及时地、不断地得到能量而顺利进行。

3.ATP中的能量可以直接转化成其他各种形式的能量,用于各项生命活动。这些能量的形式主要有以下6种:

渗透能

细胞的主动运输是逆浓度梯度进行的,物质跨膜移动所做的功消耗了能量,这些能量叫做渗透能,渗透能来自ATP。

机械能

细胞内各种结构的运动都是在做机械功,所消耗的就是机械能。例如,肌细胞的收缩,草履虫纤毛的摆动,精子鞭毛的摆动,有丝分裂期间染色体的运动,腺细胞对分泌物的分泌等,都是由ATP提供能量来完成的。

中鸿智业信息技术有限公司

http://www.xiexiebang.com 或http://www.xiexiebang.com

电能

大脑的思考——神经冲动在神经纤维上的传导,以及电鳐、电鳗等动物体内产生的生物电等,它们所做的电功消耗的就是电能。电能是由ATP提供的能量转化而成的。

化学能

细胞内物质的合成需要化学能,如小分子物质合成为大分子物质时,必须有直接或间接的能量供应。另外,细胞内物质在分解的开始阶段,也需要化学能来活化,成为能量较高的物质(如葡萄糖活化成磷酸葡萄糖)。可以说在细胞内的物质代谢中,到处都需要由ATP转化而来的化学能做功。

光能

目前关于生物发光的生理机制还没有完全弄清楚,但是已经知道,生物体用于发光的能量直接来自ATP,如萤火虫的发光。

热能

有机物的氧化分解释放的能量,一部分用于生成ATP,大部分转化为热能通过各种途径向外界环境散发,其中一小部分热能作用于体温。通常情况下,热能的形成往往是细胞能量转化和传递过程中的副产品。此外,ATP释放的能量中,一部分能量也能用于动物体温的提升和维持。

中鸿智业信息技术有限公司

第二篇:5.2示范教案(细胞的能量“通货”——ATP)

i3721 中小学教学资源网 www.xiexiebang.com

第2节 细胞的能量“通货”——ATP

●从容说课

《细胞的能量“通货”——ATP》主要介绍了ATP分子的组成和结构特点,ATP具有与ADP相互转化的特性,以及ATP在细胞生命活动中的作用等内容。

关于ATP与ADP的相互转化既是本节的重点也是难点。教师可以继续利用前面的比喻,将细胞中的能量通货比作我们日常生活中的零用钱,它会随着每天的花销而减少,因此要维持正常生活必须不断破开大面值的钞票给予补充,细胞中的大面值钞票主要是糖类等有机物。在有机物分解时释放出的能量能被用来合成ATP,这个过程通过ATP与ADP的相互转化来实现。教师在介绍这部分内容时可以充分利用教材上的图解,告诉学生ATP水解时,远离腺苷的磷酸键断裂时释放出较多的能量,是一种放能的过程,所以当ADP与磷酸再次结合形成ATP时,必然从周围吸收相同的能量,而且这个过程在细胞中时刻发生,这就是为什么ATP可以作为一种能量的“小票”而在细胞中流通使用的原因。

关于ATP的利用,一是要讲清楚吸能反应和放能反应与ATP的分解和合成的关系,二是要充分利用教材上的图解,让学生在看懂图解的基础上,讨论ATP还有哪些用途,从而对该图解进行补充和完善。

●三维目标

1.知识与技能

(1)简述ATP的化学组成和特点。(2)写出ATP的分子简式。

(3)解释ATP在能量代谢中的作用。2.过程与方法

(1)通过ATP与ADP相互转化关系的多媒体动画,认识ATP在细胞中作为能量流通的原因。

(2)通过分析,比较在生物体生命活动中,ATP如何生成又如何消耗,找出能量代谢的规律。

3.情感态度与价值观

(1)激发学生的学习兴趣和渗透热爱自然和生命的情感教育。

(2)通过对课本P90图5-7进行补充和完善,以调动学生学习积极性,培养主动参与的学习态度,培养用准确的科学术语阐述观点和进行合作学习的态度。

●教学重点

1.ATP化学组成的特点及其在能量中的作用。2.ATP与ADP的相互转化。●教学难点

ATP与ADP的相互转化。

●教具准备

1.教师课件。

2.ATP结构式挂图。

●课时安排

1课时

●教学过程 [课前准备]

修改密码请到www.xiexiebang.com获得

i3721 中小学教学资源网 www.xiexiebang.com 思考问题:在人类的生产和生活中是怎样解决能量的“稳定储存”和“灵活利用”这一矛盾的?例如,发电厂是如何转化能量的?人们是如何从农产品转化成各种生活用品的? [情境创设]

1.老师提出问题,学生讨论(1)萤火虫发光需要能量吗?

