高一数学(必修一)知识点总结

2020-07-31 15:20:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高一数学(必修一)知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学(必修一)知识点总结》。

高一数学必修1各章知识点总结

(拂晓搜集整理)

第一章

集合与函数概念

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)

元素的确定性如:世界上最高的山

(2)

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)

元素的无序性:

如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{

}

如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)

集合的表示方法:列举法与描述法。

u

注意:常用数集及其记法:

非负整数集(即自然数集)

记作:N

正整数集

N*或

N+

整数集Z

有理数集Q

实数集R

1)

列举法:{a,b,c……}

2)

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xÎR|

x-3>2},{x|

x-3>2}

3)

语言描述法:例:{不是直角三角形的三角形}

4)

Venn图:

4、集合的分类:

(1)

有限集

含有有限个元素的集合(2)

无限集

含有无限个元素的集合(3)

空集

不含任何元素的集合  例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:

集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B

(5≥5,且5≤5,则5=5)

实例:设

A={x|x2-1=0}

B={-1,1}

“元素相同则两集合相等”

即:①

任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹

B那就说集合A是集合B的真子集,记作AB(或BA)

③如果

AÍB,BÍC,那么

AÍC

如果AÍB

同时

BÍA

那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:

空集是任何集合的子集,空集是任何非空集合的真子集。

u

有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB

={x|xA,或xB}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

S

A

记作,即

CSA=

S

A

AA=A

AΦ=Φ

AB=BA

ABA

ABB

AA=A

AΦ=A

AB=BA

ABA

ABB

(CuA)

(CuB)

=

Cu

(AB)

(CuA)

(CuB)

=

Cu(AB)

A

(CuA)=U

A

(CuA)=

Φ.

例题:

1.下列四组对象,能构成集合的是

()

A某班所有高个子的学生

B著名的艺术家

C一切很大的书

D

倒数等于它自身的实数

2.集合{a,b,c

}的真子集共有

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是

.4.设集合A=,B=,若AB,则的取值范围是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有

人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=

.7.已知集合A={x|

x2+2x-8=0},B={x|

x2-5x+6=0},C={x|

x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:

y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|

x∈A

}叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.u

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致

(两点必须同时具备)

(见课本21页相关例2)

2.值域

:

先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数

y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数

y=f(x),(x

∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上

.(2)

画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)

平移变换

2)

伸缩变换

3)

对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则

y=f[g(x)]=F(x)(x∈A)

称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;

(2)

图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

(A)

定义法:

任取x1,x2∈D,且x1

作差f(x1)-f(x2);

变形(通常是因式分解和配方);

定号(即判断差f(x1)-f(x2)的正负);

下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

首先确定函数的定义域,并判断其是否关于原点对称;

确定f(-x)与f(x)的关系;

作出相应结论:若f(-x)

=

f(x)

f(-x)-f(x)

=

0,则f(x)是偶函数;若f(-x)

=-f(x)

f(-x)+f(x)

=

0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;

(2)由

f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定

.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:

1)

凑配法

2)

待定系数法

3)

换元法

4)

消参法

10.函数最大(小)值(定义见课本p36页)

利用二次函数的性质(配方法)求函数的最大(小)值

利用图象求函数的最大(小)值

利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

例题:

1.求下列函数的定义域:

2.设函数的定义域为,则函数的定义域为_

_

3.若函数的定义域为,则函数的定义域是

4.函数,若,则=

5.求下列函数的值域:

(3)

(4)

6.已知函数,求函数,的解析式

7.已知函数满足,则=。

8.设是R上的奇函数,且当时,则当时=

在R上的解析式为

9.求下列函数的单调区间:

10.判断函数的单调性并证明你的结论.

11.设函数判断它的奇偶性并且求证:.

第二章

基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.

u

负数没有偶次方根;0的任何次方根都是0,记作。

当是奇数时,当是偶数时,2.分数指数幂

正数的分数指数幂的意义,规定:,u

0的正分数指数幂等于0,0的负分数指数幂没有意义

3.实数指数幂的运算性质

(1)·;

(2);

(3)

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0

定义域

R

定义域

R

值域y>0

值域y>0

在R上单调递增

在R上单调递减

非奇非偶函数

非奇非偶函数

函数图象都过定点(0,1)

函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

二、对数函数

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—

底数,—

真数,—

对数式)

说明:

注意底数的限制,且;;

注意对数的书写格式.

两个重要对数:

常用对数:以10为底的对数;

自然对数:以无理数为底的对数的对数.

u

指数式与对数式的互化

幂值

真数

N=

b

底数

指数

对数

(二)对数的运算性质

如果,且,,那么:

·+;

-;

注意:换底公式

(,且;,且;).

利用换底公式推导下面的结论

(1);(2).

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

注意:

对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.

对数函数对底数的限制:,且.

2、对数函数的性质:

a>1

0

定义域x>0

定义域x>0

值域为R

值域为R

在R上递增

在R上递减

函数图象都过定点(1,0)

函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

例题:

1.已知a>0,a0,函数y=ax与y=loga(-x)的图象只能是

()

2.计算:

;②=

;=

;

=

3.函数y=log(2x2-3x+1)的递减区间为

4.若函数在区间上的最大值是最小值的3倍,则a=

5.已知,(1)求的定义域(2)求使的的取值范围

第三章

函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

(代数法)求方程的实数根;

(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

5.函数的模型

收集数据

画散点图

选择函数模型

求函数模型

用函数模型解释实际问题

符合实际

不符合实际

检验

下载高一数学(必修一)知识点总结word格式文档
下载高一数学(必修一)知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一必修一知识点总结

    高一物理必修一知识点总结、高一物理必修知识点:第一章、定义:力是物体之间的相互作用。理解要点:(1)力具有物质性:力不能离开物体而存在。 高一物理必修一知识点总结:力是物体之......

    高一生物必修一知识点总结

    高一生物必修一知识点总结 1、蛋白质的基本单位_氨基酸, 其基本组成元素是C、H、O、N 2、氨基酸的结构通式:R肽键:—NH—CO—| NH2—C—COOH| H 3、肽键数=脱去的水分子数=_......

    高一生物必修一知识点总结

    高一生物必修(1)知识点整理 第一章 走近细胞 第一节 从生物圈到细胞 一、相关概念、 细 胞:是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球......

    高一地理必修一知识点总结

    地球自转的方向自西向东。从地球北极上空观察,呈逆时针旋转。 1、地球自转的周期恒星日,23小时56分4秒(真正周期);太阳日,24小时。2、地球自转的速度角速度(每小时15°),线速度(自赤......

    高一语文必修一知识点总结

    高一语文必修一知识点总结:字词整理 一、给加点字注音 峥嵘 遏止 召唤 依偎 拣拾 炽热 颓圮 百舸 灰烬 摇曳 彳亍 桑梓 怪癖 摭拾 祈祷 磕绊 焦灼 涡流 教诲 犄角 澄澈 吝啬......

    高一数学必修2知识点总结

    高中数学必修2知识点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几......

    高一数学知识点总结--必修5

    高中数学必修5知识点通项公式的变形:①anamnmd;②a1ann1d;③d⑤danamnmana1n1;④nana1d1;.14、若an是等差数列,且mnpq(m、n、p、q*),则amanapaq;若an是等差数列,且2npq(n、p、q*),则2anapaq......

    高一数学必修3知识点总结

    导语:勤奋是学习的枝叶,当然很苦,智慧是学习的花朵,当然香郁。以下小编为大家介绍高一数学必修3知识点总结文章,欢迎大家阅读参考!高一数学必修3知识点总结第一章算法初步1.1.1算......