幂函数教案1[最终版]

时间:2019-05-13 00:32:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《幂函数教案1[最终版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《幂函数教案1[最终版]》。

第一篇:幂函数教案1[最终版]

幂函数教案

教学内容:4.1.2幂函数

授课班级:2012现代林业技术1班 时间:2012-11-28 教师:马继红 【教学目标】

(一)知识与技能

1.了解幂函数的概念,会画幂函数yx,yx,yx,yx,yx的12312图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。2.了解几个常见的幂函数的性质。

(二)过程与方法

1.通过观察、总结幂函数的性质,提高概括抽象和识图能力。2.体会数形结合的思想。

(三)情感态度与价值观

1.通过生活实例引出幂函数的概念,体会生活中处处有数学,树立学以致用的意识。2.通过合作学习,增强合作意识。【教学重点】幂函数的定义

【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】启发式、讲练结合 教学过程

一、复习旧课

二、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积Sa2,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积Va3,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长aS

12,这里a是S的函数 问题5:如果某人ts内骑车行进了1km,那么他骑车的速度Vt1km/s,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

(一)幂函数的概念

如果设变量为x,函数值为y,你能根据以上的生活实例得到怎样的一些具体的函数式?

这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗? 幂函数的定义:一般地,我们把形如yx的函数称为幂函数(power function),其中x是自变量,是常数。【探究一】幂函数有什么特点?

结论:对幂函数来说,底数是自变量,指数是常数 试一试:判断下列函数那些是幂函数 练习1 判断下列函数是不是幂函数 3(1)y=2 x;(2)y=2 x5; 7(3)y=x8;(4)y=x2+3.

根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

(二):求幂函数的定义域 1.什么是函数的定义域?

函数自变量的取值范围叫做函数的定义域 2.求函数的定义域时依据哪些原则?(1)解析式为整式时,x取值是全体实数。

2(2)解析式是分式时,x取值使分母不等于零。

(3)解析式为偶次方根时,x取值使被开方数取非负实数。(4)以上几种情况同时出现时,x取各部分的交集。

(5)当解析式涉及到具体应用题时,x取值除了使解析式有意义还要使实际问题有意义。例1 写出下列函数的定义域: 1(1)y=x3;(2)y=x2;

-32.(3)y=x-;(4)y=x2解:(1)函数y=x3的定义域为R;

1(2)函数y=x2,即y=x,定义域为[0,+∞);

12(3)函数y=x-,即y=2,定义域为(-∞,0)∪(0,+∞);

x3-1(4)函数 y=x2,即 y=,其定义域为(0,+∞). x练习2 求下列函数的定义域:

11-(1)y=x2;(2)y=x 3;(3)y=x-1;(4)y=x2.

(三)、几个常见幂函数的图象和性质

我们已经学习了幂函数(1)y=x;(2)y=x2.(3)y=x-.(4)y=x3(5)y=1x2;请同学们在同一坐标系中画出它们的图象.性质:幂函数随幂指数α的取值不同,它们的性质和图象也不尽相同,但也有一些共性,例如,所有的幂函数都通过点(1,1),都经过第一象限;当0是,图象过点(1,1),(0,0),且在第一象限随x的增大而上升,函数在区间0,上是单调增函数。0 时幂函数yx图象的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,)上是单调减函数,且向右无限接近X轴,向上无限接3近Y轴。

(四)课堂小结

(五)课后作业

1.教材 P 100,练习A 第1题.

12在同一坐标系中画出函数y=x与y=x2的图象,并指数这两个函数各有什么性质以

3及它们的图象关系

第二篇:幂函数教案(第1课时)

幂函数教案(第1课时)教学目标: ㈠知识和技能

1.了解幂函数的概念,会画幂函数,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。

2.了解几个常见的幂函数的性质。㈡过程与方法

1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。2.使学生进一步体会数形结合的思想。㈢情感、态度与价值观

1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。教学重点

常见幂函数的概念和性质 教学难点

幂函数的单调性与幂指数的关系 教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数

问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

(一)幂函数的概念

如果设变量为,函数值为,你能根据以上的生活实例得到怎样的一些具体的函数式? 这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗? 这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗? 幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。

【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 试一试:判断下列函数那些是幂函数(1)(2)(3)(4)

我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)

(二)几个常见幂函数的图象和性质

在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数的图象吗? 【探究二】观察函数的图象,将你发现的结论写在下表内。