(2)细胞中的糖类、蛋白质等有机物都储存着大量稳定化学能,生物的生命活动需要能量能直接利用它们吗?

2.教师讲解

从课文中的唐诗中我们知道,生物的生命活动需要能量。实际上,细胞中还有许多化学反应是需要能量的,这些能量是从哪里来的呢?我们知道,细胞中的糖类、蛋白质等有机物都储存着大量稳定化学能,这些能源物质的稳定性,利于大量地储存,但它们不能直接为细胞的生命活动提供能量,细胞是怎样解决“稳定储存”和“灵活利用”这一矛盾的?细胞把稳定的能量转化成另一种能直接给细胞的生命活动提供能量的有机物——ATP,解决了这一问题。ATP什么物质呢?

[师生互动]

1.ATP分子结构特点

学生阅读课本P88相关内容后,教师讲解:

(1)展示ATP结构式挂图,向学生介绍腺嘌呤、核糖(两者结合而成腺苷)、磷酸。(2)ATP是三磷酸腺苷的英文名称的缩写。ATP分子的结构可以简写成A—P~P~P,其中A代表腺苷,P代表磷酸基团,T代表三,~代表一种特殊的化学键,叫做高能磷酸键,ATP分子中大量的能量就储存在高能磷酸键中。ATP水解时高能磷酸键可以水解放出大量的能量,达到30.54 kJ/mol。所以说,ATP是细胞内的高能磷酸化合物。

2.ATP与ADP相互转化

(1)学生阅读课本P88~P89页相关内容,回答问题:ATP与ADP是怎样相互转化的?(2)教师讲解:ATP的化学性质不稳定。在有关酶的催化作用下,ATP分子中远离A的那个高能磷酸键很容易水解脱离开来,形成游离的Pi(磷酸),同时,储存在这个高能磷酸键中的能量释放出来,ATP就转化成ADP(二磷酸腺苷的英文名称的缩写)。在有关酶的催化作用下,ADP可以接受能量,同时与一个游离的Pi结合,重新形成ATP(播放多媒体课件:ATP与ADP相互转化)。

资料显示,正常人每天ATP的转变量几乎接近于体重,但在体内存在的ATP的量是很少的。ATP和ADP在体内总是处于不断转化的动态平衡之中。如下所示:

3.ATP的形成途径

(1)学生阅读课本P89相关内容后,分组讨论:动植物ATP的形成途径有哪些?(2)教师讲解:对于绿色植物来说,ADP转化成ATP时所需的能量来自于呼吸作用和光合作用;对于人、高等动物、真菌和大多数细菌来说,ADP转化成ATP时所需的能量除来自于呼吸作用外,人和高等动物还可以来自磷酸肌酸的转移。

4.ATP的利用

(1)教师讲解:吸能反应总是与ATP水解的反应相联系,由ATP水解提供能量;放能反应总是与ATP的合成相联系,释放的能量储存在ATP中。能量通过ATP分子在吸能反应和放能反应之间循环流通。

(2)学生看课本图,讨论ATP还有哪些用途,从而对该图进行补充和完善。

修改密码请到www.xiexiebang.com获得

i3721 中小学教学资源网 www.xiexiebang.com [教师精讲]

1.细胞内储存能量的物质有糖类、脂肪、蛋白质等。细胞内消耗能源物质的顺序是:糖类脂肪蛋白质。一般情况下生物体内细胞利用的能源物质是糖类,而且糖类中的能量需要分解释放传递给ATP,转变成活跃的化学能,才能供给各种生命活动利用,从而解决能量的“稳定储存”和“灵活利用”的矛盾。

