数学命题教学和概念教学设计

时间:2019-05-13 01:33:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学命题教学和概念教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学命题教学和概念教学设计》。

第一篇:数学命题教学和概念教学设计

数学命题教学和概念教学设计

——对于如何让学生主动的上好命题课、概念课的一些思考

龙苑中学

黄静

数学命题、概念教学是初中数学课堂教学中非常重要的形式之一,也是学生获取新知识的最直接的途径,在阅读了有关“数学命题教学设计和数学概念教学设计”的理论外,结合平时教学实际,也有一些想法:

命题课、概念课的教学过程就是学生接受新知识的过程,为了让学生更好的掌握一个全新的概念,我觉得让他们知道为什么要学习这个知识点很有必要,如果他们明白了学习的原因可能就会主动去学、去记、去思考,而不是老师教了或者是教课书上有所以要学,从学生端正学习态度进而主动去学或者说想学新知识,也许会达到事半功倍的效果。下面举个我教学中的例子说明:

例:在上因式分解第一课时的课时,“因式分解”这个名词对于学生来说是一个全新的概念,所以我决定用多一点的时间来帮助学生理解“因式分解”的概念,这是本课的一个难点。与此同时加了一个我们为什么要学习因式分解的举例小环节,当时我们之前刚做过一个例题,已知一套房子的平面图,用x、y的代数式表示房子的总面积,然后告之x=2.5米和y=3.5米求房子具体的总面积。这题的第一个小问题得出的代数式为3x29xy6y2,如果把x和y的值直接代入这个式子计算比较复杂,结果错误率非常高,而这式子是可以因式分解为3(x+y)(x+2y),如果分解后在代入数值,计算会方便很多,正确率也会提高很多。我用这个例子给学生们说明后,他们也如此认为,然后就很容易理解学好因式分解的意义。学生从心理上给了自己一个暗示学好因式分解,对以后的教学会有帮助的。

对于大多数学生而言,学习还是比较被动的,也是是家长和老师的压力驱使他们在学,常常会有学生问为什么我们要学这些,学了有什么用,如果让他们知道为什么要学,也许去主动去掌握好这些令他们头疼的概念吧。

第二篇:命题教学设计

命题

教学过程设计

一、分析语句,理解命题

1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:(1)我是中国人.(2)我家住在北京.(3)你吃饭了吗?

(4)两条直线平行,内错角相等.(5)画一个45°的角.(6)平角与周角一定不相等.

2.找出哪些是判断某一件事情的句子? 学生答:(1),(2),(4),(6). 3.教师给出命题的概念,并举例.

命题:判断一件事情的句子,叫做命题,分析(3),(5)为什么不是命题. 教师分析以上命题中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)如:

(1)对顶角相等.(2)等角的余角相等.

(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线.(4)如果a>0,b>0,那么a+b>0.(5)当a>0时,|a|=a.(6)小于直角的角一定是锐角.

在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题.(7)a>0,b>0,a+b=0.(8)2与3的和是4.

有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解. 4.分析命题的构成,改写命题的形式. 例

两条直线平行,同位角相等.

(1)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”.(2)改写命题的形式.

由于题设是条件,可以写成“如果„„”的形式,结论写成“那么„„”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等.”

请同学们将下列命题写成“如果„„,那么„„”的形式,例: ①对顶角相等.

如果两个角是对顶角,那么它们相等. ②两条直线平行,内错角相等. 如果两条直线平行,那么内错角相等. ③等角的补角相等.

如果两个角是等角,那么它们的补角相等.(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等.)以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等.”

提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出. 如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为: “如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直.”

二、分析命题,理解真、假命题 1.让学生分析两个命题的不同之处.(1)若a>0,b>0,则a+b>0.(2)若a>0,b>0,则a+b<O.

相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论.

不同之处:(1)中的结论是正确的,(2)中的结论是错误的. 教师及时指出:同学们发现了命题的两种情况.结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题. 2.给出真、假命题定义.

真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题. 假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题. 注意:

(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”.显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题.(2)假命题中“结论不成立”是指“不能保证结论总是正确”如:“a

(3)注意命题与假命题的区别,如:“延长直线AB”.这本身不是命题.也更不是假命题.

(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题. 3.运用概念,判断真假命题. 例 请判断以下命题的真假.(1)若ab>0,则a>0,b>0.(2)两条直线相交,只有一个交点.(3)如果n是整数,那么2n是偶数.

(4)如果两个角不是对顶角,那么它们不相等.(5)直角是平角的一半.

解:(1)(4)都是假命题,(2)(3)(5)是真命题. 4.介绍一个不辨真伪的命题.

“每一个大于4的偶数都可以表示成两个质数之和”.(即著名的哥德巴赫猜想)我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“ 1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定. 5.怎样辨别一个命题的真假.

