第一篇:《利用数轴比较数的大小》教学设计
《利用数轴比较数的大小》教学设计
李海燕
一、【教学内容】:
教科书第5~7页例
3、例4及练习一4~6题。
二、【教学目标】:
1.知识与技能:在学生对正、负数意义的理解之上,又为以后进一步学习有理数打下基础。主要包括:认识数轴、在数轴上表示数、利用数轴比较数的大小。2.过程与方法:从形象理解认识向抽向的数学模型转化。
3.情感、态度和价值观:利用知识的迁移,让学生通过自主探索、讨论交流掌握温故知新,提高学生观察、分析、归纳的能力。
三、【教学重点】:用数轴表示数。
四、【教学难点】:借助数轴比较正数、0、负数的大小。
五、【教学具准备】
电脑课件等。
六、【教学过程】
一、知识链接:
1.读数,指出哪些是正数,哪些是负数?
87-5 7.2 +0.9
-1+ 10
0-23 2.如果+5%表示增加5%,那么-10%表示
()
。3.某日傍晚,北京的气温由上午的零上5摄氏度下降了10摄氏度,这天傍晚黄山的气温是
()摄氏度。
二、探究新知:
(一)导入:
我们对负数有了初步的认识,今天,我们借助数轴来比较正数、负数和0的大小。(板题:利用数轴比较正数、0、负数的大小)
(二)教学例3 用数轴表示数 1.出示例3:
有几个同学,以大树为起点,分别向东西走不同的距离,你能在一条直线上表示他们运动后的情况吗?怎样用数表示这些学生和大树的相对位置关系?(1)认识什么是数轴:
课件出示一条数轴:向这样,规定了原点、正方向和单位长度的直线叫数轴。
(2)学习怎样用数轴表示正数、负数和0 A.分小组交流,让组长带领组员交流,并试着画一画。(老师巡视,关注每组的交流情况。)
B.汇报交流结果。在学生回答同时,教师用课件演示用数轴上点表示学生的运动情况,之后,教师在黑板上画好直线,在相应的点上用小图片代表大树和学生,提醒怎样用数表示这些学生和大树的相对位置关系?(让学生在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,使学生对数轴上的点表示的正负数形成相对完整的认识
在这个过程中,教师注意强调确定起点、单位长度、方向、对应位置,让学生把直线上的点和正负数对应起来
C.学生在数轴上标出四个正负数。(强调:把直线上的点和正负数对应起来)。
D.小结:像这样在直线叫数轴,我们在数轴上可以表示0、正数、负数。2.练习
(1)请在数轴上表示:出向东走1.5米,向西走1.5米。(2)在数轴表示出-3.5米,并说一说-3.5米表示什么。(3)如何在数轴表示出往东走4.5米如何在数轴表示出来。(4)做一做的第1、2题。
3.小组讨论:正数、负数和0在数轴上排列的顺序。
(三)教学例4:借助数轴比较正数、负数和0的大小
1.出示未来一周的天气情况 :让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2.小组交流,说一说你是怎样比较的。3.汇报交流情况。
4.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4.小结:负数比0小,正数比0大,负数比正数小。
5.举例:“-8在-6的左边,所以-8〈-6”; “8〉6,但是-8〈-6”,得出: 负号后面的数大,这个负数就小;负号后面的数小,这个负数就大。
(四)巩固练习
1.练习:做一做第3题。2.填空:
所有的负数都在0的()边,也就是负数都比0()。所有的正数都在0的()边,也就是正数都比0()。所有负数都比正数()。3.练习一第4、5题。
三、总结:这节课大家有什么收获?
四、作业:练习一第6题。
板书设计:
利用数轴比较正数、0、负数的大小
例3:用数轴表示数
规定了原点、正方向和单位长度的直线叫数轴。例4:负数比0小,正数比0大,负数比正数小
即:负数 < 0 < 整数
负号后面的数大,这个负数就小; 负号后面的数小,这个负数就大
第二篇:《在数轴上比较数的大小》参考教案
2.2.2 在数轴上比较数的大小
教学目标:
知识与能力:
理解利用数轴上的点的位置关系比较有理数的大小的法则和正数、零、与负数的比较法则,会直观地比较数的大小.过程与方法:
经历观察、猜想、做出推断的过程,发展形象思维; 渗透数形结合的数学思想方法,发展学生的一切形象思维.情感态度与价值观:
在学习中体验成功的喜悦,增强学好数学的信心.教学重点、难点
重点:会用两种方法比较有理数的大小; 难点:理解用数轴比较有理数的大小方法的形成.课堂导入
创设情境,提出问题 观察下列三组数
1和-2,-1和0,-3和-4
1、以上四组数中,你能运用你学过的知识比较哪几组数的大小?