2.直接供给生命活动能量的能源物质是ATP。在生物体内能量的转换和传递中,ATP是一种关键物质。ATP是生物体内能量转换的“中转站”,它有利于能量的运输和协调供给,如线粒体呼吸释放能量合成的ATP,可以转移到细胞膜用于主动运输,也可以进入细胞核推动DNA的复制等等,从而解决“产能”和“用能”在空间上的矛盾。

3.ATP的结构与物理、化学知识有密切联系,ATP中的能量可以转变成机械能(如肌肉收缩、鞭毛摆动)、化学能、电能(如神经冲动的传导)、渗透能(如主动运输的能量)、光能等其他形式的能量。

4.胞内供能物质有ATP和磷酸肌酸,ATP普遍存在,但含量不多,当ATP大量消耗时,则磷酸肌酸释放能量供ADP和Pi合成ATP。磷酸肌酸的存在对ATP含量的相对稳定起缓冲作用。

[评价反馈]

学生做课本练习题、教师检查评讲。[课堂小结]

[课后拓展]

1.其他高能磷酸化合物

在动物和人体细胞(特别是肌细胞)内,除了ATP外,其他的高能磷酸化合物还有磷酸肌酸(可用C~P代表)。磷酸肌酸的结构式是:

当动物和人体细胞由于能量的大量消耗而使细胞内的ATP含量过分减少时,在有关酶的催化作用下磷酸肌酸中的磷酸基团连同能量一起转移给ADP,从而生成ATP和肌酸(可用C代表);当ATP含量比较多时,在有关酶的催化作用下,ATP可以将磷酸基团连同能量一起转移给肌酸,使肌酸转变成磷酸肌酸。

修改密码请到www.xiexiebang.com获得

i3721 中小学教学资源网 www.xiexiebang.com

对于动物和人体细胞来说,磷酸肌酸只是能量的一种储存形式,而不能直接被利用。由此可见,对于动物和人体细胞来说,磷酸肌酸在能量释放、转移和利用之间起着缓冲的作用,从而使细胞内ATP的含量能够保持相对的稳定,ATP系统的动态平衡得以维持。

2.萤火虫发光的原理和意义 萤火虫不论雄性的还是雌性的,夏秋的夜晚都会一闪一闪地发光。雄虫比雌虫的个体小一些,但发出的闪光却亮一些。萤火虫发出的闪光,主要是求偶的信号,用来吸引异性前来交尾。萤火虫有许多种,如平家萤火虫、姬萤火虫等。不同种类的萤火虫会发出各自特定的闪光信号。雌虫看到飞舞着的同种雄虫发出的闪光信号后,就会以特定的闪光信号回应。雄虫的每一组闪光信号是由几个节奏组成的,每个节奏都包括闪光的次数、闪光的频率和每次闪光的时间,这些都是雌虫能够识别的。如果雌虫顺利地回应了闪光信号,则雄虫就会前来交尾,以繁衍后代。有的科学家准确分析出某种雄性萤火虫的闪光规律后,用手电筒模拟这种闪光信号,竟然发现同种的雌虫会迎光而来。

有趣的是,雌虫看到其他种类雄虫的闪光信号后,有时竟能发出该种雌虫的闪光信号,这种闪光信号具有欺骗性,能使该种雄虫误以为可以前去交尾而被雌虫吃掉。雌虫的这一特性,可以使自己获得丰富的营养。这种现象被科学家戏称为“死亡拥抱”。此外,萤火虫发出的荧光还具有一定的警戒作用和照明作用。

萤火虫的发光器官位于腹部后端的下方,该处具有发光细胞。发光细胞的周围有许多微细的气管,发光细胞内有荧光素和荧光素酶。荧光素接受ATP提供的能量后就被激活。在荧光素酶的催化作用下,激活的荧光素与氧发生化学反应,形成氧化荧光素并且发出荧光。顺便说到,荧光是一种冷光,其发光效率可高达98%左右,而热光则发光效率低得多,如太阳的发光效率只有35%左右。

●板书设计

第2节

细胞的能量“通货”——ATP 1.ATP分子结构特点

(1)化学组成:腺嘌呤、核糖、磷酸;(2)ATP(三磷酸腺苷),结构简式A—P~P~P,是细胞内的高能磷酸化合物。2.ATP与ADP相互转化

(1)ATP和ADP在体内总是处于不断转化的动态平衡之中。如下式所示:

ADP+Pi+能量

ATP(2)ATP和ADP能相互转化的原因 3.ATP的形成途径

(1)绿色植物:能量来自于呼吸作用和光合作用;

(2)人、高等动物、真菌和大多数细菌:能量除来自于呼吸作用外,人和高等动物还可以来自磷酸肌酸的转移。

4.ATP的利用(1)运输物质;(2)肌肉收缩;(3)合成物质;(4)生物发电;(5)神经活动。

修改密码请到www.xiexiebang.com获得

第三篇:细胞的能量通货ATP教案

第2节 细胞的能量“通货”——ATP

第五章:细胞的能量供给与利用

第2节 细胞的能量“通货”——ATP

一、教学目标

1、知识与技能

(1)简述ATP的化学组成和特点。(2)写出ATP的分子简式。

(3)解释ATP在能量代谢中的作用。

2、过程与方法(1)通过ATP与ADP相互转化关系,认识ATP在细胞中作为能量流通的原因。(2)通过分析,比较在物体生命活动中,ATP如何生成又如何消耗,找出能量代谢的规律。

3、情感态度与价值观

(1)激发学生的学习兴趣和渗透热爱自然和生命的情感教育。

(2)通过对课本P90图5-7进行补充和完善,以调动学生学习积极性,培养主动参与的学习态度,培养用准确的科学术语阐述观点和进行合作学习的态度。

二、教学重点与难点

1、教学重点

(1)ATP化学组成的特点及其在能量中的作用。(2)ATP与ADP的相互转化。

2、教学难点

(1)ATP与ADP的相互转化。

三、教学设计

以“车胤借萤火虫夜读”的小故事创设情境。老师提出问题,学生讨论:

1、萤火虫发光的生物学意义是什么?

2、萤火虫体内有特殊的发光物质吗?

3、萤火虫发光的过程有能量的转换吗?

教师总结,并讲解:在生命过程中,不光是萤火虫发光与能量有关,任何生命活动都需要能量。前面我们也学过关于能量的化合物。教师提问:主要的能源物质?主要的储能物质?这些物质能不能直接提供能量?针对第三个问题,进入探究实验——葡萄糖和ATP是否能直接提供能量。

教师根据实验现象提问,学生讨论:从A、B试管的实验现象中你得出的结论是? 教师讲述:葡萄糖里的能量不能直接利用,我们把它比作是存折里的钱,那么ATP能直接供能,可以比作现金,即流通的货币,简称“通货”。这节课一起探讨“细胞的能量通货——ATP”。

一、ATP分子的结构

教师出示ATP药剂图,简介ATP的功能。教师提问,学生看书思考: 1.ATP的结构简式为?

2.ATP简式中A、P、~分别代表什么? 3.ATP的中文名称?

教师加以引导归纳后,练习巩固。(见学案练一练1、2、3、4。)

第2节 细胞的能量“通货”——ATP

二、ATP与ADP的转化

从练习4引出问题,学生讨论:

1、ATP供能时,释放哪个化学键中的能量?

2、ATP供能过程中,可形成哪些产物?

学生根据释放能量的来源和形成的产物,写出ATP水解过程的反应式。

资料显示,正常人每天ATP的转变量几乎接近于体重,但在体内存在的ATP的量是很少的。ATP和ADP在体内可以相互转化,学生写出ATP形成过程的反应式。

教师合并两个反应式,提问,学生讨论:

ATP和ADP的相互转化是否是可逆反应?

教师提问能量是否相同?引导学生讨论:ADP 转化成ATP所需的能量从哪里来?

