第一篇:一元一次方程教学设计
§5.1 一元一次方程教学设计
张家口市第九中学 焦红玲
各位老师,下午好!今天我说课的内容是北师大版七年级数学上册第五章一元一次方程第一节《认识一元一次方程》。下面我将从教材分析、教法分析、学法分析、教学过程及教学评价五个方面对本节内容的教学设计进行说明。教材分析
教材的地位和作用
这一课时主要研究一元一次方程及其相关概念。通过实例设立方程,引起学生的注意,激发他们的求知欲望;通过积极观察形成概念,了解一元一次方程的本质特征,为进一步学习方程的解法及应用起到铺垫作用;并通过回忆等式的两条性质,引导学生直接利用它们讨论一些较简单的一元一次方程的解法,为后面几节进一步讨论较复杂的一元一次方程的解法提供理论依据。教法分析 1.学情分析
1.初一学生具有活泼、好动、好奇的特点,所以教师在教学过程中通过一些有趣的情节,构建积极和谐的教学情绪场。又由于初一学生的认知特点,认识问题不能全面周到,所以在教学中注意引导和启发学生,并注意培养他们的数学表达能力和归纳能力。
2.在学习这一课时时,学生已有了必要的知识储备,如方程的概念、等式基本性质等。大部分学生此时已经会解简单的一元一次方程,好的学生已经会解较复杂的一元一次方程,一些学困生可能不知从何着手,但大部分学生对于解方程的依据(等式的两个基本性质)没有根本上的理解。2、教学目标
根据学生已有的知识基础,依据教材分析和新课标理念,确定本节课的教学目标: 1)、知识与技能:
理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;会根据数量关系或简单问题情境列一元一次方程。2)、过程与方法:
经历根据等式的基本性质把一元一次方程变形的过程,体会解方程的基本思路;经历判断一元一次方程的过程,进一步理解一元一次方程的含义。3)、情感、态度与价值观:
通过已知的方程推导出未知,形成概念,通过本节的学习,认识到方程与现实有密切关系,在新课标理念中,我们一直强调教学理念与生活实际相结合,所以我们在创设教学情景时,就要注意数学与生活的联系,让学生感受到数学的实际价值,从中发现事物发展变化的规律,并培养学生的科学态度。4)、教学重点和难点
一元一次方程的概念和解法是学习方程及其应用的重要基础,是本节教学中的重
点;准确把握一元一次方程的概念是本节教学中的难点。本节内容还提出用尝试、检验的方法解决实际问题,学生第一次接触这类思想,不会主动激发对它的学习热情,成了教学的另一个难点。3、教学方法
根据以上的分析,本节课宜采用自主探索与互相协作相结合,交流练习相互穿插的活动课形式,以学生为主体,教师创设和谐、愉悦的环境及辅以适当的引导。同时,利用发现法和问题讨论等教学方法,让学生始终处于主动和愉悦的学习状态,对探究新知具有新鲜感和满腔热情。根据建构主义的教学理论,教学设计分为五个基本环节:创设情境,引出课题――-交流对话,探求新知――应用新知,体验成功――梳理概括,知识内化――推荐作业,拓展应用。
四、教学过程
创设情境,引出课题
人的情感总是在一定情境下产生的。这就需要我们能构建有利于激发学生的积极情感的教学环境。
课堂一开始,我便给出三个应用题,让学生比赛回答。内容:与学生共同分析完成课本呈现的五个情境:
(1)如果设小彬的年龄为 x 岁,那么“乘 2 再减 5 ”就是2 x5 = 21 组织活动:两人小组做猜年龄的游戏,每个小组会有几个不同的等式.如:我的年龄乘2减5等于91,你知道老师多大了吗? 学生算出老师48岁了
(2)小颖种了一株树苗,开始时树苗高为 40 cm,栽种后每周树苗长高约 5 cm,大约几周后树苗长高到 1 m?
如果设 x 周后树苗长高到 1 m,那么可以得到方程: 40 + 5 x = 100(3)甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每时比原计划多行走 1 km,因此提前 12 min 到达乙地,张叔叔原计划每时行走多少千米? 设张叔叔原计划每时行走x km,可以得到方程:
22221 xx16(4)根据第六次全国人口普查统计数据,截至 2010 年 11 月 1 日 0 时,全国每 10 万人中具有大学文化程度的人数为 8 930 人,与 2000 年第五次全国人口普查相比增长了 147.30%.