定义域

值域

奇偶性

单调性

定点

图象范围

【探究三】根据上表的内容并结合图象,试总结函数:的共同性质。函数的图象都过点 函数在上单调递增;

归纳:幂函数图象的基本特征是,当是,图象过点,且在第一象限随的增大而上升,函数在区间上是单调增函数。(演示几何画板制作课件:幂函数.asp)请同学们模仿我们探究幂函数图象的基本特征的情况探讨时幂函数图象的基本特征。(利用drawtools软件作图研究)

归纳: 时幂函数图象的基本特征:过点,且在第一象限随的增大而下降,函数在区间上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。

(三)例题剖析

【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1)(2)(3)

分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。若函数解析式中含有分母,分母不能为0;

若函数解析式中含有根号,要注意偶次根号下非负; 0的0次幂没有意义;

若函数解析式中含有对数式,要注意对数的真数大于0; 求函数的定义域的本质是解不等式或不等式组。

结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。

归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)

【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”)(1)________

(2)________(3)__________

(4)____________ 分析:利用考察其相对应的幂函数和指数函数来比较大小

三、课堂小结

幂函数的概念及其指数函数表达式的区别 常见幂函数的图象和幂函数的性质。

四、布置作业

㈠课本第73页习题2.4第1、2、3题 ㈡思考题:根据下列条件对于幂函数的有关性质的叙述,分别指出幂函数的图象具有下列特点之一时的的值,其中

(1)图象过原点,且随的增大而上升;

(2)图象不过原点,不与坐标轴相交,且随的增大而下降;(3)图象关于轴对称,且与坐标轴相交;(4)图象关于轴对称,但不与坐标轴相交;(5)图象关于原点对称,且过原点;(6)图象关于原点对称,但不过原点;

第三篇:2.4_幂函数教案

从新方案调研一线传来的消息,证实了专家们的猜测,目前江苏省高考改革主要围绕3个方案进行讨论调研,每个方案都增加了计分科目,只是增加的科目数量不同。

方案一是“3+小综合”,即语数外三门,加理科小综合(物理、化学、生物)或语数外三门加文科小综合(历史、地理、生物),小综合3门合卷考试;

方案二是“3+2”,即语数外三门,加历史、政治(文科)或者物理、化学(理科);

方案三是“4+1”,即文科语数外历史必考,另在政治、地理中任选一门;理科语数外物理必考,另在化学、生物中任选一门。

有关人士透露,最终出台的新方案很可能就是在3个方案中选一个,究竟选那个,目前意见尚不统一。“有的认为语数外以外,再考物理化学或历史政治2门就够了,有的认为生

物、地理也很重要,还有的认为如果历史、物理单独考试,分量太重。”这位人士透露,目前来看支持“3+小综合”的比较多,实施可能性较大,因为该方案能兼顾各科。

“高考就是指挥棒,如果哪一门不考,这一门很可能就被学校淡化了。以化学为例,因为2008年高考方案中,考生选择化学得A几率较小,曾出现过一所学校没有一个考生选化学的情况。

幂函数2教案

教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。

幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数。组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。

学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。

教学目标:

㈠知识和技能

1.了解幂函数的概念,会画幂函数,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。2.了解几个常见的幂函数的性质。㈡过程与方法

1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

2.使学生进一步体会数形结合的思想。㈢情感、态度与价值观

1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。

教学重点

常见幂函数的概念和性质

教学难点

幂函数的单调性与幂指数的关系

教学过程

突破思路

本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型.通过研究y=x、y=x2、y=x3、y=x1、y=x等函数的性质和图象,让学生认识到幂指数大于零和小于零-

12两种情形下,幂函数的共性:当幂指数a>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数a<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.

合作讨论

问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?

(1)y=x;(2)y=x;(3)y=x;(4)y=x.

思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x的集合;奇偶性直接利用定义进行判断.(1)定义域为[0,+),(2)(3)(4)定义域都是R;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数.它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增.

问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?

(1)y=x1;(2)y=x2;(3)y=x-

-121323431-2;(4)y=x-13.

思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是{x|x≠0},(3)的定义域是(0,+);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.

思维过程

研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.

【例题】讨论函数y=x的定义域、值域、奇偶性、单调性,并画出图象的示意图.

思路:函数y=x是幂函数.