2、与同伴交流,试猜想余下的几组数大小.你能证实你的猜想是否正确吗? 让学生先进行讨论,每个学习小组得出本组的答案,待探究后再给出答案. 教学过程
一、合作讨论,探求新知
1、探究活动1:教师可在班上选一名身高适中(约为全班平均身高)的学生,把他的身高定为0,规定高于此身高为正,低于此身高为负,并取一适当的长度为单位长度自制一个身高测量图并固定.(1)织班上几名学生(要有高于0的,又要有低于0的)上台测量身高,身高,并在身高测量图上用点分别标出表示学生身高的位置.试把以上各位被测学生的身高用数表示出来,并说出它们的大小:
把测量图按向右为正的要求横着固定在黑板上组织被测学生,按测量图中表
/ 3
示自己身高的点的位置排成横排,试说出点的位置从左到右,被测学生的身高有何规律,因此,你能找出数的大小规律吗?
探究活动2:(一边反馈一边用多媒体显示探究结果)问题1:怎样在数轴上比较两个有理数的大小?
问题2:利用数轴上点的位置关系,试比较正数,零和负数的大小? 各学习小组的同学交流,合作,各组派代表用方案语言叙述本组的探究结果.结论:
(1)、在数轴上表示的两个数,右边的数总比左边的数大(2)、正数都大于零,负数都小于零,正数大于负数.
2、体验:现在我们再回过头来看一下前面的四组数的大小比较,然后,再看看哪组的答案是正确的.
3、例题学习:书本中的例2
二、例题学习:
书本中的例3(让学生巩固用有理数的比较法则比较两个有理数的大小)
三、巩固练习:
书本中的课内练习(巩固本课时所学的内容)
四、小结回顾,反思提高:
问:本堂课你有什么收获?(根据学生的回答作点评)
有理数的两种比较方法:数轴法和有理数的比较法则(要求内容详尽)
五、作业布置: 课本第18页练习第2题 课堂作业
比较下列各数的大小:(1)910和
10116 和0 7(2)-(3)0.0001和-1000 56(4)-和-
67答案 :
/ 3
(1)教学反思 910656 < ;(2)- <0(3)0.0001>-1000(4)-<-
1011767引导学生主动参与学习活动.通过学生自主探索,揭示规律,自主质疑,自主应用等自
主学习活动,使学生自主建构知识、情感、个性等多方面得到有效的发展.引导合作交流,使各层次的学生在学习上都得到发展,为学生提供创新思维的空间,使学生能创新.特别在练习设计,份量合适,各题都能使学生引入思考的空间,凭自己所体验的数学知识“悟”出数学问题.
/ 3
第三篇:数的比较大小教学设计
一、情境导入,引入比较
师:课前我们玩了个游戏(相反游戏),同学们也听老师介绍了,这会儿大家都应该认识我了么?
生:认识。
师:再看看认识了没有?
生:认识。
师:哪天在大街上见到了我,会跟我打招呼吗?
生:会。
师:会的,好。看屏幕:(出示照片)这是谁?
生:老师。
师:老师,黄老师,对吧?黄老师在干嘛呢?
生:(下面有人回答)爬山。
师:这是今年的暑假黄老师登山的时候所拍下的一张照片。那么黄老师登上的是哪一座山呢?我给几个条件,你们来猜!黄老师登上的是咱们国家非常有名的五岳中的一座。
(稍作停顿,下面的学生在小声讨论)
师:这座山不好爬呀!它的海拔两千多米呀!
(学生如有所悟,开始有人举手向回答。老师继续提示,没有马上让学生回答)
师:我后来经过比较发现,这是咱们国家五岳当中最高的那一座呀。
(学生大部分人举起了手。老师指名)
生:是西岳华山。
师:为什么?
生:因为华山是五岳中最高的那一座,它的海拔有2160米。
师:噢!那是不是西岳华山呢?这是黄老师登顶后拍下的一张照片,旁边有一个牌子,是金庸题写的,繁体字蛮难认的,叫“华山论剑台”。同学们,刚才我们谈的一个话题,是黄老师登山的事情。我们要知道那一座山,就会对对这几座山的海拔高度进行一些分析,进行一些比较。其实在日常生活中我们经常会对数进行大小的比较,所以黄老师和今天同学们一起来学习“数的大小比较”。(出示课题:数的大小比较)
二、自主探索,在游戏中比较
师:“数的大小比较”,对我们三年级的小朋友来说,现在研究的数有多大了?
