第一篇:人教版六年级数学下册第二单元折扣教学设计
人教版六年级数学下册第二单元《折扣》教学设计
教材分析
“打折”这个概念,在我们日常的社会生活和生产实践中,经常要用到。“打折”应用于很多商品经济领域。可以说,学生对这个概念并不陌生,大多数同学在日常生活中通过新闻媒体、购物等多少有所接触与了解。但学生的这些认识还只是停留于感性认识。因此,本人在设计教案时,大胆让学生去自学,让学生收集实际例子,让学生自已编例题,在师生的互动与讨论中,帮助学生逐步修正对“折扣”的认识,从日常的感性认识上升为科学的理性认识。并沟通折扣与百分数知识之间的联系,进一步完善百分数的知识体系。
学情分析
本部分主要是解答“打折”的实际问题,沟通各类百分数的问题的联系。学生已能解答“求一个数是另一个数的百分之几”的问题,以及求一个数的百分之几是多少的问题。教材介绍了什么是打折,以及折扣的含义,指出几折就是十分之几,也就是百分之几十。然后让学生思考原价和实际售价的关系,联系打折的含义,得到数量关系“原价×折扣=实际售价”。教材体现了各类百分数问题的内在联系。学生通过解决这些问题,能进一步理解折扣的含义和实际应用,灵活掌握数量关系。
教学目标
(一)知识与技能
1.让学生联系百分数的意义认识“折扣”的含义,体会折扣和分数、百分数的关系,加深对百分数的数量关系的理解。
2.了解“打折”在日常生活中的应用,学会联系“求一个数的百分之几是多少”的知识,能应用这些知识解决一些简单的生活实际问题。
(二)过程与方法
培养学生根据实际情况选择最佳方案与策略的能力,提高运用所学知识解决实际问题的能力。
(三)情感态度与价值观
1.鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情。2.进一步让学生感受数学和生活的密切关系,体会到数学的价值。
教学重点:在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。
教学难点:能应用“折扣”这个知识解决生活中的相关问题,培养学生与日常生活的密切联系,体会到数学的应用价值。
教学准备:师生搜集有关数据,课件。教学过程:
一、复习
师:求一个数的百分之几是多少用什么方法来解答? 生:用乘法计算.二、谈话引入,学习新知
师:今天,我们再来学习一个有关百分数的知识《折扣》。(出示课题)“折扣”这个词同学们也许很陌生,但是它的另一个名字同学们肯定听过,那就是打折。生:听过。
1.理解“打几折”的含义 师:每当节假日期间商场超市有打折的情况,于是老师上星期就到商场买了几件打七折的商品。投影出示:
羽绒服原价:1000元,现价700元 围巾原价100元,现价70元
同学们看一看打折后的价钱便宜了还是贵了。生:便宜了
师:那么现价是原价的百分之几? 生:百分之七十
师:同学们说得很对,那么谁能说出打七折是什么意思? 生:打七折的意思就是按原价的百分之七十出售
师:你说得非常好,打几折就表示百分之几十,也就是十分之几。
2、练习
四折是十分之(),改写成百分数是()六折是十分之(),改写成百分数是()。七五折是十分之(),改写成百分数是()。八二折是十分之(),改写成百分数是()。
师:出示对折的卡片,帮助学生理解对折就是五折也就是百分之五十。
3、运用折扣的含义解决实际问题。
(1)出示例1的第(1)题:爸爸给小雨买了一辆自行车,原价180元,现在商场打八五折出售。买这辆车用了多少钱?
师指名读题
提问:八五折怎么理解?
怎样列式计算?(指名学生板演)板书:180×85%=153(元)(2)出示例1的第(2)题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
指名读题
说一说九折的含义。
②求比原价便宜了多少钱,也就是求什么? 指名板演
生:160×(1-90%)=160×10%=16(元)师提问:把谁看做单位“1”? 生:把原价看作单位“1” 师:谁还有不同的做法? 生:160-160×90% 师:160×90%求的是什么? 生:现价
三、巩固练习,深化新知
1.我们打开课本8页,做一做,同学们先独立完成。学生汇报,师:第一件商品是什么?原价多少钱?打折后多少钱?怎样计算? 生:52元,用80×65%=52(元)
师:第二件商品是书包,原价多少钱?打折后多少钱?怎样计算? 生:73.5元,用105×70%=73.5(元)
师:第三件商品是一套书,原价多少钱?打折后多少钱?怎样计算? 生:30.8元,用35×88%=30.8(元)
师:同学们做的非常好,也知道了求打折后的价钱就是求原价的百分之几是多少。
四、拓展延伸
1、出示13页练习第1题的图片,师:(1)打折后,每种面包多少元?(指名回答)
(2)晚8:00以后,玲玲拿了3元钱去买面包,她可以怎样买? 生 :买4个1.5元的。生:买6个1元的。生:买2个3元的。
生:买2个1.5元的和1个3元的。
2、出示13页练习二第3题
师:让学生独立完成后指名板演
生:9.6÷(1-80%)=9.6÷20%=48(元)师:指名说出1-80%求的是什么?