(1)要使y=x=x有意义,x可以取任意实数,故函数定义域为R.

(2)∵xR,∴x2≥0.∴y≥0.

2(3)f(-x)=5(-x)=x=f(x),25252552

52∴函数y=x是偶函数;

(4)∵n=252>0,525

∴幂函数y=x在[0,+]上单调递增.

由于幂函数y=x是偶函数,25

∴幂函数y=x在(-,0)上单调递减.

(5)其图象如下图所示. 25

新题解答

【例1】比较下列各组中两个数的大小:

(1)1.5,1.7;(2)0.7,0.6;(3)(-1.2)3535351.5

1.5

-23,(-1.25)-23.

解析:(1)考查幂函数y=x的单调性,在第一象限内函数单调递增,∵1.5<1.7,∴1.5<1.7,(2)考查幂函数y=x的单调性,同理0.71.5>0.61.5.

(3)先将负指数幂化为正指数幂可知它是偶函数,∵(-1.2)

∴(-1.2)-2323353532=1.2-23,(-1.25).

-23=1.252-3,又1.2-23>1.252-3,->1.252-

3点评:比较幂形式的两个数的大小,一般的思路是:

(1)若能化为同指数,则用幂函数的单调性;

(2)若能化为同底数,则用指数函数的单调性;

(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.

【例2】设函数f(x)=x3,(1)求它的反函数;

(2)分别求出f1(x)=f(x),f1(x)>f(x),f1(x)<f(x)的实数x的范围. -

解析:(1)由y=x两边同时开三次方得x=3y,∴f(x)=x.

(2)∵函数f(x)=x和f(x)=x的图象都经过点(0,0)和(1,1).

∴f1(x)=f(x)时,x=±1及0; -3-

1133-1

在同一个坐标系中画出两个函数图象,由图可知

f1(x)>f(x)时,x<-1或0<x<1; -

f1(x)<f(x)时,x>1或-1<x<0. -

点评:本题在确定x的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.

【例3】求函数y=x+2x+4(x≥-32)值域.

解析:设t=x,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.

当t=-1时,ymin=3.

∴函数y=x+2x+4(x≥-32)的值域为[3,+).

点评:这是复合函数求值域的问题,应用换元法.

变式练习

1.函数y=(x2-2x)

-121525152515的定义域是()

A.{x|x≠0或x≠2}

B.(-∞,0)(2,+∞)

C.(-∞,0)][2,+∞]

D.(0,2)

解析:函数可化为根式形式,即可得定义域.

答案:B

2.函数y=(1-x2)的值域是()

A.[0,+∞]

B.(0,1)

C.(0,1)

D.[0,1]

解析:这是复合函数求值域问题,利用换元法,令t=1-x2,则y=t.

∵-1≤x≤1,∴0≤t≤1,∴0≤y≤1.

答案:D

3.函数y=x的单调递减区间为()

A.(-∞,1)

B.(-∞,0)

C.[0,+∞]

D.(-∞,+∞)

解析:函数y=x是偶函数,且在[0,+∞)上单调递增,由对称性可知选B.

答案:B 252512

4.若a<a12-12,则a的取值范围是()

A.a≥1

B.a>0

C.1>a>0

D.1≥a≥0

解析:运用指数函数的性质,选C.

答案:C

5.函数y=(15+2x-x)的定义域是()

A.5≥x≥-3

B.5>x>-3

C.x≥5或x≤-3

D.R

解析:由(15+2x-x2)3≥0.

∴15+2x-x<20.∴-3≤x≤5.

答案:A

6.函数y=1x2-m-m2在第二象限内单调递增,则m的最大负整数是________.

解析:m的取值应该使函数为偶函数.故m=-1.

答案:m=-1

47.已知函数y=15-2x-x.

(1)求函数的定义域、值域;

(2)判断函数的奇偶性;

(3)求函数的单调区间.

解析:这是复合函数问题,利用换元法令t=15-2x-x2,则y=4t,(1)由15-2x-x2≥0得函数的定义域为[-5,3],∴t=16-(x-1)2[0,16].∴函数的值域为[0,2].

(2)∵函数的定义域为[-5,3]且关于原点不对称,∴函数既不是奇函数也不是偶函数.

(3)∵函数的定义域为[-5,3],对称轴为x=1,∴x[-5,1]时,t随x的增大而增大;x(1,3)时,t随x的增大而减小.