生:万以内。
师:好。这节课我们就专门来研究万以内数的比较。那么接下来比较的方法是黄老师讲给你们听,还是同学们和老师一起来玩游戏?
生:玩游戏……
师:在数学课上玩游戏,同学们要答应我要思考数学问题。好不好?
生:好……
师:那么思考什么样的数学问题呢?你能提出来这节课我们需要解决的问题吗? 生:我们要学习比较数的大小的方法。
师:说得真好。这位同学能够主动提出我们学数学的过程当中需要研究的问题,非常的了不起。还有谁,还有什么问题要提?
生:怎么比,怎么判断他们的大小?
师:到底怎么比,这个比的过程是怎么样的?有没有非常简便的方法一眼就能看出大和小呢?好!我们就有了两个问题:第一,比较的方法。第二,有没有简便的方法来比较? 师:你们喜欢拿很多数比,还是用生活事例中的数量来比?
生:生活当中。
师:这样比较好,我们既长了识见,又学了数学。
师:黄老师决定我们现在就玩游戏。那么这个游戏怎么玩?大家看(指黑板上的写着数位表牌子)这里有两个牌子,是我们玩游戏的道具。还有两个袋子,里面放的都是数字卡片。接下来我们看玩游戏的规则:(多媒体出示)这规则很重要。我们要把同学分成两个队,以中间为分界线,这两组是一个队,这边同学时令为一个队,好不好?
生:(响亮地)好。
师:每个队都应该有个名字,我想把一个队叫做黄河队,哪边愿意?(生举手)好,这边的同学就叫黄河队!那么这一边的同学就叫长江队。
师:咱们再来看规则,不要读出声音用眼睛看。
(屏幕显示)
游戏规则:
1.每次两队各派一个代表来抽签。
2.第一次抽到的数字就放在个位上,第二次抽到的数字放在十位上,第三次抽到的数字放在百位上……
3.哪一队抽到的数字组成的四位数大,那一队获胜。
4.能确定胜负时,本轮比赛结束。
生:(有些反应比较快的学生若有所悟)噢!我知道了!
师:省略号的意思也能看懂吗?
生:能!
(稍作停顿之后……请每队推选一名学生上台)
师:这个袋子是你们黄河队的,这个袋子就是你们长江队的。我提个要求:我叫你们抽,你们才能手伸进去抽。我没叫你抽的时候,手不要放进去;不要用眼睛看,不要抬起来。好吗?
师:第一张开始。
(两位学生同时开始抽数字卡片,并把卡片放在数位表上)
长江队 黄河队
千
百
十个 千
百
十
个
7
师:长江队这位同学多厉害,一下子就抽到张“9”。
(长江队有学生说“不好!”)
师:不好!(故作糊涂)为什么说不好?
有学生马上站起来回答:因为他抽出来的数最大。
师:人家好不容易抽出来张“9”,你还要说人家“不好”?
(学生议论纷纷)
师:你们有什么话想说?(指一名学生)
生:我认为,长江队和我们黄河队每个袋子里面只有一个最大的数字,抽了最大的数字,他们剩下的数字就会小,组成的数就比我们小了。
师:你还挺理解他们。其实,同学们就是想为他们问一下老师,袋子里都有些什么样的数字?要不要我告诉你们?
生:要。
师:每个袋子里的数字卡片有0、有
1、有2,一直到9,一共有两套。所以你不要以为你抽9不好啊,抽9啊,在某种情况下,它也是有用的啊。(学生在下面又有讨论)你站起来说。
生:当千位上一样,百位上、十位上的数字都一样的时候,就只能看个位上的数字了。
师:(对着长江队)你瞧,黄河队的同学多好,他们会帮着你们想问题了。当千位、白位、十位上都一样的时候,不就看个位了吗?当然,千位、百位、十位都一样的情况,可能性不是很大。要不要看第二张?
生(大声齐说):要!
两位同学抽出第二张卡片。
长江队 黄河队
千
百
十个 千
百
十
个
9 5 7
(有些学生欢呼,有的在讨论)
师:(对着长江队的同学)你抽到了几?
生:3。
师:高兴吗?
生:(想了一会儿,回答)高兴。
师:为什么高兴?
生:比抽1要好。
师:现在的两个数来看看,人家是57,你是多少?
