第一篇:小学五年级数学因数与倍数教案
因数与倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)
齐读p12的注意。
二、新授
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘
1、乘
2、乘
3、乘
4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题
教学反思
成功之处:先让学生看主题兔,从学生已有知识出发,列出不同的乘法算式,然后采取自学的方法,让学生自悟因数和倍数的含义及因数和倍数所指的数的范围。教师通过提问的方式,学生通过合作交流的方式,理解因数和倍数是一对相互依存的概念。整个教学过程有收有放,收放适度。
不足之处:在巩固新知中,完成13页的做一做时。学生的解答出现遗漏现象。所以在今后的教学中要特别强调找因数的倍数的方法,要培养学生细心,缜密的学习习惯。
第二篇:五年级数学因数与倍数
小学五年级数学因数与倍数练习题(3)
一、填空(30分)
1、像0,1,2,3,4,5,6,……这样的数是()
2、像-3,-2,-1,0,1,2,3,……这样的数是()
3、有一个算式7×8=56,那么可以说()和()是()的因数,()是()和()的倍数。
4、是2的倍数的数叫()。
5、不是2的倍数的数叫()。
6、凡是个位上是()或()的数,都是5的倍数。一个数既是2的倍数,又是5的倍数,这个数的个位上的数字一定是()。
7、一个数各个数位上的数字加起来的和是9的倍数,那么这个数也是()的倍数。如果要让□729成为3的倍数,那么□里可以填()。
8、一个数只有()两个因数,这个数叫作质数。
一个数除了()以外还有(),这个数叫做合数。合数最少有()个因数,质数只有()个因数。
9、要使5□是质数,□可以填()
10、最小的质数是(),最小的合数是()。
11、写出1~20的所有质数是(),1~20中共有()个质数,在1~20中,共有()个合数。
()既不是质数,也不是合数。
12、有一个比14大,比19小的奇数,它同时是质数,这个数是()。
13、任何大于6的质数除以6,肯定有余数,余数只会是()或()。
14、有一个两位数,它是2的倍数,同时,它的各个数位上的数字的积是12,这个两位数可能是
()。
二、判断(6分)
1、大于2的所有的偶数都是合数。()
2、除2以外,所有的质数都是奇数。()
3、6的所有倍数都是合数。()
4、一个数是9的倍数,这个数一定也是3的倍数。()
5、连续的两个自然数相加的和一定是奇数。()
6、8是因数,12是倍数。()
三、判断下列算式的结果是偶数还是质数(6分)
456+782()1025+6487()
95104+36513()999+4825451()
15+16+17+18()96101-34569()
四、组成符合要求的数(14分)
1、从0、5、6、7四个数中,选择两个数组成两位数。
2的倍数()共5个。
3的倍数()共3个
5的倍数()共5个
同时是2和3的倍数()
同时是2和5的倍数()
同时是3和5的倍数()
同时是2、3和5的倍数()
五、写出因数与倍数(20分)
1、写倍数
(1)、写出100以内,所有9的倍数
()
(2)、50以内,所有4的倍数
()
(3)、写24的全部因数 :
100以内所有的8的倍数:
既是24的因数又是8的倍数:
2、写出下列数的所有因数
16()87()
23()45()
81()9()
62()14()
六、分一分(把下列数填入合适的圆圈内)(12分)2、4、5、7、9、31、42、57、61、70、83、102、1317、9453
奇数偶数
质数合数
七、综合应用(12分)
1、把64个求装在盒子里,每个盒子装得同样多,刚好装完,(1)有几种装法?(列出算式)
(2)如果有67个球呢?
2、食品店运来75个面包,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?如果每3个装一袋,能正好装完吗?为什么?
3、晚上小明家正开着灯在吃晚饭,顽皮的弟弟按了5下开关,这时灯是亮还是暗?如果按了50下呢?
第三篇:小学五年级上册数学《因数和倍数》教案
教材分析:
以乘、除法知识拓展方式,引入对因数与倍数知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。
教学目标:
1、在具体的情境中,借助乘法算式认识因数和倍数。
2、掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。
重点难点:
1、以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数
和倍数的意义。
2、引导学生自主找一个数的因数,以此加深对因数的理解。
3、引导学生自主找一个数的倍数,以此加深对倍数的理解。
教学要点:
1、找一个数的因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。
2、及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的特点。
3、找一个数的因数也反映出学生的口算水平的高低。
4、找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。
第四篇:人教版五年级数学下册《因数与倍数》教案
【教学目标】
1、理解因数与倍数的概念,为求一个数的因数、倍数打基础。
在数形结合的基础上,通过实践、观察、比较、探究等活动,培养抽象概括能力很运用知识解决问题的能力。
2、3、理解、感悟事物之间普遍联系的辨证唯物主义观点,体验数学学习的快乐,获得积极地情感体验。
【教学内容】人教版数学五年级下册P12一14,练习二。
【教学过程】
一、操作空间,初步感知。
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。
汇报:1×12=12,2×6=12,3×4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数。
(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗?
师根据学生的表达完成以下板书:
3是12的因数
12是3的倍数
4是12的因数
12是4的倍数
3和4是12的因数
12是3和4的倍数
(2)用因数和倍数说说算式l×12=12,2×6=12的关系。
(3)观察因数和倍数的相互关系。
揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2.求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。
学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:①可独立完成,也可同桌合作。
②可借助刚才找出12的所有因数的方法。
③写出36的所有因数。
④想一想,怎样找才能保证既不重复,又不遗漏。
教师巡视,展示学生几种答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。
完成板书:描述式、集合式。(3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3.求一个数的倍数。
(1)3的倍数有:__________,怎样有序地找,有多少个?
