第一篇:《数学广角——集合》教案设计(范文)
《数学广角——集合》教案设计
【教学内容】义务教育程标准实验教科书人教版数学
(三)年级(上)册第(九)单元第(1)时《
集合 》。
【教学分析】
在例1教学中,用统计表的形式给出三(1)班参加跳绳、踢毽比赛的学生名单,提出要解决的问题。教师要让学生自主探索,思考解决问题的方法。呈现了一一列举出参加两项比赛的学生姓名(两个集合的元素),把重复的连起来(找到交集的元素)解决问题的方法,让学生体会在求两个集合的并集时,它们的公共元素在并集中只能出现一次。
【学情分析】
注重联系学生生活实际,帮助学生学习掌握新知。本单元共有9个题目于学生熟悉的情境,学生虽然熟悉这些情境,但以前不一定从集合的角度来思考并解决问题。因此,这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。其次,有层次地设计练习,逐步丰富并完善学生对集合知识的理解。
【教学目标】
.理解集合圈里各部分的意义。
2会读集合圈中的信息,会按条填写集合圈。
3使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学重难点
会读集合圈中的信息,会按条填写集合圈。
2使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教具准备、活动卡
【教学、具准备】
,小棒
【教学过程】
一、创设情境,引入题
小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?
引导学生质疑:
来了10种小动物,为什么有6种生活在水里,6种生活在陆地?6+6=12(种)啊?
新知探究:
、动手操作
我们一起来看看这些小动物
出示:蚂蚱章鱼虾青蛙蜗牛鲤鱼兔子乌龟海鱼瓢虫
①这些动物和昆虫,你知道它们都是生活在哪里吗?(它们有的生活在陆地上,有的生活在水里)你能把它们分类一下吗?
②完成活动卡活动一,指名分类。
③全班一起分类。
④发现问题:乌龟和青蛙有时生活在水里,有时生活在陆地上。
2、图示方法,加深理解
(1)(出示)先是两个小组的集合圈。
(2)引导发现青蛙和乌龟两个圈里都有,如果只有一只小青蛙和一只小乌龟能分开站吗?
(3)出示合并隆的空集合圈,引导观察这个集合圈和分开的两个圈有什么不同。(有一块公共区域,这块公共区域可以表示什么?)
(4)全班交流,说说想法。
()师根据堂实际情况适当小结。
(6)填写合并拢的集合圈。
(7)让学生说一说图中不同位置所表示的不同意义。
三、新知巩固,加深理解、出示:三(1)班参加跳绳、踢毽比赛的学生名单
(1)引导得到:
①参加踢毽的有(8)人
②参加跳绳的有(9)人
(2)小天使的疑问
①小天使也有一个问题。是什么问题呢?出示:
参加这两项比赛的共有()人?(学生小组合作讨论答案,后指名回答,要说出思路)
②演示
a、找到既参加踢毽又参加跳绳的人(3人:杨明、李芳、刘红);
b、出示空集合圈,指名说说各个位置所表示的意义;
、填写集合圈;(先填写公共部分)
d、出示各部分人数,引导计算两个小组一共有多少人?(让学生自己去找到答案,以得到多种解法)
人教版数学第五册第八单元分数的初步认识第九单元数学广角-集合教案
踢毽的学生
两项都参加的学生
跳绳的学生
解法一:+3+6=14(人)
解法二:8+9-3=14(人)
2、完成教材10页做一做第1、2题。
3、完成10页思考题
A组和B组的小组赛都需要淘汰1人,都需要进行1场比赛,因此一共要进行30场比赛。
四、堂小结:
这节数学广角我们学习了哪些知识?