又∵函数y=4t在t[0,16]时,y随t的增大而增大,4∴函数y=15-2x-x的单调增区间为[-5,1],单调减区间为(1,3].

2答案:(1)定义域为[-5,3],值域为[0,2];

(2)函数即不是奇函数,也不是偶函数;

(3)(1,3].

规律总结

1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;

2.对于幂函数y=x,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即<0,0<<1和>1三种情况下曲线的基本形状,还要注意=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即>0(≠1)时图象是抛物线型;0<<1时图象是横卧抛物线型. <0时图象是双曲线型;>1时图象是竖直抛物线型;

第四篇:指数函数、对数函数、幂函数教案

一、指数函数

1.形如yax(a0,a0)的函数叫做指数函数,其中自变量是x,函数定义域是R,值域是(0,).

2.指数函数yax(a0,a0)恒经过点(0,1). 3.当a1时,函数yax单调性为在R上时增函数; 当0a1时,函数yax单调性是在R上是减函数.

二、对数函数 1. 对数定义:

一般地,如果a(a0且a1)的b次幂等于N, 即abN,那么就称b是以a为底N的对数,记作 logaNb,其中,a叫做对数的底数,N叫做真数。

b 着重理解对数式与指数式之间的相互转化关系,理解,aN与blogaN所表示的是a,b,N三个量之间的同一个关系。2.对数的性质:

(1)零和负数没有对数;(2)loga10;(3)logaa1

这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3.两种特殊的对数是:①常用对数:以10作底 log10N简记为lgN ②自然对数:以e作底(为无理数),e= 2.718 28……,loge4.对数恒等式(1)logaabb;(2)alogaNN简记为lnN.

N

b 要明确a,b,N在对数式与指数式中各自的含义,在指数式aN中,a是底数,b是指数,N是幂;在对数式blogaN中,a是对数的底数,N是真数,b是以a为底N的对数,虽然a,b,N在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求b对数logaN就是求aN中的指数,也就是确定a的多少次幂等于N。

三、幂函数

1.幂函数的概念:一般地,我们把形如yx的函数称为幂函数,其中x是自变量,是常数;

注意:幂函数与指数函数的区别. 2.幂函数的性质:

(1)幂函数的图象都过点(1,1);

(2)当0时,幂函数在[0,)上单调递增;当0时,幂函数在(0,)上 单调递减;

(3)当2,2时,幂函数是 偶函数 ;当1,1,3,时,幂函数是 奇函数 .

四、精典范例 例

1、已知f(x)=x·(31311); x221(1)判断函数的奇偶性;(2)证明:f(x)>0.【解】:(1)因为2-1≠0,即2≠1,所以x≠0,即函数f(x)的定义域为{x∈R|x≠0}.x

x11x32x1)=·x又f(x)=x(x,2212123(x)32x1x32x1··f(-x)==f(x),22x122x1所以函数f(x)是偶函数。

x32x10.(2)当x>0时,则x>0,2>1,2-1>0,所以f(x)=·x2213

x

x又f(x)=f(-x),当x<0时,f(x)=f(-x)>0.综上述f(x)>0.a·2xa2(xR),若f(x)满足f(-x)=-f(x).例

2、已知f(x)=x21(1)求实数a的值;(2)判断函数的单调性。

【解】:(1)函数f(x)的定义域为R,又f(x)满足f(-x)= -f(x),所以f(-0)= -f(0),即f(0)=0.所以

2a20,解得a=1,22(2x12x2)2x112x21(2)设x1

3、已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(,)在函数y=g(x)的图象上运动。(1)写出y=g(x)的解析式;

(2)求出使g(x)>f(x)的x的取值范围;

(3)在(2)的范围内,求y=g(x)-f(x)的最大值。【解】:(1)令

xy32xys,t,则x=2s,y=2t.32因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1),11log2(3s+1),所以g(x)= log2(3s+1)221(2)因为g(x)>f(x)所以log2(3x+1)>log2(x+1)

2即t=3x1(x1)23即0x1(3)最大值是log23-

2x10x2.例

4、已知函数f(x)满足f(x-3)=lg2x62(1)求f(x)的表达式及其定义域;(2)判断函数f(x)的奇偶性;

