第一篇:2018高一数学知识点之幂函数
2018高一数学知识点之幂函数
知识点是关键,为了能够使同学们在数学方面有所建树,小编特此整理了高一数学知识点之幂函数,以供大家参考。
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x0,则a可以是任意实数;
排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
第二篇:幂函数知识点总结
幂函数知识点总结
一幂函数的概念
1.函数yxnnR叫做幂函数,其中x是自变量
2.图象与行政
(1)n>0时,过定点(0,0)和(1,1),在x0,上单调递增。(2)n<0时,过定点(1,1),在x0,上单调递减。
基本初等函数测试题
一选择题
1.下列各式正确的是()
4A.(-3)=-3B.a=aC.2=2D.a0=2.(a-b)+(a-b)的值是()
A.0B.2(a-b)C.0或2(a-b)D.a-b 3.设a22.51,b2.50,c()2.5,则a,b,c大小关系()
2A.a>c>bB.c>a>bC.a>b>cD.b>a>c
4.已知f(x6)log2x,则f(8)()41B.8C.18D.32
11b1a5.设<(<1,则()33
3A.aa A f(2)f(1)f(4)B.f(1)f(2)f(4) C.f(2)f(4)f(1)D.f(4)f(2)f(1) 1x+1<4,x∈Z},则M∩N=()2 A.{-1,1}B.{0}C.{-1}D.{-1,0} x-118.方程3=的解为()9 A.x=2B.x=-2C.x=1D.x=-1 9..在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax(a>0且a≠1)的图象可能是()7.已知集合M={-1,1},N={x|<2 10.(log43+log83)(log32+log98)等于() 5259 A.6B.12C.4D.以上都不对 log2x,x>0 11.函数fx=log-x,x<0,若fa>f-a,则a的范围 12 A.(-1,0)(0,1)B.(-,-1)(1,+) C.(-1,0)(1,+)D.(-,-1)(0,1),12.已知定义在R上的奇函数fx和偶函数gx,满足fx+gx= ax-a-x+2(a>0,a1),若g2=a,f2= A.2B.二填空题 13.log6log4(log381)的值为 14.如果指数函数f(x)(a1)是R上的减函数,则a的取值范围是________.15.已知log3m x 152 C.3D.a 41,则m=___________.log23 16.若集合A{2,3,7},且A中之多有1个奇数,则这样的集合共有__________. 三、解答题:本大题共6道小题,共54分,解答应写出文字说明,说明过程或验算步骤: 17.已知全集U={xN|0x6},集合A={xN|1x5},集合B= xN|2x6} 求(1)AB(2)(CUA)B(3)(CUA)(CUB) 18.已知函数f(x)log1 2x111 (x(,)(,)). 2x122 (1)判断函数f(x)的奇偶性,并说明理由; (2)指出函数f(x)在区间(,)上的单调性,并加以证明. 19.设f(x)为定义在R上的偶函数,当0x2时,y=x;当x>2时,y=f(x)的图像时顶点在P(3,4),且过点A(2,2)的抛物线的一部分 (1)求函数f(x)在(,2)上的解析式; (2)在下面的直角坐标系中直接画出函数f(x)的图像; (3)写出函数f(x)值域。 20.已知函数f(x)=log2 1x 1x (1)求证:f(x1)f(x2)f((2)若f(x1x2); 1x1x2 ab1)=1,f(b),求f(a)的值。1ab2 x 21.一次函数f(x)mxn与指数型函数g(x)ab,(a>0,a1)的图像交于两点A(0,1),B(1,2),解答下列各题:(1)求一次函数f(x)和指数型函数g(x)的表达式;(2)作出这两个函数的图像; (3)填空:当x时,f(x)g(x);当x时,f(x) 2y x o 22.某种商品在30天内的销售价格P(元)与时间t天的函数关系用图甲表示,该商品在30天内日销售量Q(件)与时间t天之间的关系如下表所示: (1)根据所提供的图像(图甲)写出该商品每件的销售价格P与时间t的函数关系式;(2)在所给的直角坐标系(图乙)中,根据表中所提供的数据描出实数对(t,Q)的对应点,并确定一个日销售量Q与时间t的函数关系式。(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天? 甲 进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面小编给大家分享一些高中数学幂函数知识,希望能够帮助大家,欢迎阅读! 高中数学幂函数知识1 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质; (2)图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3)函数单调区间与单调性的判定方法 (A)定义法: a.任取x1,x2∈D,且x1 b.作差f(x1)-f(x2); c.变形(通常是因式分解和配方); d.定号(即判断差f(x1)-f(x2)的正负); e.下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质) (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤: a.首先确定函数的定义域,并判断其是否关于原点对称; b.确定f(-x)与f(x)的关系; c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有: 1)凑配法 2)待定系数法 3)换元法 4)消参法 10.函数最大(小)值(定义见课本p36页) a.利用二次函数的性质(配方法)求函数的最大(小)值 b.利用图象求函数的最大(小)值 c.利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.高中数学幂函数知识2一、一次函数定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 高中数学幂函数知识3 一、高中数学函数的有关概念 1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.注意: 函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.高中数学函数值域:先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3.函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.高中数学函数区间的概念 (1)函数区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 5.映射 一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)函数A中的每一个元素,在函数B中都有象,并且象是唯一的; (2)函数A中不同的元素,在函数B中对应的象可以是同一个; (3)不要求函数B中的每一个元素在函数A中都有原象。 6.高中数学函数之分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。 高中数学幂函数知识点 高一数学知识点总结 一、集合与简易逻辑 集合具有四个性质: 广泛性:集合的元素什么都可以 确定性:集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的互异性:集合中的元素必须是互不相等的,一个元素不能重复出现 无序性:集合中的元素与顺序无关 二、函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等。 三、数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等。 四、三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题。 效率:高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130。 转自百度文库。。 高一数学知识点:对数函数 南通仁德教育数学朱老师总结了高一知识点:对数函数,仅供同学们参考; 对数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。第三篇:高中数学幂函数知识点
第四篇:高一数学知识点总结
第五篇:高一数学知识点:对数函数