三、ATP的来源

学生分析,教师加以点评、总结。

教师讲述:线粒体把葡萄糖分解,释放的能量用于ATP的形成,在现金和存折之间起到了怎样的作用?说明葡萄糖里不能直接利用的能量可以转变成ATP进行直接供能。对于绿色植物来说,ADP转化成ATP时所需的能量来自于呼吸作用和光合作用;对于人、高等动物、真菌和大多数细菌来说,ADP转化成ATP时所需的能量除来自于呼吸作用外,人和高等动物还可以来自磷酸肌酸的转移。

ATP形成与水解的能量不同,进一步证明了ATP和ADP的相互转化不是可逆反应。请学生填表总结(见学案),得出结论:物质是可逆的,能量是不可逆的。

练一练5、6、7、8。(见学案)

由练习8:ATP在细胞内的含量很少,生成很快,同时也说明了ATP利用很快。提问,学生思考讨论:哪些生命活动由ATP直接供能?

四、ATP的利用

学生举例,教师总结。

教师讲解:ATP为各项生命活动提供能量。细胞内的反应有的是吸能反应,有的是放能反应。吸能反应总是与ATP水解的反应相联系,由ATP水解提供能量;放能反应总是与ATP的合成相联系,释放的能量储存在ATP中。能量通过ATP分子在吸能反应和放能反应之间循环流通。

练一练:9。小结

通过这堂课的学习,你掌握了什么? 作业布置

完成过关检测(见学案)板书设计

第2节 细胞的能量“通货”——ATP 一.ATP分子结构特点

A—P~P~P 二.ATP与ADP相互转化 三.ATP的形成

四.ATP的利用

第四篇:《细胞的能量“通货”─ATP》教案

《细胞的能量“通货”─ATP》教案

【教学目标】

知识目标

简述ATP的化学组成和特点;写出ATP的分子简式。能力目标

解释ATP在能量代谢中的作用。德育目标

通过宏观现象理解微观现象,建立学生的抽象思维。

【教学重点】

ATP化学组成的特点及其在能量代谢中的作用,ATP与ADP的相互转化。

【教学难点】

ATP化学组成的特点及其在能量代谢中的作用,ATP与ADP的相互转化。

【课时安排】1课时 【教学过程】

〖引入〗生命活动需要能量,这些能量来自哪里呢?学生在前面的学习中了解到生命活动需要的能量来自细胞中的有机物。可以让学生想一想,燃烧一匙葡萄糖,能观察到什么现象?燃烧葡萄糖可以观察到放出的热和光,说明葡萄糖中蕴含着能量。但是细胞内的各种化学反应均需要温和的条件,那么细胞中的能量以什么形式释放出来?又是如何被利用的呢?

〖问题探讨〗学生思考讨论回答,教师提示。〖提示〗见P89。

1.萤火虫发光的生物学意义主要是相互传递求偶信号,以便交尾、繁衍后代。2.萤火虫腹部后端细胞内的荧光素,是其特有的发光物质。

3.有。萤火虫腹部细胞内一些有机物中储存的化学能,只有在转变成光能时,萤火虫才能发光。

〖问题〗以“本节聚焦”再次引起学生的思考,注意。

一、ATP分子中具有高能磷酸键

指导学生阅读教材P88页,通过提问的方式指导学生学习ATP的结构特点。问题:ATP的结构简式及其特点。讨论:学生讨论。

总结:ATP中文名称:三磷酸腺苷 结构简式:A—P~P~P,A代表腺苷,P代表磷酸,~代表高能磷酸键 特点:(1)ATP是细胞内的一种高能磷酸化合物,含有两个高能磷酸键,高能磷酸键储存了大量的能量。(2)ATP的化学性质不稳定。在有关酶的催化作用下,远离A的高能磷酸键易水解,释放大量的能量。

二、ATP和ADP可以相互转化

问题:如何理解ATP与ADP的相互转化关系。讨论:学生讨论。

总结:

1、ATP水解释放能量

(1)反应式:A—P~P~P →A—P~P + Pi + 能量

(2)能量来源:远离A的高能磷酸键易水解,释放大量的能量(3)酶:ATP水解酶

2、ATP合成储存能量

(1)反应式:A—P~P + Pi + 能量→A—P~P~P(2)能量来源:光合作用和呼吸作用(3)酶:ATP合成酶

3、ATP与ADP的相互转化的意义

ATP是活细胞内一种特殊的能量载体,在细胞核、线粒体、叶绿体以及细胞质基质中广泛存在着,ATP在细胞内的含量是很少的。ATP末端磷酸基团的周转是极其迅速的,其消耗与再生的速度是相对平衡的,ATP的含量因而维持在一个相对稳定的、动态平衡的水平。可见,细胞内ATP系统处在动态平衡之中,这对于构成细胞内稳定的供能环境具有十分重要的意义。