生:39。
师:我们现在的抽到的数字和刚刚不一样了。刚才的9表示9个1,7表示7个1。现在的3和5放在十位上,3变成了3个十了,5变成了5个十了。好!开始抽第三张。
长江队 黄河队
千
百
十
个 千
百
十
个
3 9 1 5 7
(学生发出了笑声和欢呼声)
师:我说有两套吧!(指抽到9的同学)你有什么话想说?有没有信心赢他们?
生:(看着老师,没有回答)
师:黄河队有没有信心赢?
(黄河队同学):有。
师:只要怎么样我们就会赢?
生:假如我们的千位抽到9,我们就赢他们了。
师:也就是说假如你们千位抽到的是9,他们还要不要抽了?
学生七嘴八舌:不要。
师:看来,第4张卡片显得尤为重要,是不是?
生:对。
师:既然这么重要,你们两个同学先后来抽,你们两个谁来?
两个同学你看看我,我看看你。谁也不决定。
师:剪刀、石头、布,谁赢谁决定谁先抽!(学生划拳,指赢的同学)你决定。
生:(想了一想)他先抽。
(学生情绪激动)
(不巧,黄河队抽了个1)
(学生们叫了起来,有喜悦,有泄气的)
师:这个同学真是了不起,一个袋子里有两个1,他都抽出来了。你们认为在这种情况下,黄河队一定输了吗?
生1:不一定。因为你们有可能抽到0,你们是三位数,我们是四位数,所以我们还是赢的。
师:是啊,三位数有四位数大吗?没有啊!
生2:如果千位上抽到0,要重抽,因为规则说要比四位数。
师:你真厉害!他说,如果千位上抽到0 是要重抽的,因为规则规定抽到的数字要组成四位数的,有道理,这么说他们好像已经赢了哦!
生:(齐说)对。
生:因为我们百位上是1,它们百位上是最大的数9。所以我们输了。
师:(对着黄河队)就算千位上都一样,你有1个千,我也有1个千,但是他们的百位上是9呢!那还要不要再抽下去?
生:不要。
师:为了便于我们进行比较,还是把最后一个数字抽出来。你就放心抽吧!(学生抽到了2)
(长江队的同学庆祝胜利)
师:请大家打开课堂练习本,我们要把这轮比赛的结果记录下来。中间写什么符号啊?
生:大于。
(师板书)
师:刚刚我们研究到就算我们长江队千位抽了个1,就变成了1939和1159,也是长江队赢。这道题也请大家写下来。
师:继续玩的游戏,规则有一点变化。
(多媒体展示,学生看)
1.每次两队各派一个代表来抽签。
2.第一次抽到的数字放在千位上,第二次抽到的数字放在百位上,第三次抽到的数字放在十位上……
3.哪一队抽到的数字组成的四位数大,那一队获胜。
4.能确定胜负时,本轮比赛结束。
(学生看完之后下面有了想表达的欲望)
师:都怎么啦?你说什么啊?
生1:一次就能决胜负了。
师:一次就能决胜负啦?
生2:字,如果不一样大,就有可能一次就决胜负了;但是如果相同,我们还得看第二次抽到的数字,还要往后看。不一样的话,才能决定。
师:如果百位还一样呢?
生2:看十位。
师:如果十位还一样呢?
生2:看个位。
师:如果个位还一样呢?
生2:那就相等。
师:非常好!一次就能决胜负,是在两个数字不一样的情况下。我赞成你的观点。
师:这个规则看懂了!我们请两位同学,这个同学坐得多好啊!请你。这边呢,请你。(下面的学生在喊加油)
师:(对黄河队的抽签同学)你有压力吗?
生:有点儿。
师:为什么?
生:因为刚才我们输了。
师:好,开始!
(下面加油声马上响起,两学生抽出4和1)长江队 黄河队
千
百
十个 千
百
十
个
1
师:黄河队的同学在怀疑这个袋子里是不是放了很多个1啊!怎么又抽了个1?要不要继续?
(学生有的说“要”,有的说“不要”)
师:到底要不要?
生:一千里最大的四位数,也没有比四千再大的了。
师:你说的具体一点。什么一千里面最大的?一千多?
生:一千多就像我们说的1989,他们抽到四千零几的话,我们也比不过。
师:你举的例子干嘛说1989,不说1998?
生:那就说1998。
师:一个袋子里只能有两个9嘛,说得有道理。那就算我们抽到1998,也……
生:因为千位比我们大。只要看千位上的情况就行了。
师:因为他的千位比我们大呀,他已经有四千了,我们再怎么说也不够两千。(对黄河队的同学)你同意吗?那叫他们两位怎么办?