生:9.6元对应的分率。然后对应量除以对应分率等于单位“1”的量,也就是玩具的原价。
师:同学们说的很好!
五、小结
这节课我们学习了折扣,它是百分数在实际生活中的一种应用形式,也就是求一个数的百分之几是多少,后面还有百分数的其他应用,像纳税、利息等。这节课我们就到这里,同学们再见。
板书设计:
折扣
八五折180×85%=153(元)
九折160×(1-90%)=160×10%=16(元)答:比原价便宜了16元。
第二篇:六年级数学下册第二单元折扣 成数
折扣
成数
教学内容:人教版六年级数学下册课本第8~9页例1、2及做一做,练习二第1~5题。教学目标:明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。明确成数的含义,能熟练的把成数写成分数、百分数,能正确解答有关成数的实际问题。
教学重点:理解“折扣”和“成数”的意义。
教学难点:合理、灵活地选择方法,解答有关折扣和成数的实际问题。教学过程:
一、创设情境,导入新课
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)
二、探索交流,解决问题
1.教学折扣的含义,会把折扣改写成百分数。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:?元。④橡皮,原价:1元,现价:?元。
(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)讨论,找规律。
A.学生动手操作、计算,并在计算或讨论中发现规律。
B.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。(6)归纳,得定义。
A.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?
B.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)
C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。
2.运用折扣含义解决实际问题。出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①导学生分析题意:打八五折怎么理解?是以谁为单位“1”? ②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式: 原价×85%=实际售价
③根据数量关系式,学生独立列式解答。④全班交流。根据学生的汇报。出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”? ②学生试算,独立列式。
③全班交流。根据学生的汇报,板书:
第一种算法:原价160元,减去现价,就是比原价便宜多少钱。160-160×90% =160-144 =16(元)
第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10% =16(元)
重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.介绍成数的含义,会把成数改写成分数,百分数。
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论并回答)(成数:表示一个数是另一个数的十分之几,通称“几成”)(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。
4.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”? ②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%)
③根据关系式,学生独立列式解答。全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)
三、巩固应用,内化提高 1.课本第8页“做一做”。2.课本第9页“做一做”。
3.课本第13页练习二第1~5题。
四、回顾整理,反思提升
通过这节课的学习你有什么收获?
第三篇:人教版小学六年级下册数学第二单元《折扣》教案
人教版小学六年级下册数学第二单元《折扣》教
案
教学内容:
折扣(课本第8页例1)
教学目标:
1、让学生在商品打折销售的情境中理解折扣的意义。
2、学生在掌握求一个数的百分之几是多少这种问题的基础上自主解决问题,培养学生解决实际问题的能力。
3、养成独立思考、认真审题的学习习惯。
4、在买东西的过程中,商标剪下来后要做好垃圾分类
教学重点:
理解折扣的意义。教学难点:
解决折扣的实际问题
教学过程:
一、复习
口算
1890%= 20180%= 54070%=
210 50% = 30095%= 30026%=
二、创设情景理解折扣的意义
1、利用课件或挂图出示商场店庆、商品打折的情境,渗透保护动物,不买皮草。
2、打折是什么意思?八五折、九折表示什么?
3、结合实际了解到的信息进行思考和交流,再阅读课本进行对照分析。
4、小结:商店降价出售商品叫做折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。可见,打几折就表示现价按原价的百分之几十出售,它表示的是一种关系。
5、问: 七五折表示什么?五折表示什么?
三、自主探索解决问题的方法
(一)出示例1(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
1、理解分析:八五折是什么意思?是把谁看作单位1?
求买这辆车用了多少钱也就是在求什么?
2、学生独立解答
3、板书: 18085%=153(元)
(二)出示例1(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
学生分析题意尝试列式
方法
(一)先求现价,再求便宜的钱数。
16090%=144(元)
160-144=16(元)
(二)先求便宜钱数占原价的百分之几,再求便宜的钱数。160(1-90%)=16(元)
2、小结:两种方法有什么不同之处?
第一种算法:原价160减去现价(即原价的90%):160-16090%。
第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160(1-90%)就是便宜的价钱。
想想哪种方法计算起来比较简便。
四、巩固练习
(一)填空
1、商店有时降价出售商品,叫做(),通称()。几折就表示(),也就是()。
2、(1)九折是十分之九,改写成百分数是()表示现价占原价的()%。(2)八五折是(),改写成百分数是()表示()占()的()% 八八折是(),改写成百分数是()表示()占()的()%
(二)第8页做一做
学生独立完成并说出各折扣表示的意思。
(三)解决问题
1、一辆自行车,七折出售后是700元,它的原价是多少元?便宜了多少元?