三、ATP的利用

ATP中的能量可以直接转化成其他各种形式的能量,用于各项生命活动。这些能量的形式主要有以下6种。①细胞的主动运输 ②肌细胞的收缩 ③电能大脑的思考

④化学能细胞内物质的合成需要化学能。

⑤光能,生物体用于发光的能量直接来自ATP,如萤火虫的发光。〖思考与讨论〗学生思考讨论回答,教师提示。〖提示〗1.1分子葡萄糖所含的能量,约是1分子ATP所含能量的94倍(指ATP转化为ADP时释放的能量)。

2.有道理。糖类和脂肪分子中的能量很多而且很稳定,不能被细胞直接利用。这些稳定的化学能只有转化成ATP分子中活跃的化学能,才能被细胞直接利用。

【板书设计】

一、ATP分子中具有高能磷酸键 ATP(三磷酸腺苷):A—P~P~P 结构特点: “一二三”(一个A,两个高能磷酸键,三个磷酸)

二、ATP与ADP可以相互转化

A—P~P~P →A—P~P + Pi + 能量(ATP水解酶)A—P~P + Pi + 能量→A—P~P~P(ATP合成酶)

三、ATP的利用

ATP水解为ADP时释放能量

ADP转化为ATP的反应,储存能量

【课堂总结及布置作业】

掌握ATP化学组成的特点及其在能量代谢中的作用,ATP与ADP的相互转化。课本P90习题

第五篇:《细胞的能量通货----ATP》教学设计

《细胞的能量通货----ATP》教学设计

【教学目标】 知识与技能:(1).简述ATP的化学组成和特点。(2).写出ATP的分子简式。(3).解释.ATP在能量代谢中的作用。过程与方法:

(1)通过ATP与ADP相互转化关系的多媒体动画,认识ATP在细胞中作为能量“通货”的原因。

(2)通过分析,比较在生物体的生命活动中,ATP如何生成又如何消耗,找出能量代谢的规律。

情感,态度和价值观;(1)激发学生的学习兴趣并渗透热爱自然和生命的情感教育。

(2)通过对教材中图5—7进行补充和完善,以调动学生学习的积极性,培养主动参与的学习态度以及用准确的科学术语阐述观点和进行合作学习的能力。

【教学重点】ATP的分子简式及其结构特点、ATP和ADP之间的相互转化及其对细胞内能量代谢中的意义、ATP的形成途径、ATP是新陈代谢的直接能源,能理解ATP作为“能量通用货币”的含义

【教学难点】ATP和ADP之间的相互转化及其对细胞内能量代谢中的意义、理解ATP作为“能量通用货币”的含义 【课时安排】1课时

【教学手段】板图、挂图、多媒体课件 【教学过程】

1、引言

从细胞中能量利用存在的矛盾入手,设计相关的问题串引入ATP这一高能化合物。(1)“细胞中主要是由什么细胞器来产生能量的?” 线粒体的有氧呼吸作用氧化分解有机物释放能量(2)“细胞中有哪些生理过程在不断地消耗着能量?”

细胞分裂、细胞核中DNA的复制、核糖体合成蛋白质、细胞膜主动运输、高尔基体合成分泌等需要能量

(3)“细胞内产能与用能很明显地存在着空间上的隔离,细胞是怎样解决这一矛盾的呢?”

(4)“细胞内存在有糖类、脂肪等有机物,这些有机物含有大量且稳定的能量,但某项生命活动可能不用大量的能量就足以进行,而且糖类、脂肪中储存的能量又过于稳定,不易被生物体利用,细胞又是怎样解决这一矛盾的呢?”