第二篇:数学广角教案设计
《数学广角——搭配
(一)》教案
杨 盼
教学内容:
课本97页。
教学目标:
1.知识能力目标:
①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数。②初步培养有序地全面地思考问题的能力。③培养初步的观察、分析、及推理能力。2.情感态度目标:
①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。②初步培养有顺序地、全面地思考问题的意识。③使学生在数学活动中养成与人合作的良好习惯。
教学重点:
经历探索简单事物排列规律的过程。
教学难点:
初步理解简单事物排列。
教学准备:
多媒体课件、数字卡片。
教学过程:
一、创设情境,引发探究
师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。
二、操作探究,学习新知
(一)组合问题 l、看一看,说一说
欢迎你们的到来,为了考考你们的智慧,请你们先想办法把这把密码锁打开,锁的密码提示1:请用数字1、2、3摆出所有的两位数。师:三只小动物都犯傻了,怎么办呢?小朋友们能不能帮帮他们?老师给你们准备了数字卡片,在信封里。但是老师有要求:同桌合作用数字卡片摆,并且让一个人把摆出来的数字记在白纸上,在动手之前先商量一下你们打算怎么摆再开始。教师巡视,搜集各种不同的摆法。(板书,标上序号)(1)13、23、21、32、31(2)13、21、32、31、12、23、21(3)12、21、23、32、13、31(4)12、13、21、23、31、32(5)21、31、12、32、13、23 汇报找密码的过程。(先全部板书,再请学生来说说哪种方法好,好在哪?说说是怎么摆的,最后学生用卡片演示一遍。)老师这里有5种不同的答案,我给它们标上号。仔细观察,它是怎么摆的?你觉得哪种方法比较好?好在哪里?先和同桌说一说。预设:生1:我喜欢3号。(他是怎么摆的?)先摆出12,再把十位和个位交换位置。师:哦,你的意思是用十位和个位交换位置的方法。觉得这种方法的同学请举手。(位置交换法)谁愿意再来说说这种方法好在哪里? 生:很清楚,有规律。师:你还觉得哪种摆法比较好? 生2:第4组。(他又是怎么摆的)他是先把1放在十位上,然后把数字2和3放在个位上组成12、13,再把2放在十位上„„。(十位固定法)师:你的意思是先确定十位。十位是1的有哪些数?
12、13,21、23,31、32。这样摆有什么好处?(不会重复,不会遗漏,有序。)(请一生上来摆,其余生读数字,感受规律。)师:观察5号,他有没有顺序?(有,他是先确定个位。)师:为什么不觉得1、2方法好?为什么会漏掉?(没有按次序,还重复,漏掉了。)师小结:看来以后碰到这样的问题,想摆得快又不漏掉,我们应该选择一定的顺序和一定的规律去摆就不会重复也不会遗漏。答错的小朋友现在你学会这些好办法了吗?
说明数字的排列是有序的,这就是属于数学的排列问题。
(板书:排列)
师:今天这节课我们只是学习“简单的排列”(板书课题)
三 应用拓展,深化探究1、1.排列数字
用3、5、8三个数字可以组成多少个不重复的两位数?
3.排列数字
如果用 0、2、3 三个数字,能组成几个两位数?再试试看。23 30 32
四、全课小结,畅谈收获。
同学们,这节课你有什么收获吗?生活中有这么多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以解释更多生活中的数学问题。
五、板书设计
数 学 广 角
有顺序
不重复 23
不遗漏
互换位置 定十位 定个位
第三篇:数学广角教案设计
第八单元 数学广角教学设计
教学目标:
1.使学生通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。
2.培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。
3.引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。
4.通过小组合作探究的学习形式,养成与人合作的良好习惯。教学重点:自主探究,掌握有序排列、巧妙组合的方法,并用所学知识解决实际生活的问题。教学难点:怎样排列可以不重复、不遗漏。
教学准备:三只小动物的头像、两顶小雨伞图片、数字卡片、PPT课件等。教学过程:
一、以故事形式引入新课
师:同学们,今天老师为大家带来了3只可爱的小动物,你们看它们是谁呀?(边说边贴出动物头像:小刺猬、小鸭、小鸡)小刺猬、小鸭和小鸡三个好朋友今天准备到山羊博士家去做客呢,可是刚走了一半路,突然下起雨来,它们三个只有小鸭和小鸡带了伞,小刺猬没带伞,怎么办呢?