一件羽绒服原价1000元,打折后,现价500元,请问:这件羽绒服是打几折出售的?
五、课堂总结
学生谈谈学习本课有什么新的收获。
六、作业
第13页第1、2、3
第四篇:六年级数学《折扣》教学设计
琯头中心校“信息技术环境下课堂教学模式的创新研究”课题活动公开课教案
六年级数学《折扣》
执教者:张惠清
开课时间: 2011年 11 月9 日上午第二节
教学目标:
1.明确折扣的含义。
2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。教学重点:会解答有关折扣的实际问题。
教学难点:合理、灵活地选择方法,解答有关折扣的实际问题。
一、导入新课。
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)后,师也相应出示灯片展示。
二、在生活情境中,讲授新知。
1.教学折扣的含义,会把折扣改写成百分数。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,商家为了促销,商店有时降价出售商品,叫做打折扣销售,通称“打折”。(幻灯片)那么同学们所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:? ④橡皮,原价:1元,现价:?
(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。琯头中心校“信息技术环境下课堂教学模式的创新研究”课题活动公开课教案
(5)讨论,找规律。
A、学生动手操作、计算,并在计算或讨论中发现规律。B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;(6)归纳,得定义。
A、通过小组讨论,谁能说说打七折是什么意思?打八五折是什么意思?打七八折呢? B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”是就是十分之几,也就是百分之几十)(7)练习。
①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。
例4:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
(1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?
琯头中心校“信息技术环境下课堂教学模式的创新研究”课题活动公开课教案
B、学生试做,讲评。
(3)拓展提高,解决实际问题。
妈妈让小雨为家里买5盒牛奶,甲超市原价3元,现在打八五折,乙超市原价也是3元,现在买四送一。请你帮他选择,到那个超市买更为合算?
下学期,我们准备集体一同购买《帮你学数学练习册》和《帮你学语文练习册》,老师去了几家书店,请同学们,以组为单位,制定购买方案,并说出理由。
具体情况如下:
我班共47人,两本练习册,原价都是9.5元
书店名称
优惠措施
新华书店:
降价15%
永正书店:
打八八折
太原书城:
买十送一 琯头中心校“信息技术环境下课堂教学模式的创新研究”课题活动公开课教案
1.一辆自行车,七折出售后是700元,它的原价是多少元?(3)完成课本中P97“做一做”练习题。
四、布置作业
练习二十三第1、2、3题
第五篇:人教版小学六年级下册数学《折扣》教学设计
人教版小学六年级下册数学《折扣》教学设计
一、教学目标
(一)知识与技能
1.理解“折扣”的含义,知道它们在生活中的简单应用。2.在理解“折扣”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。
(二)过程与方法利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比及学生的自主探索,发现知识之间的联系。
(三)情感态度和价值观通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。在自主探索的过程中,感受数学学习的乐趣。
二、教学重难点
教学重点:理解“折扣”“成数”的含义,并能进行应用。教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。
三、教学准备教学课件。
四、教学过程
(一)创设情境,引入新课
1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段?2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。
(二)结合情境,学习新知 1.理解“折扣”
(1)(课件出示促销文字信息)这里的九折、八五折是什么意思?
(2)同桌互相说一说。
(3)反馈:预设:①举例说明:一件衣服100元,八五折的话就只要85元。②九折就是现价是原价的90%。
(4)归纳:商品打几折,其实就是指现价是原价的百分之几。(5)练习:看折扣写出相应的百分数。()%()%()% 2.解决与“折扣”相关的问题
(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①独立完成并进行校对。
②反馈:谁能来说说自己是怎么想的,为什么这样计算? 重点分析以下问题:
问题一:八五折是什么意思?是把谁看作单位“1”? 问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)
(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①独立思考并完成,同桌交流解题思路。②交流反馈:
重点对比两种解题方式:
第一种算法:原价160减去现价(即原价的90%):160-160×90%。第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。想想哪种方法计算起来比较简便。
(3)练习教材第8页“做一做”,完成后校对。
(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗?现价=原价×折扣。
(三)应用练习
巩固认知今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。
1.课件出示教材第13页练习二第1题。(1)独立完成,集体校对。
(2)引导学生按一定的顺序进行思考。
2.课件出示教材第13页练习二第3题。书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。
(2)尝试练习,集体校对。
五、回顾梳理,课堂总结
今天这节课我们学了什么?我们应如何解决这一类问题?