(1)实际生活问题,实践是检验真理的唯一标准.(2)数学中判定一个命题是真命题,要经过证明.(3)要判断一个命题是假命题,只需举一个反例即可.

三、总结

师生共同回忆本节的学习内容. 1.什么叫命题?真命题?假命题? 2.命题是由哪两部分构成的?

3.怎样将命题写成“如果„„,那么„„”的形式. 4.初步会判断真假命题. 教师提示应注意的问题: 1.命题与真、假命题的关系.

2.抓住命题的两部分构成,判断一些语句是否为命题.

3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面. 4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明.

四、作业

1.选用课本习题.2.以下供参选用.(1)指出下列语句中的命题. ①我爱祖国. ②直线没有端点. ③作∠AOB的平分线OE. ④两条直线平行,一定没有交点. ⑤能被5整除的数,末位一定是0. ⑥奇数不能被2整除. ⑦学习几何不难.

(2)找出下列各句中的真命题. ①若a= b,则a2=b2.

②连结A,B两点,得到线段AB. ③不是正数,就不会大于零. ④90°的角一定是直角. ⑤凡是相等的角都是直角.

(3)将下列命题写成“如果„„,那么„„”的形式. ①两条直线平行,同旁内角互补. ②若a2=b2,则a= b. ③同号两数相加,符号不变. ④偶数都能被2整除. ⑤两个单项式的和是多项式. 板书设计

第三篇:《命题》教学设计

第七章 相交线与平行线

7.1 命题

学习目标

1.理解掌握命题、真命题、假命题、反例的的概念.(重点)2.能判断哪些语句是命题,能判断命题的真假.(难点)导入新课

1、中毒了

小明:不好了,不好了,我家电脑中毒了!

小亮:急什么急,不就是中毒了吗?很简单就解决了!小明:什么办法?

小亮:用杀毒水啊!我妈说了,一杀就灵!

2、识数

电视机里正在播放精彩的乒乓球比赛,奶奶边看比赛边说:打得好!打得好!可惜播音员不识数„„ 孙子听了不解地问:人家咋不识数?

奶奶说:明明两个人在打球,他却说单打,明明是四个人在打球,他却说双打,你说他识数不识数?

对某一事物进行研究并交流,必然要借助于有关的名称,同时也经常需要对一些问题作出判断,并对判断说明理由.为此,就要对名称和术语的含义加描述,作出明确的规定,也就是给出他们的定义.讲授新课

一、命题的相关概念 问题1 你能说出偶数、单项式、两点间的距离分别是怎样定义的吗? 能被2整除的数叫做偶数

由数与字母(或字母与字母)相乘组成的代数式叫做单项式.两点之间线段的长度,叫做两点之间的距离.问题2 比较下列语句,想一想它们之间有什么共同点?(1)两个直角相等.(2)两个锐角之和是钝角.(3)同角的余角相等.(4)两个负数,绝对值大的反而小.(5)负数与负数的差仍是负数.(6)负数的奇次幂是负数.总结:都是对一件事情作出判断的句子.能够进行肯定或者否定判断的语句,叫做命题.试一试

下列语句,哪些是命题? 1.动物都需要水.2.猴子是动物的一种.3.玫瑰花是动物.4.美丽的天空.5.三个角对应相等的两个三角形一定全等.6.负数都小于零.7.你的作业做完了吗? 8.所有的质数都是奇数.9.过直线a外一点作a平行线.10.如果a>b,a>c,那么b=c.问题3 观察下列命题,你能发现这些命题有什么共同特征? 1.如果两个数互为倒数,那么这两个数的乘积为1 2.如果一个三角形是等腰三角形,那么这个三角形的二个底角相等.3.如果两个角的和等于180°,那么这两个角互补 4.如果|a|=1,那么a=1.知识要点

一般地,命题都是由条件和结论两部分组成的.命题常写成“如果······那么······”的形式.“如果”引出的部分是条件,“那么”引出的部分是结论.试一试

下列各语句中,哪些是命题,哪些不是命题?是命题的,请你将先将它改写为“如果······那么······”的形式,再指出命题的条件和结论.1.正方形的对边相等.如果一个四边形是正方形,那么它的对边相等.条件:一个四边形是正方形,结论:它的对边相等.2.连接a、b两点.3.相等的两个角是锐角.如果两个角相等,那么这两个角是锐角.条件:两个角相等,结论:这两个角是锐角.4.延长线段AB到点C,使得AC=2AB.5.同角的补角相等.如果两个角是同一个角的补角,那么这两个角相等.条件:两个角是同一个角的补角,结论:这两个角相等.6.-4大于-2吗? 真命题、假命题、反例 互动探究

问题1 下列语句是否是命题?判断它们是否正确.(1)有理数的绝对值一定是正数.(2)互为相反数的两个数的绝对值相等.(3)若a=-b,则|a|=|b|.(4)经过一点的直线可以有无数条(5)线段EF与线段FE是同一条线段.(6)角的边越长,则角越大.知识要点