(学生说回座位)
师:那这个记录没办法做,两个数字卡片怎么做记录啊?写4大于1吗?
(学生反对。有些学生在讨论)
师:怎么写啊?
生:先在千位上写上数字,百位、十位、个位上都没有我们就写0。
师:是不是只有写0的时候,4千多才大于1千多?
学生齐声回答:不是。
师:假如其它几个数位上不是0……你站起来说。
生:无论什么数字都会大于。
师:(对黄河队)后面三位随便什么数字都比你们大,那怎么办呢?怎么写啊?
生:把后面三位都用方框来表示。
师:方框表示什么意思呢?不是表示没有,而是表示什么数字都可以,是不是?太棒了!我认为这个方法是个好的方法。(师在黑板上板书,学生记录)
师:黄河队今天怎么啦?不过我认为,输赢不代表水平的高低,知识运气罢了。要不要继续啊?
生:要。
师:又要开始了。再玩,游戏的规则还会变。你猜,可能会怎么变?
生1:可能是三位数和三位数比。
师:今天研究的是万以内的数比较呀。
生2:我猜抽出来的数字随便选哪一位。
师:什么叫摆在随便哪一位上?
生2:随便摆在哪一位上。
师:你的意思是说想摆哪一位就摆哪一位上?
生2:对。
生3:如果这样的话,这个规则不公平。
师:那你看这个规则公平不公平。请看,(出示规则)第一条是一样的,眼睛盯着第二条。“抽签者自己决定”,也就是抽出来的数字,你愿意放在哪一位就放在哪一位上,但是放下去后,就不可以再变了。好不好?规则对于两边的同学都是一样的。
游戏规则:
1.每次两队各派一个代表来抽签。
2.每次抽到的数字由抽签者自己决定放在哪一位上。
3.哪一队抽到的数字组成的四位数大,那一队获胜!
4.能确定胜负时,本轮比赛结束。
(学生选派两同学准备抽签)
师:你准备第一张抽什么数?
生1:抽9放在千位上。
师:你呢?
生2:抽9放到千位上,抽8放在百位上,抽7放在十位上,抽6放到个位上。
师:哇!抽5呢?
生:把它放在个位上,反正抽到的四个数字哪个数种子最小,就把它放到个位上。师:问题是,我们不是把四张数字卡片一次都抽出来摆的?抽一张就要摆的。想清楚,准备。长江队 黄河队
千
百
十个 千
百
十
个
3 4 2
师:刚才你还说7放在十位上,你现在就把它放在百位上了。告诉我们,你是怎么想的?
生:如果一会儿抽到比7小的数字放到百位上,我们就会输掉。
师:他认为7还是比较大的,那我想问你,不如把7放在千位上算了,你想想黄河队今天的情况好像不太理想。
生:那如果一会儿我抽到9的话呢?
师:他有可能抽到8、9这些数字的。想好了,不变?那好,抽第三张了。长江队 黄河队
千
百
十个 千
百
十
个
6 3 7 4 2
(学生情绪激动。有人喊出了yea!)
师: 763,他们是742,百位一样大,大家都决定抽千位数字,对不对?
师:(对黄河队)假如这样(把7放到千位上),他们抽到比7还小的,你们不就赢啦!
生:那不一定的。
师:你还想搏一下,抽个更大的数。好,继续抽。长江队 黄河队
千
百
十
个 千
百
十
个
0 7 6 3 6 7 4 2
师:现在黄河队的同学说可以重抽。0不能放在最高位上,不然就成了一个三位数和四位数在比啦!这是数学课,我们不把它当作比赛的结果,但是这两个数,我们还是可以进行比较一下,763和6742,这个时候中间用什么符号?
生齐答:小于
师:刚才黄河队的同学都说抽到千位上是0的时候,你们可以重抽。那你们说这个0要不要放进袋子里去?
生:要!(不要!
师:我觉得要不要都没有所谓啦。因为抽到0还是要重抽,对吧!请重抽!(加油声再次想起)(长江队抽到了1)
师:请两位同学等一下。
师:黄老师为什么不让两位同学下去,而叫他们等一下呢?你过来(拉长江队的同学),你还记得你抽过这个数字吗?(老师指6,并且把它慢慢颠倒过来,引起了一片笑声)当时你在抽到这个“9”的时候,你把它往千位上一放。
生:不是我摆反了!