▲(学生可能出现的答案有:①小鸡和小刺猬一起用一把伞,小鸭自己打一把伞。②小鸭和小刺猬一起用一把伞,小鸡自己打一把伞。③小鸭和小鸡一起用一把伞,小刺猬自己打一把伞。)
▲当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。
师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它们却选择了第③种方法,你们知道这是为什么吗?原来呀,当它们开始用前面两种方法时,可没走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。
(教学设计意图:不拘泥于教材,创设学生感兴趣的故事引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)
二、用开密码锁的方法进行数的排列活动
师:三只小动物到了山羊博士家,却发现大门紧闭,门上还挂着一把锁(边说边出示投影)咦,锁上还有一张纸条呢,让我看看纸条上写着什么呢?(教师读纸条上写的内容:,锁的密码提示是:请用数字1、2、3(的其中两个)摆出所有的两位数,密码就是这些数从小到大排列中的最小的。──山羊博士留。)
师:三只小动物都犯傻了,怎么办呢?同学们能不能给他们帮帮忙?
(生略)
师:那么我们就先每人拿出数字卡片,自己摆一摆,边摆边记,完成后,再小组内交流汇报,组长把整个小组摆出的数全写出来,当然重复的数字不用再写,然后全组同学一起把这些两位数从小到大排列起来,找到密码。
▲ 学生先自己摆、记,然后小组汇总、排列、交流,教师进行巡视并作适当指导。
(教学设计意图:以帮小动物开密码锁的方法来进行数的排列教学,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。这里先让学生独立思考,调动学生自主学习的积极性,再小组合作,让学生在宽松民主的气氛中,参与学习过程。同时从学生已有的知识基础出发,适当增加了难度,让这个密码出现在所有的两位数从小到大排列的第4个,这也是做到了“下要保底、上不封顶”的设计意图。)
师:你们找到密码了吗?是多少?你们是怎么找到的呢?
▲请几个小组的学生汇报并说出找密码的过程。(略)
师:那么刚才你们摆两位数时,你摆出了几个呢?请用手势表示一下。
▲学生举手后,问没摆全的学生是怎么摆的,问全摆出的学生又是怎么摆的,学生出现的情况可能有:有把1、2组成12,然后再交换位置变成21;
1、3组成13,交换位置后是31;
2、3组成23,交换位置后是32。或者是随便摆一个看一个的。或者是这样摆12、13、23、21、31、32等。对这些摆法可让学生去比较一下,得出第一种方法有序地去摆不会重复也不会遗漏。
▲让刚才不是用第一种方法去摆的学生按这种方法再重新摆一摆,感觉一下是不是比刚才方便多了。
师:同学们都摆得很好,都动了脑筋,要想摆得快又不漏掉,我们应该选择一定的顺序去摆。
(教学设计意图:既然是数学活动课就该让学生充分地摆,充分地说,以“摆”来帮助思,以“说”来表达思,在“摆”中发现问题,在“说”中交流问题,解决问题。)
(三)模拟小动物之间的握手来解决组合问题。
师:通过大家的帮忙,山羊博士家的密码锁被打开了,小动物们可高兴了,它们激动地互相握起手来,小刺猬边握手边在想:“我们三个互相握一次手,一共握了几次手呢?”(教师边说边在小刺猬的头上打个问号。)
▲ 学生猜好后,教师指出可以以四人小组为单位,三人模拟小动物握手,一人数握手的次数,找出答案。最后通过模拟得出:3人一共握了3次手。
师:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?(学生交流后得出:两个数字可以交换组成2个两位数,而两个人握手不能交换只能算一次。)
(教学设计意图:模拟小动物握手,让学生在实践操作中自己找出答案,培养学生的实践意识和应用意识,同时使学生感受到学习的乐趣。最后通过比较,找出区别,在区别中强化知识,此种学习方式充分体现了以学生为主体的思想。)
(四)通过不同层次的练习,使知识得到巩固。
师:同学们说得都非常好。今天,我们不仅帮3只小动物解决了不少的问题,还学到了许多的数学知识,大家高兴吗?
师:那现在我们就带着这份兴奋的心情,来做几道题吧!
1.(出示实物投影)第101页第1题,问有几种不同的穿法?
