第一篇:高一数学不等式知识点
不 等 式
1、不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有:
(1)对称性:a>bb (2)传递性:若a>b,b>c,则a>c; (3)可加性:a>ba+c>b+c; (4)可乘性:a>b,当c>0时,ac>bc;当c<0时,ac 不等式运算性质: (1)同向相加:若a>b,c>d,则a+c>b+d; (2)异向相减:ab,cdacbd.(3)正数同向相乘:若a>b>0,c>d>0,则ac>bd。 (4)乘方法则:若a>b>0,n∈N+,则anbn; (5)开方法则:若a>b>0,n∈N+,则ab; (6)倒数法则:若ab>0,a>b,则 2、基本不等式 定理:如果a,bR,那么a21a1。bb22ab(当且仅当a=b时取“=”号) abab(当且仅当a=b时取“=”号)推论:如果a,b0,那么 2ab算术平均数;几何平均数2 推广:若a,bab; a2b2ab20,则ab1122ab 当且仅当a=b时取“=”号; 3、绝对值不等式 (1)|x|<a(a>0)的解集为:{x|-a<x<a}; |x|>a(a>0)的解集为:{x|x>a或x<-a}。 (2)||a||b|||ab||a||b| 4、不等式的证明: (1)常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2)在不等式证明过程中,应注重与不等式的运算性质联合使用; (3)证明不等式的过程中,放大或缩小应适度。 5、不等式的解法: (1)一元二次型不等式的恒成立问题常用结论: a0或a0检验; ax+bx+c>0对于任意的x恒成立2b4ac0 2a0或a0检验 ax+bx+c<0对于任意的x恒成立2b4ac02 (2)解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。 一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。一元二次不等式与相应的函数,方程的联系 ① 求一般的一元二次不等式ax2bxc0或ax2bxc0(a0)的解集,要结合ax2bxc0的根及二次函数yax2bxc图象确定解集. ② 对于一元二次方程ax2bxc0(a0),设b24ac,它的解按照0,0,0可分为三种情况.相应地,二次函数yax2bxc(a0)的图象与x轴的位置关系也分为三种情况.因此,我们分三种情况讨论对应的一元二次不等式ax2bxc0(a0)的解集,列表如下: 含 参数的不等式 应适当分类讨论。 6、线性规划问题的解题方法和步骤 解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解。它的步骤如下: (1)设出未知数,确定目标函数。 (2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。 az(3)由目标函数z=ax+by变形为y=-x+,所以,求z的最值可看成是bb az求直线y=-x+在y轴上截距的最值(其中a、b是常数,z随x,y的变化bb 而变化)。 (4)作平行线:将直线ax+by=0平移(即作ax+by=0的平行线),使直线与z可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点b的坐标。 (5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z的最大(或最小)值。 7、在平面直角坐标系中,已知直线xyC0,坐标平面内的点x0,y0. ①若 0,x0y0C0,则点x0,y0在直线xyC0的上方. ②若 0,x0y0C0,则点x0,y0在直线xyC0的下方. 8、在平面直角坐标系中,已知直线xyC0. yC0表示直线xyC0上方的区域;①若 0,则x xyC0表示直线xyC0下方的区域. yC0表示直线xyC0下方的区域;②若 0,则x xyC0表示直线xyC0上方的区域. 9、最值定理 设x、y都为正数,则有 s 2⑴ 若xys(和为定值),则当xy时,积xy取得最大值. 4⑵ 若xyp(积为定值),则当xy时,和x y取得最小值 即:“积定,和有最小值;和定,积有最大值” 注意:一正、二定、三相等 不等式知识点整理 一、不等关系: 1.实数的大小顺序与运算性质之间的关系: abab0; abab0; abab0.2.不等式的性质: (1)abba(自反性) (2)ab,bcac(传递性) (3)abacbc(可加性) (4)ab,c0acbc; ab,c0acbc(可乘性) (5)ab,cdacbd(同向加法) (6)ab0,cd0acbd;(同向乘法) (7)ab0,nN,n1anbn,a。(同向乘方) 3.常用的基本不等式和重要的不等式 (1)aR,a20,a0,当且仅当a0取“=”.(2)a,bR,则a2b22ab(当且仅当ab时取“=”) (3)a,bR,则ab2ab(当且仅当ab时取“=”)a b注:——集几何平均数.2a2b2ab2()(当且仅当ab时取“=”(4))22 a2b2c2abc2()(当且仅当abc时取“=”(5))3 3ab(6)(a2b2)(c2d2)(acbd)2(当且仅当时取“=”)(柯西不等式)cd4、最值定理:设x,y0,由xy (1)如积xyP为定值,则当且仅当xy时x y有最小值 S(2)如和xyS为定值,则当且仅当xy时xy有最大值()2.2即:积定和最小,和定积最大.