找一个数的倍数,用l,2,3,4„„分别乘这个数。
(2)练一练:6的倍数有:_________,40以内6的倍数有:_________
【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4.发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?
根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。
三、归纳空间,内化新知。
师生共同总结:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的因数和倍数,应有序思考。
四、拓展空间,应用新知。
1.15的因数有:__________,15的倍数有:__________。
2.判断。
(1)6是因数,24是倍数。()
(2)3.6÷4=0.9,所以3.6是4的因数。()
(3)l是l,2,3,4„„的因数。()
(4)一个数的最小倍数是2l,这个数的因数有l,5,25。()
4.选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
5.举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
【评析】本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。
第五篇:倍数与因数教案五年级上
倍数与因数
一、教学目标:
1、认识自然,认识倍数与因数,能找出10以内某个自然数在100以内的全部倍数,能找出100以内某个自然数的所有因数。
2、理解质数和倍数的概念。
3、理解掌握2,3,5倍数的特征,知道奇数和偶数。
4、能综合运用所学知识和技能解决问题,发展应用意识。
5、在探索活动中,体会观察、分析、归纳、猜想、验证等过程,体验数学问题的探索性和挑战性。
二、重点
因数与倍数;2,3,5倍数的特征;质数与合数;奇数与偶数。
在探索活动中,能根据解决问题的需要,收集有关信息进行分析、归纳,发现数的特征。
1、倍数与因数
概念:如果自然数a和自然数b的乘积是c,即a×b=c,那么a、b都是c的因数,c是例题1:4×6=24,4和6是24的因数,24是4和6的倍数。
练习:3×9=27,()和()是()的因数,()是()和()的倍数。
2、找因数的方法
(1)根据一个数的因数的定义,每列出一个乘法算式,就可以找出这个数的一对因数,三、难点
四、教学主要内容
a、b的倍数。
所以只要有序地写出两个数乘积是这个数的所有乘法算式,就可以找全因数。当两个因数相等时,就算一个因数。
例题2:要写出18的所有因数,方法如下:
1×18=18,1和18是18的因数; 2×9=18,2和9是18的因数; 3×6=18,3和6是18的因数。
所以18的因数是1、2、3、6、9、18 练习:分别找出36、64的所有因数
(2)要找出一个数的全部因数,用除法。把这个数作为被除数,改变除数,按照顺序,依次用1、2、3、4、5、…去除这个数,看除得的商是不是整数。如果是整数,则除数和商都是被除数的因数,当除数和商相等时,就算一个因数;如果不是整数,除数和商都不是被除数的因数,一直除到除数比商大为止。
例题3:要写出24的所有因数,方法如下:
24÷1=24,1和24都是24的因数;
24÷2=12,2和12都是24的因数;
24÷3=8,3和8都是24的因数;
24÷4=6,4和6都是24的因数;
24÷5=4.8,4.8不是整数,除数和商都不是24的因数。
所以24的因数有1、2、3、4、6、8、12、24 练习:找出36、72的所有因数
3、找倍数的方法
根据一个数的倍数的定义,这个数和任意非零自然数之积都是这个数的倍数。在限定范
围内找一个数的倍数,可先写出这个自然数本身,然后用这个自然数分别去2、3、4、5、…直到所乘的积接近所规定的极限为止。
例题4:写出40以内4的倍数,可以依次写出4、8、12、16、20、24、28、32、36。
练习:写出50以内6的倍数。4、2和5的倍数的特征
(1)2的倍数的特征
一个数个位上的数字是2的倍数,那么这个数就是2的倍数。或者个位上是2、4、6、8、0的数都是2的倍数。
像2、4、6、8、…这样的数,是2的倍数,也叫做偶数。个位上的数字是偶数的必定是偶数。
像1、3、5、7、…这样的数,不是2的倍数,也叫做奇数。个位上的数字是奇数的必定是奇数。
例题5:下列数当中哪些是2的倍数。并说出哪些是奇数,哪些数偶数。23、33、46、57、126、2021、346 练习:找出下列数当中哪些是2的倍数。并说出哪些是奇数,哪些数偶数。34、78、456、90、567、34、679、25、615
(2)5的倍数特征
如果一个数的个位上的数字是5的倍数,那么这个数就是5的倍数。或者说,个位上是0或是5的数,是5的倍数。
例题6:在下列数中找出5的倍数25、36、459、320、671、45、259、10、244、15 练习:
1、在下列数中找出5的倍数34、65、790、266、280、19、361、38、225
2、数字游戏。从0、2、5、9这4个数字中选3个,组成三位数。(各写2个)
(1)组成的数是2的倍数:
(2)组成的数是5的倍数:
(3)组成的数既是2的倍数又是5的倍数:(4)组成的数既是奇数又是5的倍数: 5、3的倍数的特征
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
例题7:在下列数中找出3的倍数333、457、890、125、57、87、343、594、1272 练习:
1、在下列数中找出3的倍数53、873、36、65、60、128、453、666、984、762
2、从0、3、6、9中,任选3个数字组成一个三位数,分别满足下面的条件。(各写两个)
(1)是3的倍数的有:
(2)同时是2和3的倍数的有:(3)同时是3和5的倍数的有:(4)同时是2、3和5的倍数的有:
6、质数和合数
质数的定义:一个数只有1和它本身两个因数,这个数叫做质数。
合数的定义:一个数除了1和它本身以外还有别的因数,这个数叫做合数。
1既不是质数,也不是合数。
例题8:分一分91、34、56、90、26、73、987、11、67、369、0、25、37、46 质数:
合数:
练习:合数的因数有()
A、1个
B、2个
C、3个或者3个以上