在命题中,既有正确的命题,也有不正确的命题.我们把正确的命题叫做真命题,把不正确的命题叫做假命题.试一试

判断下列命题的真假,如果有假命题,请说明理由.(1)两个直角相等.(2)相等的两个角是锐角(3)同角的余角相等.(4)两个锐角之和是钝角.(5)同角的补角相等

要说明一个命题是假命题,只要举出一个符合命题条件,但不符合命题结论的例子就可以,像这样的例子叫做反例.典例精析

例1 举例说明“两个负数之差是负数”是假命题 说明:设a=-2,b=-5,(符合命题的条件)

则设a-b=-2-(-5)=3,不是负数.(不符合命题的结论)所以“两个负数之差是负数”是假命题 当堂练习

1.下列句子中,哪些是命题?哪些不是命题?(1)两点之间线段最短;(2)温柔的李明明;(3)玫瑰花是动物;(4)若a2=4,求a的值;(5)若a2= b2,则a=b;(6)“八荣八耻”是我们做人的基本准则.(7)正数大于一切负数吗?

2.把下列命题改写成“如果„„,那么„„”的形式,并指出下列命题的条件是什么?结论是什么?(1)一个角的补角必是钝角;[来(2)两个负数相减,差一定是负数;(3)末尾数是5的整数都能被5整除.解:(1)如果一个角是另一个角的补角,那么这个角是钝角; 条件:一个角是另一个角的补角;结论:这个角的钝角;(2)如果两个负数相减,那么差是负数; 条件:两个负数相减;结论:差是负数;

(3)如果一个整数的末尾数是5,那么这个数能被5整除.条件:一个整数的末尾数是5;结论:这个数能被5整除.3.判断下列命题的真假:(1)一个三角形如果有两个角互余,那么这个三角形是直角三角形;(2)如果│a│=│b│,那么a3=b3.[ 4.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.条件:等腰三角形的两条边长为5和7,结论:这个等腰三角形的周长为17.假命题,腰长为7时,这个等腰三角形的周长为19.课堂小结:你的收获是什么? 作业:

第四篇:教学设计中如何做好数学概念教学

教学设计中如何做好数学概念教学

学习时间:2018年4月18日

数学概念是数学教材结构的最基本的因素,正确理解数学概念,是掌握数学基础知识的前提。在新课标的要求下,初中数学概念课的教学, 要坚持以人为本的教育理念, 尊重学生的主体性, 激发学生学习概念的兴趣;让学生体会概念产生的源头, 亲历概念形成的过程;自主抽象概括形成概念, 自觉应用概念去解决问题。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题.因此,抓好数学概念的教学,是提高数学教学质量的关键。

数学概念比较抽象,在教学过程中注意结合学生心理发展特点去分析事物的本质特征,运用生动的讲解和形象的比喻,增强学生对概念正确地理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。

1.重视教学情境创设,实现概念引入的自然化。

数学教材多是直接给定概念,教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程。合理设置情境,使学生积极参与教学,了解知识发生、发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解。引入形式可以多样化,如以数学史话引入、以实际问题引入、以实际问题引入等。

2.利用概念中的关键字、词,帮助学生掌握概念;

数学概念中的某些字、词的含义,为我们提供了记忆概念本质属性的直观材料,强调概念中具有这种特征的字和词,能有效地理解和记忆概念的本质特征.例如,“一元二次方程”这个概念本身具有“一元”、“二次”、“方程”3个关键词,抓住这3个特征,学生自然也就了这个概念。又如对函数概念中的“任何”与“唯一”要重点强调,然后举例,前者可以称 是 的函数,后者不能称 是 的函数,因为对于任何一个 ,不是对应唯一,这样通过正反实例,强调概念中的关键词语,更能加深概念的理解。再如三角形的内切圆、外接圆中的“内”、“外”分别指出了圆在三角形内部、外部;“切”、“接”分别指出了圆与三角形的3条边相切,圆与三角形的3个顶点相接.教学中着重强调这些字词,使学生一看到这一概念,就会联想到这一概念是如何定义的. 3.注重数学语言的翻译

数学语言有文字语言、符号语言、图形语言。符号语言有较强的概括性,更能反映概念的本质。

4.运用具体实物或模型,形象地讲述新概念;

概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识.教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径.所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征.例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识.这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻.

5.注重相似概念的对比分析,通过比较,使学生正确地理解概念;

有比较才有鉴别。用对比方法找出容易混淆的概念的异同点,有助于学生区分概念,获取准确、明晰的认识。比如对分类计数原理与分步计数原理、排列与组合的概念,就可以通过概念对比,并结合实例的方式加深概念理解。6.在应用中加深对概念的理解。

只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻.