这样就可自然地引入ATP这种储能少、不稳定、可为所有生理活动供能的高能化合物。

2、ATP的分子简式及其结构特点

在引导学生讨论ATP的分子结构简式及其特点时,可从ATP的英文名称中的三个字母含义、中文名称、ATP是高能化合物等方面入手,使学生易于理解ATP的结构特点及其生理作用。

需要向学生解释清楚高能化合物的概念,即高能磷酸键水解过程中,释放的能量是一般的共价键的2倍以上,如ATP末端磷酸水解生成ADP和磷酸时,释放出的能量约30.5kJ/mol上,而6-磷酸葡萄糖水解成葡萄糖和磷酸时,释放的能量只有13.8kJ/mol。这种键称为高能键,常以“~”符号表示。含有高能键的化合物统称为高能化合物。

然后让学生自己分析ATP的结构简式的含义,如ATP中两个磷酸基团之间(P和P之间用“~“表示)的化学键是高能磷酸键。

细胞内释放能量的反应,如呼吸作用常会伴随ADP转变成ATP;而耗能的反应,如蛋白质的合成等,需要用ATP水解成ADP再将能量释放出来,以推动需能代谢反应的进行。

ATP和ADP在体内总是处于不停地转化中,且处于动态平衡之中。

3、ATP和ADP之间的相互转变及其意义

在引导学生讨论ATP和ADP之间的相互转变时,需强调细胞内ATP的含量是相对稳定的;ATP在细胞内的含量是极少的,细胞内的糖类、脂类等能源物质不能被细胞直接利用,ATP的水解后释放的能量才是细胞内各种生命活动的直接能量来源,呼吸作用分解有机物释放能量不能为生物体直接利用,只有这些能量转移给ATP,且ATP水解后释放的能量才可被细胞利用。最终应使学生认识到ATP与ADP之间高效、迅速的转化是处于动态平衡之中的,ATP是生物体的直接能源,是细胞能量代谢的“通用货币”。

4、在讨论了ATP和ADP之间相互转变及其意义后,在小结ATP在细胞内能量的转换、运输、利用中的关键作用时,可结合本节所讲的内容,提一些与ATP有关的综合性问题供学生讨论,让学生在讨论中加深对ATP这一生物体直接能源物质的理解。

比如,可以讨论下面几个问题:

(1)众多能源物质中,ATP这种绝对含量极少的物质为什么成为直接能源?

葡萄糖、糖元、淀粉、脂肪、氨基酸、脂肪酸、磷酸肌酸等,这些都可作为生物体的能源物质,但生物体不能利用这些能源物质中的能量,这些物质中储存的能量必须要转移给ATP中。生物体直接从ATP中获得生命活动所需的各种形式的能量,如ATP可转化为机械能、电能、渗透能、化学能、光能和热量等。

(2)为什么ATP是细胞内能量释放、储存、转移和利用的中心物质,成为生物的直接能源呢?

我们来看看葡萄糖和ATP分子中储存能量的差异就明白了。ATP末端磷酸基团水解时,释放出的能量是30.5kJ/mol,一般把水解时释放20.92 kJ/mol以上能量的化合物叫高能化合物,可见ATP是高能化合物,而且其能量与某些高能化合物(如磷酸肌酸)相比,要低一些,因此磷酸肌酸中的能量可在不需额外供能的情况下转移给ATP。而葡萄糖分子彻底氧化为二氧化碳和水后,释放出2870kJ/mol的能量。结果,存在于葡萄糖分子中的能量就像存在银行里的钱,而储存在ATP分子中的能量则像“零钱”,它更容易在细胞中被使用,因此还有的说ATP是能量的“通用货币”就是这个道理。

(3)ATP对生命的维持是极其重要的,试想:当产生ATP的过程停止时,会发生什么?

举一个例子,学生可能知道氰化物可以在非常短的时间内使人死亡,其毒理就是阻挡ATP的形成。当人体ATP合成受阻后,机体没有ATP,神经细胞和其他细胞中的细胞活动就不能继续,人在3-6分钟内就会失去知觉。

(4)还有一个问题值得一提,就是ATP在生物体中的绝对含量是极小的,但生物体中的每一个细胞每时每刻都在消耗着ATP,但在正常情况下,生物体内的ATP量可满足机体的要求,奥妙何在呢?

生物体可把其它能源物质的能量高速地转移给ATP,以补充ATP的消耗,即ATP—ADP循环速度是很快的。

小结;作业

下载示范教案(细胞的能量“通货”——ATP)word格式文档
下载示范教案(细胞的能量“通货”——ATP).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