(练习设计意图:通过“搭配衣服”这个练习,不但使学生明白数学与生活的密切关系,而且巩固了所学知识。)
2.(出示实物投影)一张5角,2张2角的纸币及5个1角的硬币,还有一本标价为5角的练习本。
问:买1个练习本可以怎样付钱?
3.猜一猜,我们家的门牌号。4.猜一猜,我的电话号码。
(设计意图:透过猜一猜的小游戏,更能使同学们明白数学与生活的联系。)课堂小结:学了这一节课,你的最大收获是什么?
第四篇:数学广角集合
《数学广角——集合》教学设计
数学学科 成艳娇
教学目标:
1、在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。
2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
教学难点: 对重叠部分的理解。教具准备: 课件。教学过程:
一、创设情景,激趣导入。
师:同学们,你们喜欢脑筋急转弯吗?下面我们来猜一猜,有信心吗? PPT:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,其中一个人重复了两个角色,是哪个?
师:分析得不错,因为有一个人重复了,这里的妈妈既是外婆的女儿,又是小女孩的妈妈,所以只有3人。
这就是我们生活中经常遇到的集合问题。这节课,我们就来探讨数学广角的集合问题。(揭示课题)(老师在本节课还要收集积极举手和坐姿优美的同学名单,希望我们每一位同学都能拿出最棒的自己来。)
二、探究体验,经历过程。
1、教学例1.1过程一。师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)
师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。
师:那么,参加这两项比赛的一共有几位同学?你会计算吗? 学生可能回答;
一共有17人,9+8=17(人)。
可是,参加这两项比赛的没有17人呀。我发现有的人两项比赛都参加了。
应该是一共有14人参加了,算式是9+8=14(人)。„„
师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢? 生:因为有3个人重复了。
生:因为这3个人既参加了跳绳,又参加了踢毽。
生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算 的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。师:同学们的发言真是精彩,报名参加这两项比赛的一共有多少名同学呢? 生:14人。
2、过程二。
师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。
“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀?
生:不知道站哪边。
师:哦?为什么?怎么会出现这样的情况呢?
生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。
三位同学都站到了讲台的中间。
师:那左边、右边、中间分别表示什么?
生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。
3、过程三。
师:谁能用画图的方法来表示一下刚才看到的情形?
学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:
生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。
师:杨明、李芳、刘红都参加了两项比赛,可是,为什么在跳绳和踢毽的圈里没有他们呢?能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。
生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。
学生动手试着画图,并向全班展示。
4、过程四。
师:PPT出示创作出来的韦恩图,同学们真棒,居然和我们伟大数学家发明的图一样,这就是十九世纪英国的哲学家和数学家——韦恩发明的图,所以取名叫韦恩图,希望同学们也能继续扎实学习,老师期待以后能看到用咱们班同学的名字命名的数学小发明,看图,说说每一部分分别表示什么?
生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。
师:你能用一个算式表示出参加这两项比赛的人数吗?
生:9+8-3=14(人)生:(8-3)+3+(9-3)=14(人)分别说一说每个数字代表的意义。
三、巩固提高
既然同学们这么聪明,把韦恩图学懂了,那接下来有些题目让大家来完成,考考大家是否真的学懂了,有信心吗? 请看题。
1、动物运动会
同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。
六一节就要到了,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?
学生说说动物名称。老师表扬:你们的课外知识真丰富,老师很佩服你们。比赛项目:游泳、飞行
师:小动物们可以参加什么项目呢?学生讨论、反馈。
师:原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上相应的圈内)说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。点到天鹅时,说说它应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么? 出示:既会飞又会游泳的 2:龙田龙兴文具店
同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗? ①龙兴文具店昨天、今天批发文具的情况
②观察图,发现了什么?(两天都批发了钢笔、尺、练习本)③两天共批发多少种货?
学生列式:5+5-3=7 5×2-3=7 5-3+2=7 说说怎么想的?
3:回看这节课积极举手和坐姿优美的同学的名单情况,同学们能不能利用本节课的集合思想,创造出集合图呢? 动手创作(名单板书在黑板)四:全课小结
1:通过今天这节课的学习你学会了什么?