注:运用最值定理求最值的三要素:一正二定三相等.5.含绝对值的不等式性质: ababab(注意等号成立的情况).二、不等式的证明方法 1.比较法 (1)作差比较法:作差——变形(通分、因式分解等)——判别符号; (2)作商比较法:作商——变形(化为幂的形式等)——与1比大小.(分母要为正的) 2.综合法——由因导果(由前面结论) 3.分析法——执果索因 注:(1)一般地常用分析法探索证题途径,然后用综合法; (2)还可以用放缩法、换元法等综合证明不等式.三、解不等式 bb1.一元一次不等式 axb(a0)(1)a0,xx ;(2)a0,xx.aa 2.一元二次不等式 ax2bxc0,(a0) (1)步骤:一看开口方向(a的符号),二看判别式 b24ac的符号,三看方程的根写解集.(2)重要结论:ax2bxc0(a0)解集为R(即ax2bxc0对xR恒成立),则a0,0.(注:若二次函数系数含参数且未指明不为零时,需验证a0).3.绝对值不等式 a0a(1)零点分段讨论a aa0 (2)转化法:f(x)g(x)f(x)g(x)或f(x)g(x)f(x)g(x)g(x)f(x)g(x) (3)数形结合4.高次不等式、分式不等式——序轴标根法 P(x)0或P(x)Q(x)0(移项,一边化为0,不要轻易去分步骤:①形式:Q(x) 母); ②因式分解,化为积的形式(x系数符号>0——标准式); ③序轴标根; ④写出解集.5.注意含参数的不等式的解的讨论................. 四、一个有用的结论 关于函数yxp x ppx 0时x 在(0、xx [ 上是减函数;在(、[)上是增函数.1.p0时,当x 0时x (0,)2.p0时,在,上为增函数.0、 不等式 一.知识点: 1.不等式的性质: 2.不等式的解法: (一)整式不等式的解法; (二)分式不等式的解法; (三)指对不等式的解法; 重点:含参二次不等式的解法; 3.不等式的证明:(1)作差变形;(2)分析法 4.均值不等式:(一正二定三等) 题型1:题型2:题型3:题型4: 5.线性规划: 二.典型题: 1.已知二次函数零点分布,求参数范围问题; 2.恒成立问题的解法; 3.均值不等式的应用; 1.已知二次函数零点分布,求参数范围问题; 2.恒成立问题的解法; 3.线性规划问题的讲解方式; 4.递推式问题:相邻项的关系较复杂,隔项或相邻多项的关系会简单。 5.均值不等式的几种常见题型; 6.变形种类: 学习任何一门知识点都要学会对该知识点进行总结,这样可以检查学生对知识的真正掌握程度以及方便学生日后的复习。下面给大家带来一些关于高一数学知识点汇总,希望对大家有所帮助。 高一数学知识点汇总1 函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域.注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3.函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯 通过上面的高一数学必修1知识点总结,同学们已经梳理了一遍高一数学必修1的知识点,也加深了对该知识的更深了解,相信同学们一定能学好这部分知识点,也希望同学们以后的学习中多做总结。 高一数学知识点汇总2 集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2; (2)注意:讨论的时候不要遗忘了的情况。 (3) 第二部分函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 高一数学知识点汇总3 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项 如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N_).(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项).注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法 等差数列的判断方法 (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高一数学知识点汇总4 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。 高中数学知识点总结理科归纳5 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 高一数学知识点汇总大全 高一数学知识点:对数函数 南通仁德教育数学朱老师总结了高一知识点:对数函数,仅供同学们参考; 对数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。第二篇:不等式知识点整理
第三篇:不等式知识点
第四篇:高一数学知识点汇总
第五篇:高一数学知识点:对数函数