如果设 2000 年第五次全国人口普查时每 10 万人中约有 x 人具有大学文化程度,那么可以得到方程:(1 + 147.30%)x = 8 930(5)某长方形操场的面积是 5 850m2,长和宽之差为 25 m,这个操场的长与宽分别是多少米?
如果设这个操场的宽为 x m,那么长为(x + 25)m.可以得到方程x(x25)5850 目的:通过准确列五个方程,感受:
1、列方程解应用题的关键是:寻找等量关系;
2、五个方程可分为三种类型:一元一次方程,分式方程,一元二次方程。注意事项:学生在列方程时要注意以下问题: 1.让学生读题、审题,锻炼学生的审题能力;
2.中单位换算:1米=100厘米。等量关系为:最后树高=初始树高+每周生长高度;
13.中单位换算:12分=小时。等量关系为:原计划所用时间-现在所用时间=提前时间;
64.中数字在前,字母在后。
环节四:归纳一元一次方程的定义,了解一元一次方程的解的含义 内容1:
由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.共得到五个方程。其中(1)、(2)、(4)都只有一个未知数,在小学学习时常见。
(2)方程 2 xx)= 20;(2)2 x2 + 6 = 7 x 目的:了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左和右,看是否相等。相等则为原方程的解。
实际效果:
1、学生有小学的基础,能理解方程的解的含义;
2、学生熟练将方程的解带入方程进行验证,得出结论。环节五:达标检测
内容1:
1、方程3x+2(1﹣x)=4的解是()A.x=-1 B.x=-2 C.x=2 D.x=1
2.已知方程2(y-5)+11b=24的解为y=6, 则b的值().A.b=-1 B.b=-2 C.b= 1 D.b = 2
3、在下列方程中: ①2χ+1=3;②y-2y+1=0;③ 2a+b=3;④2-6y=1;⑤2χ+5=6;⑥1/3x +2= 6x
属于一元一次方程有_________ m-
24、3x + 5=0是关于x的一元一次方程,则代数式 4m-5=___
5、方程(k+6)x +3x-8=7是关于x的一元一次方程,则k =______ 内容2 综合提升
21.根据题意,列出方程:
在一卷公元前 1600 年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一
1个问题翻译过来是:“啊哈,它的全部,它的,其和等于 19.”
17你能求出问题中的“它”吗?解:设“它”为x,则:xx19
72.甲、乙两队开展足球对抗赛,规定每队胜一场得 3 分,平一场得 1 分,负一场得 0 分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,一共得了 22 分.甲队胜了多少场?平了多少场?
解:设甲队赢了x场,则乙队赢了(10-x)场。则:3x10x22
3、某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的 20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)
4.根据图中的信息,设梅花鹿的高度为x,则长颈鹿现在的高度可列方程
.目的:对本节知识进行巩固练习
实际效果:学生基本能很好地对随堂练习的问题给出准确的解答。
由同学选自己组的代表发言,对P练习中的各个量及所表示的意义进行说明,加深对背景下的数学模型的理解。环节六:课堂小结 内容:师生互动,梳理本节内容。(本节课你的收获,你的疑惑)
目的:鼓励学生结合学习本节课本内容及课前的预习,谈谈自己的收获与感想,包括如何调整自己的读书方法.实际效果:
学生一方面总结出了:本节给出了四个知识点:等式(回顾巩固),方程(给出描述性定义),一元一次方程及一元一次的解(根.感觉在解决实际问题时,列方程相比小学算术法,给出的思维方式与途径更具普遍性.列方程的核心:实际问题“数学化”,关键是找到等量关系。另一方面:每位同学都在现有程度上,适当调整自己的读书预习方式及自己独立思考问题的途径.环节七:布置作业习题5.1
五、教学反思:
此阶段的学生有比较强烈的自我发展意识,对与自己的主观经验相冲突的现象,教师只有进行得当合理的诠释方可得到学生的认可。授课时要设法让学生体会运用方程建模的优越性,将能使众多实际问题“数学化”的重要数学模型成为学生学习后续知识的自觉选择。
让学生在简单的背景问题中,一点一滴地体会分析已知量、未知量之间的数量关系,对列方程的帮助,其正做到分解难点、降低难度、突破难点的目的.今天我的说课就到这里,不足之处请大家批评指正。
第二篇:《一元一次方程》教学设计
兰州城市学院
《一元一次方程 》 的教学设计
[2014/4/10]
数学学院112本 马保清
《一元一次方程》教学设计
一. 教材:人教版七年级数学(上册). 二. 课时安排:45分钟(一节课).三. 教学对象:七年级学生.四. 授课老师:数学学院112本 马保清.五. 教学目标:
1、知识与技能:了解方程和方程的解以及一元一次方程的概念,从而会判断一元一次方程
2、过程与方法:使学生从简单的实际问题中建立一元一次方程的模型;
3、情感态度价值观:经历把具体问题转化成一元一次方程的过程。七.教学重点和难点:
重点:一元一次方程的概念,正确列出一元一次方程。难点:正确列出一元一次方程。
八.教学过程:
1. 创设情境,引入新课:
课始,老师问学生:“你们知道前段时间很多市民抢购纯净水吗?你们有没有抢购纯净水呢?”这样一问引起学生极大的兴趣,学生各抒己见纷纷举手争抢发言。
生1:我买了三瓶1.5升的康师傅矿泉水,一瓶要5元钱。生2:我没有买,但我听说周围的同学买了一箱纯净水花了一百多元钱呢。生3:学校通知完后,我去超市没有买到水.生4:大家抢购纯净水都是受了有些传谣,是骗人的。师:同学们,你们知道为什么会出现这种造谣吗?