师:明明是你自己摆反的,为什么要怪起我来呢?为什么黄老师故意不说呢?黄老师就是想让你们多思考一个数学问题。(请两位同学到位)假如规则允许你重新排列的话,还是由抽签着自己决定摆在哪个位置,你怎样排?请你帮个忙,黄河队的也排一排。
三、小结方法
师:我们一起来看黑板上,这是我们第一次正式比赛的结果,这是第二次的结果,这是第三次的结果。综合起来看,在今天的数学课堂上,长江队赢了两局,黄河队赢了1局。该回答我的问题了。你们刚才答应我一件事情,那就是你们在玩游戏的时候思考问题,思考好了没有?
生齐答:好了。
师:方法有了吗?
生:有了。
师:最简便的方法有了吗?
生:有。
师:哪位同学愿意来说一下?
生:假如千位都是相等的,看百位。百位左边的小,右边的大,那肯定就是右边的大……
师:这个同学把他的想法比较具体的说了出来。我觉得输赢不重要,你们有没有听到他说的,第一句话说的是咱们先看千位,你们都同意吗?
生:同意。
师:那么,比较万以内数大小的时候,我们到底从哪里开始比较?
有几个学生说:高位。
师:好,那么我们归纳方法的时候能不能把这句话作为第一句话,叫做“从高位比起”。
生:可以。
师:然后呢?
生:然后再往下推。如果最高位一样的话,就继续往下推。师:你的意思再依次往下推,是不是?能不能把这两句话作为我们今天的方法:从高位比起,一位一位往下比。
师:简便方法有没有?还记得吗?我们第一次玩游戏,(指黑板上的板书结果)我们玩到第四张卡片的时候,这两个人,他先抽到了1,它抽到了2,最终我们长江队赢啦。也就是说,这两个数进行比较的时候,最关键的数字是哪一个数字?
生:千位上的2和1。
师:我在比较的时候,只要看千位上的2和千位上的1。其他各位上的数字我们可以不看。
师:所以黄老师把这两个数字圈起来,你觉得有道理吗?(②939、①157)
生:有。
师:(指第二题)那么这道题圈那两个数?
生:圈9和1。
师:什么位上的9和1?
生:百位上的9和百位上的1。
师:他说要圈百位上的9和百位上的1,圈起来。(再依次把板书中的关键数圈起来)看看这道题,这是一个三位数和一个四位数比较。
师:能不能说所有的三位数都没有四位数大?
生:所有的三位数都没有四位数大。
师:三位数最大最大的是多少?
生:999。
师:四位数最小最小是多少?(1000)最大的都没有你最小的大,当然三位数比不过四位数的。这道题没办法圈,我建议同学们在下面划一条直线,提醒自己数位不同,这是个三位数,这是个四位数。你瞧这位同学多好啊!马上就在自己的题目里面圈了、划了。开始。
(学生圈、划)
四、巩固练习,拓展应用
师:在这组题中,请同学们找到最关键的数字后立即判断大小,并在本子上写上大于小于号。
3823 ○ 2958
4561 ○ 4629
8758 ○ 8769
893 ○ 2370
师:黄河队的同学,下一个题,你看我是出还是不出?(生:出!)出就出。
长江全长6300千米
黄河全长5464千米
师:黄河是我们的母亲河,它的长度达到了五千四百六十四千米,一千米就是一公里,五千多公里呀!非常的了不起。再看看长江,它的长度超过了六千千米,世界上,长度超度六千千米的河流没有多少。我们一起来看世界上最长的四大河流:
(出示)
亚马逊河 6440千米
长 江 6300千米
尼 罗 河 6695千米
密西西比河6020千米
师:同学们赶快比一比世界上最长的河流。长江排在世界的第几位?(第三位)在这些河流中最长的尼罗河,它的长度接近6700千米。密西西比河只比六千千米多一点。相对来说,尼罗河的长度就比六千米要多得多啦!
师:黄老师看到同学们刚刚抽数字卡片非常的过瘾,我有些手痒,我准备随便抽出四张数字卡片。先帮我记下来,是哪四张呢?(3、7、7、9)你们觉得黄老师抽得还可以吧?假如用这四张数字卡片组成最大的四位数,很简单。谁来帮我排一排?
(指名板演)
师:9773,排对了没有?
生:排对了。
师:黄老师下面有个问题,假如用这四张数字卡片…你猜我会问什么问题?