(3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值.解:(1)设x-3=t,则x=t+3, 所以f(t)=lg2

t3t3lg

t36t3x3x30,得x<-3,或x>3.解不等式x3x3x3所以f(x)-lg,定义域为(-∞,-3)∪(3,+∞).x3所以f(x)=lg x3x3x3lglg=-f(x).x3x3x3x3(3)因为f[g(x)]=lg(x+1),f(x)=lg,x3(2)f(-x)=lg所以lgg(x)3g(x)3lg(x1),所以g(x)3g(x)3x1,(g(x)3g(x)30,x10).解得g(x)=3(x2)x, 所以g(3)=5

第五篇:汇报课 幂函数教案

2.3幂函数

2012年11月6日 地点:1225班教室

执教者:

一、教学目标:

1、知识与技能:通过实例,了解幂函数的概念;会画简单幂函数的图象,并能根据图象得出这些函数的性质;

2、过程与方法:用类比法(指数函数、对数函数)来研究幂函数的图象和性质;

3、情感态度和价值观:培养学生观察和归纳能力,进一步渗透数形结合与分类讨论的思想方法。

二、教学重点: 从5个常见幂函数归纳认识幂函数的一些性质并做简单应用。

三、教学难点: 引导学生概括出幂函数的性质。

四、教学过程:

1、问题引入:(课本p77)

2、授新课:

(1)幂函数的定义:形如yx的函数叫幂函数,其中x是自变量,是常数.(2)指数函数与幂函数的区别.(3)5个常见幂函数的图像和性质.1(1)yx;(2)yx;(3)yx(4)yx2;(5)yx1

(4)由5个常见幂函数的图象与性质探究一般幂函数的性质.(5)例题讲解

例1:证明幂函数f(x)

4、课堂练习

x在[0,)上是增函数.已知下列函数:

121yx,2yx33yx14yx20125y=x4是奇函数的有:

;是偶函数的有:

在0,上是增函数的有:

;在0,上是减函数的有:

5、课堂小结:(见课件)

6、布置作业:完成教学案“2.3幂函数”.7、板书设计

2.3幂函数

 R1、定义:yx,x是自变量,是常数,2、5个常见幂函数的图象与性质

1(1)yx;(2)yx;(3)yx(4)yx2;(5)yx1

233、幂函数的性质

8、教学反思

下载幂函数教案1[最终版]word格式文档
下载幂函数教案1[最终版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《幂函数》说课稿(最终定稿)

    各位专家领导:早上好!今天我将要为大家讲的课题是幂函数。一、说教材1、教材的地位和作用:《幂函数》选自高一数学新教材必修1第2章第3节。幂函数是继指数函数和对数函数后研究......

    初三数学幂函数专题

    幂函数 知识点回顾: 1、幂函数定义:一般地,形如yx的函数称为幂函数,其中x是自变量,α为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0 时,幂函数的......

    幂函数的性质

    幂函数的性质 对于yx幂函数来说具有以下性质: 1.如果a是奇数,函数就是奇函数,如果a是偶数,函数就是偶函数 2,如果a>0,函数定义域能取0,如果a1,函数是增函数,增得快 0......

    幂函数知识点总结

    幂函数知识点总结一幂函数的概念1.函数yxnnR叫做幂函数,其中x是自变量2.图象与行政(1) n>0时,过定点(0,0)和(1,1),在x0,上单调递增。(2)n<0时,过定点(1,1),在x0,上单调递减。基本初等函数测试题一选择......

    幂函数教学反思

    简单幂函数教学反思 -沈浩 学期初,学校安排我上一节导学案模式下的公开课,结合教学进度,我定下教学内容为必修一第二章第五节简单的幂函数第一课时,在自己的精心准备和同事的......

    幂函数教学反思[本站推荐]

    数学必修1第二章《基本初等函数》之 《3.3幂函数》 教学反思 幂函数作为一类重要的函数模型,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经......

    幂函数教学反思

    §2.3幂函数 教学反思 本节课本着学科素养,生命课堂,高效课堂教学理念,对这节课进行了设计。 学科素养:通过类比指数函数的学习引入了幂函数,对于图象的探讨研究,进而直观的得到幂......

    幂函数、指数函数和对数函数-对数及其运算法则-教案

    幂函数、指数函数和对数函数·对数及其运算法则·教案 ? 教学目标 1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质. 2.理解并掌握对数运算法则的内容及推导过......