生5:因为兰州水质的问题,大家都但心饮水问题,所以进行了抢水,其实政府在发现水质出现问题之前已经有了解决方案,不知道的人都在盲目的抢购纯净水。
师:这位同学回答的非常好。因为人们听信谣言,盲目抢购纯净水,使得本地区的纯净水供不应求,一些商贩乘机哄抬纯净水价格,使得一时纯净水的价格暴涨。政府对这个问题非常重视,一方面通过媒体向人们宣传不要听信谣言;一方面加紧市场整治,维护消费者的利益,同时紧急从其他地方调运纯净水,满足人们日常生活的需求。
师:同学们,现在我们一起探讨如下问题。(教师将事先准备好的题目贴
于黑板上。)
问题1:甲地纯净水紧缺,现有3万瓶,乙地还有纯净水27万瓶,为了调解市场,问从乙地调运多少纯净水到甲地,才能使两地的纯净水数量相等。
师:请同学们讲出自己的想法。生1:(273)2312(万瓶)生2:(273)212(万瓶)
273271512(万瓶)生3:272生4:(272)(32)15,15312(万瓶)生5:(272)(32)13.51.512(万瓶)师:请同学们判断一下,这几位同学的做法正确吗?他们采用了什么方法。生:答案都正确,他们用小学学过的的直接列算式求出答案的。
师:回答的非常好,同学们都是用小学学过的的直接列算式求出答案的。那同学们有没有什么其他方法呢?
生:设未知数。
师:对,这位同学很聪明。接下来我们就看怎样通过设未知数,求解这个问题。
这时提出方法的概念:含有未知数的等式叫方程。
注:等式的分类:
1.等号两端总是相等,这类等式叫做绝对等式,也叫恒等式。如:5=5 2.只有当x等于某个数时,两端才相等,这种等式叫做条件等式。如:x35
3.等号两端总不相等,这种等式叫做假等式。如:5=3 练一练:
判断下列各式是不是方程,并讲明理由。
(1)-2+5=3(2)3x17
(3)xy8(4)2ab 继续进入问题1 1.设从乙地应调水x万瓶到甲地。(设未知数)
2.乙地水的瓶数= 甲地水的瓶数(找出等量关系)3.27x3x(万瓶)(列出方程)2.建立一元一次方程模型:
根据下列问题,设未知数并列出方程: 章节图中的汽车匀速行驶经王家庄、青山、秀水三地的时间表如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。王家庄到翠湖的路程有多远?
解:设王家庄到翠湖的路程为x千米。(设未知数)
万家庄到青山的速度=万家庄到秀水的速度。(找出等量关系)
x50x70
(km/h)(列出方程)35师:老师接着继续给大家写出三个例子请同学们按照我们解问题1的方法列出等式。(小组讨论)① 用一根长24cm的铁丝围成一个正方形,正方形的边长是多少? 解:(1)设未知数:设正方形的边长为xcm(2)等量关系:4*边长=24(3)列出方程:4x24
② 一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
解:(1)设未知数:设x月后这台计算机的使用时间达到规定的检修时间2450小时。
(2)等量关系:这台计算机的使用时间。(3)列出方程:1700150x2450
③某校的女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:(1)设未知数:设这个学校的学生人数为x人,则女生为0.52x人,男生人数为(10.52)x人。
(2)等量关系:女生人数-男生人数=80(3)列出方程:0.52x(10.52)x80 3.一元一次方程的认识:
请同学们比较一下刚才你们列的三个方程,有什么样的特点? 1.4x24 1700+150x=2450 0.52x(10.52)x80 注意:方程两边都是整式;
只含有一个未知数(元);
未知数的指数(次数)是一次。
给出定义:只含有一个未知数(元),未知数的次数是1,这样的方程叫做一元一次方程
问题①:一元一次方程中元指的是什么?次指的是什么?