生:排成最小的。
师:排成最小的,是吧?排成最小的会排吗?谁能说出来? 生:3779。
师:黄老师的问题问的是,用这四张数字卡片,你能不能排除一个第二大的?大家先写写。(请一学生板演排)
师:7973?把千位上的数字和百位上的数字换了位置。学生在叫“不对、不对!”
师:错啦?谁来?
师:这里出现了9737,刚刚那位同学摆的是这个(7973),你们认为谁是第二大?9737是第二大。
师:你们猜,我接下来会说什么?
生:下面可能会说,第三大。生:我觉得下面应该是第四大。……
师:黄老师接下来的这句话是,时间到了,该下课了!
(学生发出了叹气声。听课老师笑声一片)
师:不想下课吗?
生:不想。
师:我们不玩了,好吗?用一句话来说说这节课里你的特别的感受。
生1:我觉得这节课上得很愉快,在游戏中学数学。
生2:我觉得这节课不仅学到了知识,而且上得非常欢乐!
生3:我非常喜欢这节课。
师:同学们表达了自己的心声,大家也说这节课上的感觉:很愉快,很快乐。学数学的过程它应该是个快乐的过程,让我们在今后的数学学习当中去享受这种快乐吧!
第四篇:比较数的大小教学设计
《100以内数的大小比较》教学设计
南阳市第六十五小学
陈士凤 教学内容:
人教版小学数学教材一年级下册第42页。教学目标:
1..经历从具体形象到抽象比较的过程,得出比较100以内数的大小的一般方法。
2.培养学生探索性学习和小组合作的意识,感受成功的体验。
3.利用现实有趣的情境激发学生的求知欲、学习数学的兴趣。教学重点:掌握比较大小的方法。教学难点:用自己的语言表达比较的方法 教学用具:多媒体课件,小棒,计数器 教学过程: 一 激情导入,引出课题
小朋友,今天数学王国里的一些数字宝宝迷路了,你们愿意帮助它们吗?(课件出示数字宝宝和三座房子)小朋友们真棒,这么快就帮数字宝宝找到了自己的家。看到小朋友这么聪明,有两个数字宝宝还有一些难题想请教大家。(课件出示问题)。帮数字宝宝解决了难题,那这些数字宝宝之间谁大谁小呢,这节课我们就一起来学习比较数的大小。(板书课题:比较数的大小)齐读课题。
【评析:从情景中入手,通过帮数字宝宝找家及解决数字宝宝提出的
难题,激发了学生的学习兴趣。复习了旧知识,接着又引出新课,这样的过渡自然,学生容易接受。】 二 合作交流 探究新知 1.比较42和37的大小
(1)小朋友,你们喜欢玩玩具吗?现在老师就带领大家去玩具超市看看吧,(课件出示玩具超市)引导学生比较42和37的大小。(板书42 37)
(2)学生分小组讨论交流,汇报结果
生1:我们小组是采用摆小棒的方法。先摆4捆零2根,再摆3 捆零7根,4捆零2根里有4个十,3捆零7根里有3个十,4个十大于3个十,所以42 › 37。
生2:我们小组是采用数数的方法,在百数表中,先数37,后数 42,42在37的后面,所以42 › 37 生3:我们采用比较十位的方法,42的十位上是4,37的十位上 是3,4 › 3,所以42 › 37。
同学们真会动脑筋!想到了这么多的方法来比较大小
【评析:在讨论比较大小的方法时,注重培养学生的发散思维,引导学生用不同的方法去得到同一结果,使他们体会到解决问题的多样性。】 根据大家的汇报结果,老师又进行了归纳。(出示课件)(3)下面我们借助计算器来探究一下。
(课件出示两个计算器)这两个数字在计数器上怎样拨珠子表示呢?师引导,让孩子们知道可以只比较它们的十位。十位上4大于3,所
以42 › 37(4)(课件出示23()38
76()62)请学生说出结果及比较方法。
(5)课件出示小结:
(两位数比大小,先比十位,十位上的数大,这个数就大)全班齐读。2.比较23和25的大小
(1)我们接着去看看其他玩具的价钱吧!(课件出示:布娃娃23元 玩具汽车25元)你看到了什么?那这两种玩具哪个更贵一些呢?我们来比较一下23和25的大小,师板书:23()25。
(2)(课件出示两个计算器)23在计算器上怎么拨珠子表示?25呢?引导小朋友们仔细观察,十位上的数字相同,看不出谁大谁小,那怎么办呢?谁来说一说?(十位相同比较个位,个位大的那个数就大)师板书:23 ‹ 25(3)(课件出示51 56
60)师:请小朋友说说这两道题的结果是什么?是怎么比较的?