总之,数学概念是理解数学思想,运用数学方法,掌握基本技能,提高数学能力的前提。数学概念的教学是整个数学教学的一个重要环节,正确地理解数学概念是掌握数学知识的前提.教师在数学概念教学中要转变观念,使课堂教学由知识型转化为能力型,切实搞好数学概念教学,使学生深刻理解概念的内涵,充分发挥数学概念的指导作用,全面提高学生的数学素养。

第五篇:浅谈数学命题的教学

更多资料请访问:豆丁 教育百科

浅谈数学命题的教学

数学命题是把概念联系起来,形成完整的数学学科的主干内容,因此,只有掌握好数学命题,才能通晓数学的体系结构,学好数学。有效的数学命题教学,有助于学生牢固掌握数学知识的结构,有助于数学思维的发展和解决问题能力的提高。

数学命题教学的基本任务,是使学生认识命题的条件、结论,掌握数学命题的内容和表达形式,掌握命题的推理过程或证明方法,运用所学的数学命题进行计算、推理或论证,提高数学基本能力,解答实际问题。并在此基础上,熟悉基本的数学思想和数学方法,弄清数学命题间的关系,把学过的命题系统化,形成结构紧密的知识体系。

个人认为,在教学过程中应做到以下几点:

1.突出知识结构,扎实打好知识基础

数学从本质上说是一个从客观事物中抽象出来的理性思辨系统,它的形成和发展主要运用符号和逻辑系统对抽象模式和结构进行严密演绎和推理,各部分知识紧密联系,构成严格的学科体系。数学知识结构的形成和发展,是一个知识积累、梳理的过程,教学和复习中首先要扎实学好基础知识,并在此基础上,注意各部分知识在各自发展过程中的纵向联系,以及各部分知识之间的横向联系,理清脉络,抓住知识主干;构建知识网络。在教学中要充分重视主干知识的支撑作用。

2.强化思维过程,努力提高理性思维能力

数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学方法和基本教学思想在解题中的意义和作用,研究运用不同的思维方法解决同一个数学问题的多条途径,注意培养直觉猜想,归纳抽象、逻辑推理、演绎证明,运算求解等理性思维能力。

3.增强实践意识,重视探究和运用

要关注生产实践和社会生活中的数学问题,关心身边的数学问题,不断提高教学的应用意识,学会从实际问题中筛选有用的信息和数据,研究其数量关系或数形关系,建立数学模型,进而解决问题,注意抓住社会现实中运用数学知识加以解决的普遍性问题和社会热点问题,开展讨论、研究,从中提高数学实践能力。

4.倡导主动学习,营造自主探索和合作交流的环境

学校和教师要为学生营造自主探索和合作交流的空间,善于从教材实际和社会生活中提出问题,开设研究性课程,让学生自主学习、讨论、交流,在解决问题的过程中,激发兴趣,树立信心,培养钻研精神,同时提高数学表达能力和数学交流能力。

5.提高教师的自身专业素质

下载数学命题教学和概念教学设计word格式文档
下载数学命题教学和概念教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学概念教学反思

    数学概念教学反思 数学概念教学反思1 成功之处:我用一句话来说明本节课中我的成功之处,那就是:“仰望星空,脚踏实地”。达尔文说过:“最有价值的知识,是关于方法的知识”,本节课我......

    浅谈小学数学概念教学

    浅谈小学数学概念教学 在数学教学中,概念是学好数学法则、定律、性质、公式等数学知识的基础和关键,是培养学生数学能力的前提,是解答数学实际问题的重要条件. 因此,把握数学概......

    浅谈小学数学概念教学

    小学数学中概念教学 蹇家坡学校杨胜 毕业两年,每学期都带两个班的数学课,一直以来,我就觉得数学有几大难题,其中就有对于概念的教学,像老师所提到了现象,在教学时,学生对于概念好......

    命题及其关系(教学设计)

    命题及其关系(1)(教学设计) 1.1.1 命题 教学目标: 知识与技能 了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式;体会命题的逻辑性。 过程与方法: 通过学......

    高一数学集合的概念教学设计

    课 题:1.1集合-集合的概念教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义......

    高一数学集合的概念教学设计

    高一数学集合的概念教学设计 本资料为woRD文档,请点击下载地址下载全文下载地址课 题:1.1集合-集合的概念教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生......

    数学教学设计_1.2.1函数的概念

    『高中数学·必修1』6456989.1 函数的概念杜淑芳(2010-8-8)课题:§1.2.1函数的概念 教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的......

    数学概念的教学设计如何做到深入浅出

    数学概念的教学设计如何做到深入浅出,易于理解 中科院数学院士林群在一次接受记者采访时说:“数学是大众的,要被大众所掌握,而非被少数人藏在包里,数学知识来源于生活实际,生活本......