②判断下列成员是否是一元一次方程家庭成员,能否进入家庭聚会之门?若不行,请说明理由。
第一组: 1).5x0(2).13x
3).y24y(4).3m21n
第二组: 若2xb4,(a1)x2x3也想参加聚会,a,b应满足什么条件?
九、巩固练习:
(1)-1=4是方程吗?(是)1x
(2)列式表示a与3的差等于-2。(a32)
(3)上题列出的式子是方程吗?如果是,未知数是什么?并说明自己的理由。(4)综合题:天平的两个盘A、B分别盛有51g,45g盐,应该从盘A内拿出多少g盐到盘B内,才能使两者所盛盐的质量相等? 解:设应该从盘A内拿出a克盐到B盘内。51a45a
十.教学方法:教练结合,讨论交流,引导探究。十一.教学手段:ppt,计算机,板书。
第三篇:《一元一次方程》教学设计
人教版七年级数学上册《一元一次方程》教学设计
教学内容:人教版七年级上册3.1.1一元一次方程
教学目标:
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。
情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:根据具体问题中的相等关系,列出方程。
教学准备:多媒体教室,配套课件。
教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】
五、我的课堂,我做主,我来说
生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;
生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;
生3:我会检查一个数值是不是方程的解;
生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!
生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!
师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!
【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
A.1+2+3+4>8B.2x3C.x=1
D.|10.5x|=0.5yE、2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
【作业设计也一改从前,千篇一律,本节课后作业分出了层次,也体现了趣味性和挑战性,激发了学生的求知欲!】
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。
第四篇:一元一次方程教学设计
一元一次方程教学设计
宋延杰
2012年12月5日
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备 课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示,同进出现下图:
问题1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山 千米,王家庄距秀水 千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?
问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速” 可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程: 依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60 说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;
(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评. 解:(1)x+18=54;(2)(27-x)=4x.列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):(1)列式表示:
① 比a小9的数; ② x的2倍与3的和; ③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:(1)一打铅笔有12支,m打铅笔有多少支?(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
第五篇:一元一次方程教学设计
删繁就简三秋树领异标新二月花
————“一元一次方程应用”教学实录及反思
临沂高都中学 王兴玲 列方程解应用题,是整个初中阶段数学教学的重点。因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。具体设计如下:
一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)
师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?
问题
1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?
生1:沂河大桥长为
(米)(师板演)师:除了列算式外,还有别的方法吗? 生2:可以列方程
师:如果用列方程的方法来解,设哪个未知数为x? 生2:设沂河大桥的长为x米。
师:根据怎样的相当关系来列方程?方程的解是多少?
生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)
师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?
生3:列方程就是直来直往。
师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)
师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题„„
(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)
二、故事的发展——怎样列方程
师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。有个同学问道:车上的面粉一袋重量为多少呢?(引出问题)
问题2:一辆手推车装满时,可装半袋面粉加180斤大米,或者4袋面粉加5斤大米,求一袋面粉的重量?
师:谁能很快的用算术方法解决?(生思考)
师:能否通过列方程解决呢?生1:设一袋面粉的重量为x斤,则(教师板演)
师:请问等式的左边表示什么量?等式的右边表示什么量?(引导学生解释题意)
生1:都表示手推车满载时的重量 师:这就告诉我们怎样列方程? 师:列方程的实质—分析题意的过程中,先随便“拽出”一个量,根据题意用两种不同的方式表示“它”中间用“等号”连接即可。能理解吗?
生2:随便“拽出”一个可以吗?
师:嗯,那我们来试一试。你说一个量吧!生2:4袋面粉的重量? 师(板演):4袋面粉的重量可以用4x表示,也可以用 表示,所以可得方程
师:能否用这种方法来列方程呢?小组合作,列出方程越多越好。(生合作,讨论,得出下了方程)
生(众):表示半袋面粉的重量,得:表示180斤,得:
表示5斤,得:
表示一袋面粉的重量,得:
(师板演,共列出7个方程)
师:黑板上的方程中,那思维快捷,方便? 生3:表示:“满载”
师:这表明,随便“拽出”的一个量是否恰当,对方程的快捷有很大的影响,刚才老师说的“方程的实质”应怎样改进?谁试着说说?