2:今天这节课,你觉得谁的表现较好,好在哪里?
教学反思 “数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级上册开始新增设的一个内容,涉及的集合也就是老版的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就
可以了,教学时老师不要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。综上分析,本课的教学目标定位为:
1、使学生借助直观图,利用集体的思想方法解决简单的实际问题。
2、使学生解决实际问题的过程中体会集合的思想。
3、培养学生善于观察、善于思考,养成良好的学习习惯。
在本节课的教学试验中我觉得在教学设计中,注重以下几个方面: 一:情境导入,适时引导
数学来源于生活,并应用于生活。教师可以通过现场调查学生熟悉的兴趣爱好,如:对“唱歌和画画”的喜欢情况作为教学素材展开教学,根据学生名单获得生活中的数学信息,并根据信息提出教学问题,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参加学习过程。二:设置认知冲突,感知体验集合图
以“这一小组一共有几人?”这一问题冲突为线索,让学生提出问题,当学生解答时出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。
三:联系生活实际、体现数学的应用的广泛性
在教学设计过程中创设了贴近学生生活实际的事例和学生喜闻乐见的故事情境。如在进行练习时,把根据动物特性填写集合图的练习题,创设成了一个“动物运动会”的场景,把动物特性“游泳、会飞”形象地比喻成“游泳、飞翔”两个比赛项目,让学生帮助小动物进行报名,这一场景的创设变原本枯燥的练习形式为生动的数学活动,既提高了学生参与数学活动的积极性,又激发了学生乐于助人的思想品质;又如在紧接的“龙兴文具店”中也充分引入学生的社会经验,让学生真真切切的感受到数学就在自己的身边,数学在生活中实际作用,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,同时还对进行了热爱家乡、立志建设好家乡的思想教育。
四、总结提升。师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。
课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?
第五篇:数学广角集合
《数学广角集合》教学设计
教材分析:
本单元是非常有趣的数学活动,也是逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本单元主要要求学生能根据提供的信息,借助集合圈进行判断、推理,得出结论,使学生初步接触和运用集合圈分析问题、解决问题。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生借助几何直观思考问题的意识。教学要求:
1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。2.能借助直观图,利用几何的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。教学目标:
1.在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
教学重点 :让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。教学难点 :对重叠部分的理解。教具准备 :课件 教学过程:
一、创设情景,激趣导入。
师:老师先给大家出一道脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。
二、探究体验,经历过程。1.教学例1.师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)
师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。师:那么,参加体育训练的一共有几位同学?你会计算吗?
学生可能回答;一共有17人,9+8=17(人)。
可是,参加这两项活动的没有17人呀。我发现有的人两项活动都参加了。应该是一共有14人参加了,算式是9+8=14(人)。……
师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?
生:因为有3个人重复了。
生:因为这3个人及参加了跳绳,又参加了踢毽。
生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。
生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。
师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同学呢? 生:14人。2.出示另一种方法
师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。
师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。
“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀? 生:不知道站哪边。
师:哦?为什么?怎么会出现这样的情况呢?
生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。
三位同学都站到了讲台的中间。
师:那左边、右边、中间分别表示什么?
生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。3.方法三。
师:谁能用画图的方法来表示一下刚才看到的情形?
学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。
分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:
生1:我觉得左边的同学是代表参加跳高的,应该圈在一起;右边的同学代表参加跳远的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是及参加了跳绳的,又参加了踢毽的呢?再想想,看还没有没更好的画法。
生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。
生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。学生动手试着画图,并向全班展示。4.方法四。
师:看图,说说每一部分分别表示什么?
生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。
师:你能列式计算这两个小组的人数吗? 生:9+8-3=14(人)
生:(8-3)+3+(9-3)=14(人)
三、总结提升。
师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。
课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?
四、课堂作业。
1、同学们去春游,带面包的有78人,带水果的有77人,既带面包又带水果的有48人。参加春游的同学一共与多少人?
2、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。
(1)既参加数学竞赛又参加作文竞赛的有几人?(2)只参加数学竞赛的有几人?(3)只参加作文竞赛的有几人?