(4)同学们学会了这种方法,谁能总结一下呢?请一个小朋友试着进行总结。
课件出示:(比较两个两位数的大小,如果十位上的数相同,就要看个位上的那个数,个位上比较大的那个数就大)让我们一起读一下这种方法吧!
3.比较100和98的大小
(1)(课件出示两个计算器)师:计数器表示哪两个数字呢?师引
导后得出三位数一定比两位数大,板书:100› 98(2)让学生说说100还大于谁?总结出100大于所有的两位数和所有的一位数。
(3)练习91 ⃝ 100 100⃝ 70(4)课件出示小结:(100比任何一个两位数都大,任何一个两位数都比100小)全班齐读。
【设计意图:本节课首先利用具体实物比较大小,接着在计算器上拨珠比大小,最后看到数字直接比大小。采用了由直观形象逐步过渡到抽象的方法,符合他们的认知规律。在这个环节,我安排了小组合作,让孩子们在互动中讨论学习,使他们真正体会到了比较方法的多样性。】
三
齐读关于大小比较的儿歌 四
拓展运用
1.在○里填上“>”“<”或“=”。
78○76
69○70
54○45 62○62
86○100
39○63 提醒学生认真这审题,要先看清楚每题中的数,再来比较大小。采用开火车的形式,并让学生说出其中两题是怎样比的。
2.给数字分类
3.判断对错
4.小蜜蜂送信
5.给几个不同的数字排顺序
6.智力闯关
7.写出三个个位上都是6的两位数。谁最大?谁最小?按一定顺序排列。为什么这样排?写出三个十位上都是6的两位数 五.你学得开心吗?这节课你有什么收获? 六.课堂总结
我们学会了两位数大小的比较方法,你们真厉害。比较大小时,先看位数,位数多的数肯定大;都是两位数时,先比十位上的数,十位相同时,再比个位上的数。
其实这些方法在我们的生活中也经常用到,回家后把家人的年龄按从小到大或从大到小的顺序排一排,好吗?
板书设计:
比较数的大小
42>37 23<25
100>98
三位数 二位数
第五篇:2.2.2在数轴上比较数的大小教案
2.2有理数的大小比较 在数轴上比较数的大小
知识技能目标
1.理解利用数轴上的点的位置关系比较有理数大小的法则; 2.理解负数小于零、正数大于零的合理性.
过程性目标
通过对温度计的观察和用数轴上的点来表示有理数,探索有理数大小的比较法则,进一步感受数形结合的思想方法.
教学过程
一.创设情境
和学生一起讨论:
(1)数轴怎么画?它包括哪几个要素?
(2)任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?
(3)大于0的数在数轴上位于原点的哪一侧?小于0的数呢?
二.探索归纳
在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?
想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?
让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左..................边的大. ....由此容易得到以下的有理数大小的比较法则:
正数都大于零,负数都小于零,正数大于负数.
三.实践应用
5将有理数3,0,1,4按从小到大的顺序排列,用“”号连接起来.
6513,再由上面的比较法,得则
解
容易知道 65 4013. 在数轴上画出表示这些数的点,再比较大小,结果怎样?
例2
比较下列各数的大小:
.3,0.3,3,5.
1 解 将这些数分别在数轴上表示出来(如图).可以看出
531.30.3.
例3 观察数轴,能否找出符合下列要求的数:
(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;
(4)最小的正分数和最大的负分数.
四.交流反思
师生共同总结:
1.在数轴上表示的两个数,右边的数总比左边的大; 2.正数都大于零,负数都小于零,正数大于负数.
五.检测反馈
1.下列各式是否正确:
2014;(1)2.93.1;3109;45.44.5.
2.用“<”或“>”填空:(1)3.6__2.5;316__1.6;52.1__1.2;
23__0;41__10;69__7.
3.在数轴上分别画出表示下列每对数的点,并比较它们的大小:
18,6;31,0;453,3;22
25,0.1;44.2,5.1;61,0.5
4.画出数轴,把下列各组数分别在数轴上表示出来,并按从小到大的顺序排列, 用“<”连接起来:
11,2,3,4;21,0,3,0.2.2
5.下表是某年一月份我国几个城市的平均气温,请将各城市按平均气温从高到低的顺序排列.6.下列各数是否存在? 存在的话,把它们找出来:(1)最小的正整数;(2)最小的负整数;(3)最大的负整数;(4)最小的整数.