高一数学不等式知识点(5篇范文)

时间:2019-05-13 21:42:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一数学不等式知识点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学不等式知识点》。

第一篇:高一数学不等式知识点

不 等 式

1、不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有:

(1)对称性:a>bb

(2)传递性:若a>b,b>c,则a>c;

(3)可加性:a>ba+c>b+c;

(4)可乘性:a>b,当c>0时,ac>bc;当c<0时,ac

不等式运算性质:

(1)同向相加:若a>b,c>d,则a+c>b+d;

(2)异向相减:ab,cdacbd.(3)正数同向相乘:若a>b>0,c>d>0,则ac>bd。

(4)乘方法则:若a>b>0,n∈N+,则anbn;

(5)开方法则:若a>b>0,n∈N+,则ab;

(6)倒数法则:若ab>0,a>b,则

2、基本不等式

定理:如果a,bR,那么a21a1。bb22ab(当且仅当a=b时取“=”号)

abab(当且仅当a=b时取“=”号)推论:如果a,b0,那么

2ab算术平均数;几何平均数2

推广:若a,bab; a2b2ab20,则ab1122ab

当且仅当a=b时取“=”号;

3、绝对值不等式

(1)|x|<a(a>0)的解集为:{x|-a<x<a};

|x|>a(a>0)的解集为:{x|x>a或x<-a}。

(2)||a||b|||ab||a||b|

4、不等式的证明:

(1)常用方法:比较法,公式法,分析法,反证法,换元法,放缩法;

(2)在不等式证明过程中,应注重与不等式的运算性质联合使用;

(3)证明不等式的过程中,放大或缩小应适度。

5、不等式的解法:

(1)一元二次型不等式的恒成立问题常用结论:

a0或a0检验; ax+bx+c>0对于任意的x恒成立2b4ac0

2a0或a0检验 ax+bx+c<0对于任意的x恒成立2b4ac02

(2)解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。

一元二次不等式(组)是解不等式的基础,一元二次不等式是解不等式的基本题型。一元二次不等式与相应的函数,方程的联系

① 求一般的一元二次不等式ax2bxc0或ax2bxc0(a0)的解集,要结合ax2bxc0的根及二次函数yax2bxc图象确定解集.

② 对于一元二次方程ax2bxc0(a0),设b24ac,它的解按照0,0,0可分为三种情况.相应地,二次函数yax2bxc(a0)的图象与x轴的位置关系也分为三种情况.因此,我们分三种情况讨论对应的一元二次不等式ax2bxc0(a0)的解集,列表如下:

参数的不等式

应适当分类讨论。

6、线性规划问题的解题方法和步骤

解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解。它的步骤如下:

(1)设出未知数,确定目标函数。

(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。

az(3)由目标函数z=ax+by变形为y=-x+,所以,求z的最值可看成是bb

az求直线y=-x+在y轴上截距的最值(其中a、b是常数,z随x,y的变化bb

而变化)。

(4)作平行线:将直线ax+by=0平移(即作ax+by=0的平行线),使直线与z可行域有交点,且观察在可行域中使最大(或最小)时所经过的点,求出该点b的坐标。

(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z的最大(或最小)值。

7、在平面直角坐标系中,已知直线xyC0,坐标平面内的点x0,y0. ①若 0,x0y0C0,则点x0,y0在直线xyC0的上方. ②若 0,x0y0C0,则点x0,y0在直线xyC0的下方.

8、在平面直角坐标系中,已知直线xyC0.

yC0表示直线xyC0上方的区域;①若 0,则x

xyC0表示直线xyC0下方的区域.

yC0表示直线xyC0下方的区域;②若 0,则x

xyC0表示直线xyC0上方的区域.

9、最值定理

设x、y都为正数,则有

s

2⑴ 若xys(和为定值),则当xy时,积xy取得最大值.

4⑵ 若xyp(积为定值),则当xy时,和x

y取得最小值 即:“积定,和有最小值;和定,积有最大值”

注意:一正、二定、三相等

第二篇:不等式知识点整理

不等式知识点整理

一、不等关系:

1.实数的大小顺序与运算性质之间的关系:

abab0;

abab0;

abab0.2.不等式的性质:

(1)abba(自反性)

(2)ab,bcac(传递性)

(3)abacbc(可加性)

(4)ab,c0acbc;

ab,c0acbc(可乘性)

(5)ab,cdacbd(同向加法)

(6)ab0,cd0acbd;(同向乘法)

(7)ab0,nN,n1anbn,a。(同向乘方)

3.常用的基本不等式和重要的不等式

(1)aR,a20,a0,当且仅当a0取“=”.(2)a,bR,则a2b22ab(当且仅当ab时取“=”)

(3)a,bR,则ab2ab(当且仅当ab时取“=”)a

b注:——集几何平均数.2a2b2ab2()(当且仅当ab时取“=”(4))22

a2b2c2abc2()(当且仅当abc时取“=”(5))3

3ab(6)(a2b2)(c2d2)(acbd)2(当且仅当时取“=”)(柯西不等式)cd4、最值定理:设x,y0,由xy

(1)如积xyP为定值,则当且仅当xy时x

y有最小值

S(2)如和xyS为定值,则当且仅当xy时xy有最大值()2.2即:积定和最小,和定积最大.注:运用最值定理求最值的三要素:一正二定三相等.5.含绝对值的不等式性质: ababab(注意等号成立的情况).二、不等式的证明方法

1.比较法

(1)作差比较法:作差——变形(通分、因式分解等)——判别符号;

(2)作商比较法:作商——变形(化为幂的形式等)——与1比大小.(分母要为正的)

2.综合法——由因导果(由前面结论)