生4:可以把随便“拽出”一个量改为:“选择一个合适的量” 师(板演):归纳总结:“选择一个和适量,两种方法来表示,后用等号去连接。”
师:下面同学们独立求解本题答案,然后小组长检查。
(设计意图:设计随便“拽出”一个量,变式出了问题的一系列不同解法,最终归纳出列方程解实际问题的一般步骤,在解题中有效拓展了学生的思维能力。)
三、故事延伸——参观景点
接下来同学们来到了临沂市展览馆,遇到了下面的问题:
问题3:有5名教师和同学们一起去参观临沂市展览馆,教师按全票价每人7元,学生只收半价。如果门票总价共206.5元,那么有多少名学生?
师:请同学们先独立写出过程
(等绝大多数学生完成后,提问学生解题过程,师板演,引导:怎么设未知数?如何选择一个合适的量?用的是哪两种方法表示的?答案是否正确?)
师:现在同学们能否归纳出列方程解决实际问题的一般步骤呢?组内讨论。
生4:先认真读题,理解题意,找出等量关系 生5:选择一个合适的量,设未知数
生6:用两种不同的方式表示,用等号连接 生7:最后解答
师补充:很好,但有时我们要检查一下所求得的值是否符合实际情况,然后作答。
最后:师生共同总结,①审②设③列④解⑤验⑥答
(设计意图:以故事的形式,较自然的引入新问题,归纳出列方程解决实际问题的一般步骤有效的拓展了学生思维,有利于培养学生的发散性思维能力。)
四、回程途中
师:在回程中,同学们坐在车里,老师出了这样一道题。
问题4:甲、乙两人从A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶,出发经3小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经1小时乙到达A地。问甲、乙行驶的速度分别是多少?
师:这是哪种类型的应用题? 生1:相遇问题
生2:行程问题中的相遇问题
师:很好,行程问题,在行程问题中3个基本数量是什么? 生(众):路程、速度、时间 师:有什么关系? 生(众):路程=速度×时间,速度=路程÷时间,时间=路程÷速度
师:对于行程问题,我们通常借助什么数学工具分析数量之间的关系?
生3:画线段图
师:好,那么我们一起画出此题的线段示意图吧!(师生合作,画出线段图)
师:如何设未知数?
生4:设甲的速度为x千米/时。师:恩,乙的速度如何表示呢?
生4:因为3小时乙比甲多行了90千米,所以1小时比甲多行了30千米,即乙的速度可表示为(x+30)千米/时。
师:非常好,可是选择哪个量,列方程呢?路程?速度?还是时间?
组1:我们组选择A、B两地之间的路程,得:4(x+30)=3(x+x+30)(师板演)组3:我们组选择相遇前甲行驶的路程:3x=1×(x+30)(师板演)组4:我们组选择相遇前乙行驶的路程:3(x +30)=4(x+30)-3x(师板演)(师组织全班学生讨论)
师:解完此题,看看有何启发?小组讨论。
师总结:①在本题中,线段图可以使我们更简明地理清实际问题中的数量关系②一题多解,开阔了我们的视野③此题,速度为所求,用x表示,时间给出具体值,是已知;则可用路程来列方程。即在行程问题中:已知一个量,设出一个量,剩下一个量列方程。
反思:以故事为主线,对问题进行拓展,变式练习,拓展视野,同题归类。
问题5:学习了以上知识,你是不师想大展身手呢?
将学生分成两组:组
1、组
3、组5为一大组,组
2、组
4、组6为一大组(也可男生、女生)以竞争的形式完成课后三道练习题。
过程略„„
设计意图:通过分组竞争的形式完成习题,目的师激发和调动学生学习数学的积极性,使学生进一步掌握应用题的分析思路和解决方法,通过习题的讲评,达到查漏补缺的目的。
五、小结
师:通过本节课的学习,你有哪些收获? 生:„„
设计意图:引导学生对所学知识、方法惊醒归纳,总结
使学生体会列方程解应用题的优越性,列方程的实质,掌握其中的规律。
教后反思:
① 小学里,学生接触过应用题,在初中阶段,有的学生还是钟情于算术方法。本节课让学生真正领略方程的代数思维不同于算数思维。
② 以外出游览的故事为主线,突出课堂的故事性 ③ 一题多解,同题归类,拓展了学生的思维能力
④ 渗透助人为乐的德育目标,体现了数学教学的人文性