3.分析法——执果索因

注:(1)一般地常用分析法探索证题途径,然后用综合法;

(2)还可以用放缩法、换元法等综合证明不等式.三、解不等式

bb1.一元一次不等式 axb(a0)(1)a0,xx ;(2)a0,xx.aa

2.一元二次不等式 ax2bxc0,(a0)

(1)步骤:一看开口方向(a的符号),二看判别式 b24ac的符号,三看方程的根写解集.(2)重要结论:ax2bxc0(a0)解集为R(即ax2bxc0对xR恒成立),则a0,0.(注:若二次函数系数含参数且未指明不为零时,需验证a0).3.绝对值不等式

a0a(1)零点分段讨论a aa0

(2)转化法:f(x)g(x)f(x)g(x)或f(x)g(x)f(x)g(x)g(x)f(x)g(x)

(3)数形结合4.高次不等式、分式不等式——序轴标根法 P(x)0或P(x)Q(x)0(移项,一边化为0,不要轻易去分步骤:①形式:Q(x)

母);

②因式分解,化为积的形式(x系数符号>0——标准式); ③序轴标根;

④写出解集.5.注意含参数的不等式的解的讨论.................

四、一个有用的结论 关于函数yxp x

ppx

0时x

在(0、xx

[

上是减函数;在(、[)上是增函数.1.p0时,当x

0时x

(0,)2.p0时,在,上为增函数.0、

第三篇:不等式知识点

不等式

一.知识点:

1.不等式的性质:

2.不等式的解法:

(一)整式不等式的解法;

(二)分式不等式的解法;

(三)指对不等式的解法; 重点:含参二次不等式的解法;

3.不等式的证明:(1)作差变形;(2)分析法

4.均值不等式:(一正二定三等)

题型1:题型2:题型3:题型4:

5.线性规划:

二.典型题:

1.已知二次函数零点分布,求参数范围问题;

2.恒成立问题的解法;

3.均值不等式的应用;

1.已知二次函数零点分布,求参数范围问题;

2.恒成立问题的解法;

3.线性规划问题的讲解方式;

4.递推式问题:相邻项的关系较复杂,隔项或相邻多项的关系会简单。

5.均值不等式的几种常见题型;

6.变形种类:

第四篇:高一数学知识点汇总

学习任何一门知识点都要学会对该知识点进行总结,这样可以检查学生对知识的真正掌握程度以及方便学生日后的复习。下面给大家带来一些关于高一数学知识点汇总,希望对大家有所帮助。

高一数学知识点汇总1

函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A}叫做函数的值域.注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯

通过上面的高一数学必修1知识点总结,同学们已经梳理了一遍高一数学必修1的知识点,也加深了对该知识的更深了解,相信同学们一定能学好这部分知识点,也希望同学们以后的学习中多做总结。

高一数学知识点汇总2

集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2)注意:讨论的时候不要遗忘了的情况。

(3)

第二部分函数与导数

1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

高一数学知识点汇总3

1.等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.3.等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项.4.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).(2)若{an}为等差数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项).注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.高一数学知识点汇总4

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

高中数学知识点总结理科归纳5

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高一数学知识点汇总大全

第五篇:高一数学知识点:对数函数

高一数学知识点:对数函数

南通仁德教育数学朱老师总结了高一知识点:对数函数,仅供同学们参考;

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

下载高一数学不等式知识点(5篇范文)word格式文档
下载高一数学不等式知识点(5篇范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一数学知识点总结

    高一数学知识点总结 一 、集合与简易逻辑 集合具有四个性质: 广泛性:集合的元素什么都可以 确定性:集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模......

    高考数学不等式部分知识点梳理

    高考数学不等式部分知识点梳理一、不等式的基本概念1、不等(等)号的定义:ab0ab;ab0ab;ab0ab.2、不等式的分类:绝对不等式;条件不等式;矛盾不等式.3、同向不等式与异向不等式.4、同......

    不等式知识点不等式基础知识

    不等式的知识要点1. 不等式的基本概念不等(等)号的定义:ab(1)(2)(3)(4) 0ab;ab0ab;ab0ab. 不等式的分类:绝对不等式;条件不等式;矛盾不等式. 同向不等式与异向不等式. 同解不等式与不等式......

    不等式知识点总结

    感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,下面是小编帮大家整理的不等式知识点总结,希望大家喜欢。不等式:①用符号〉,=,〈号连接的式子叫不等式。②不......

    高一数学 必修五 不等式(精选五篇)

    一、知识要点不等式(一)1、不等式的性质(注意不等式成立的条件)(1)对称性:ab(2)传递性:ab,bc(3)可加性:ab(4)移项法则:abc(5)同向不等式相加:ab,cd(6)异向不等式相减:ab,cdacbd(7)乘法法则:ab,c0acbc,a......

    高一不等式练习题

    不等式综合练习题 一、选择题 1.若a,b,c为任意实数,且a>b,则下列不等式恒成立的是 (A)ac>bc(B)|a+c|>|b+c|(C)a2>b2(D)a+c>b+c 2.设a>1>b>-1,则下列不等式中恒成立的是 A. 1a1b B.1a1 bC.a>b2D......

    2018高一数学知识点之幂函数

    2018高一数学知识点之幂函数 知识点是关键,为了能够使同学们在数学方面有所建树,小编特此整理了高一数学知识点之幂函数,以供大家参考。定义: 形如y=x^a(a为常数)的函数,即以底......

    数学高一知识点总结[推荐五篇]

    有质量的知识才是名校的真实力,每一所这样的大学,至少都有十种左右高质知识储备在教授门手中,储备在这些学校与世界的多重联系中,正是这高质量知识的储备。下面小编给大家分享一......