第一篇:《集合与函数概念》优秀教学设计与反思
《集合与函数概念》优秀教学设计与反思
一、教材分析
集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.
函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.
二、学情分析
1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.
2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.
3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.
三、设计思路
本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.
四、教学目标分析
(一)知识与技能
1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算. A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.
2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质. A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.
(二)过程与方法
1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.
2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.(三)情感态度与价值观
在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.
五、重难点分析
重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.
难点:含参问题的讨论,函数性质之间的关系.
六.知识梳理(约10分钟)
提出问题
问题1:把本章的知识结构用框图形式表示出来.
问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?
问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算,交、并、补.
问题4:通过本章学习,你对函数概念有什么新的认识和体会吗? 请结合具体实例分析,表示函数的三种方法,每一种方法的特点.
问题5:分析研究函数的方向,它们之间的联系.
在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.
学生回答问题要点预设如下:
1.集合语言可以简洁准确表达数学内容.
2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.
3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.
4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.
设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.
第二篇:《集合与函数概念》复习资料
《集合与函数概念》复习资料
一、知识结构:
知识要点填空:
1.常用的数集及其记法:
非负整数集(自然数集):
;正整数集:
;整数集:
;有理数集:;
实数集:
2.如果是集合的元素,就说属于集合,记作
;如果不是集合中的元素,就说不属于集合,记作
.3.
任何一个集合是它本身的,即
.空集是任何集合的,即
.对于集合如果且那么
.4.
若集合中有个元素,则这个集合的子集有
个,真子集
个,非空子集
个,非空真子集
个。
5.并集:=
A
B
交集:=
A
B
补集:=
U
A
6.函数的定义:设是两个,如果按照,使对于集合中的元素,在集合中都有
元素与之对应,那么就称对应为从集合到集合的一个函数。叫做,其取值范围叫,与相对应的值叫做,所组成的集合叫。
7.函数构成的三要素:。
8.求函数的定义域要注意:分式中,;偶次根式中,;对于,要求
;实际问题实际考虑;由几部分数学式子组成的函数,求出各部分的定义域再取。
定义域
值域
一次函数
二次函数
反比例函数
9.如果两个函数的相同,相同,我们就称这两个函数相等。
10.所谓“分段函数”,习惯上指在定义域的不同部分,有不同的的函数。分段函数是
个函数,它的定义域是各段定义域的,值域是各段值域的。
11.设是两个,如果按照某一个确定的对应关系,使对于集合中的任意一个元素,在集合中都有唯一的一个元素与之对应,那么就称对应为从集合到集合的一个映射。
函数是一种特殊的映射,映射是函数的推广。
12.用定义证明函数单调性的步骤:取值,任取,且
;作差,并通过因式分解、配方、有理化等方法向有利判断其符号的方向变形;定号,确定的正负,当符号不确定时要进行分类讨论;
下结论,当
时,函数为增函数,当
时,为减函数。
13.利用定义判断函数奇偶性:考察函数的定义域,若不对称,则为
;若对称,则继续判断;判断
或
是否成立,若,则为偶函数;若,则为奇函数;若都不成立,则为。
14.奇函数的函数图象关于
对称,偶函数的函数图象关于
对称。
第三篇:《集合与函数》教学反思
《集合与函数》教学反思
新课程标准指出,学生的数学学习内容应该是现实的、有意义的、富有挑战性的,新教材在总体上为学生构建共同基础,提供发展平台,又兼顾个性发展的选择,强调师生互动,学生在老师引导下,主动积极地参与学习,获取知识,发展思维能力,着眼学生的发展与未来,注重数学应用意识,突出体现数学的文化价值和教学手段的现代化。也就是说,在课堂教学中,尽力做到教材的内容尽量与现实生活中问题相挂钩,让学生感觉到数学就在身边,显示数学的实用性。这方面,人教A版已经做出了很好的示范。教材编写了很多实例,如集合的含义与表示,一开始就从8个集合实例入手,引出元素和集合的含义,而有效教学的理念要求教师在教学中,体现自己的个性,才能促进学生的个性形成和发展。以下是本人通过学习结合平时教学的几点反思。
1、把抽象的教学内容生活化,体会数学就在身边。
【案例一】“指数函数与对数函数”的引入,课本设计了鱼化石中碳14的残留量。其中一个班讲课时用课本的引入,得到讲对数函数时,继续用该引入中的,此时让学生动手探究,学生很不愿意动,原因大概是问题远离他们实际生活,并且数字太繁,当我上另一个班时,我马上把问题改为:“如果你父亲第一个月给你5元零用钱,假设你父亲给的零用钱每月以10%的增长率增加,问多少个月后你父亲给的月零用钱达到500元?”这时学生可来劲了,马上算,还问计算器怎么按,学生所表现出的热情和积极与第一个班我上课时完全不同。
【案例二】初中的函数,教材采用“变量说”,高中提出了“对应说”;人教A版采用了从实际例子中抽象概括出用集合与对应的语言,定义函数的方式介绍函数概念,把“映射”作为“函数”的一种推广。这种安排我在实践中觉得更有利于学生集中精力理解函数的概念。在教学时,我为学生设计他们熟悉的“行程问题”、“比例问题”、“价格问题”,利用图表、图形(如课本第26页的练习2),让学生探究用集合与对应的语言来刻画,从学生熟悉实际背景和定义两个方面,帮助学生理解函数的本质。要求学生认识、描绘以及概括模式。
到了第三章,函数的应用,尽量挖掘与其它学科的联系以及与实际生活的联系,如电话费、水电费、出租车费与用时的关系,银行利息与存款时间的关系,保险、物价、抽奖、股票、债券等等。引导和组织学生以学习小组的形式,进行调查和研究,让学生经历丰富的情感体验和实践活动,在情境中展开想象的翅膀,充分发挥思维的潜能,在生活中发现数学,提炼数学,应用数学。
2、合理分配课堂时间,“合作学习”不流于形式 作为新课程倡导的学习方式之一,“合作学习”在形式上成为有别于传统教学的一个最明显特征。它有力地挑战了教师“一言堂”的专制,被认为是学生学会交往、合作,培养团队精神、竞争意识和领袖品质的最有效方式。从新一轮基础教育课程改革的角度看,课堂上“合作学习”主要体现在:学生能够从一定的情境出发,通过多向交流与合作,一同讨论、探究、发现,以此得出某种结论,获取某种知识。但是仔细观察我们不难发现,多数合作学习仅仅停留书本上,有些教师为了赶进度“满堂灌”;有些教师为了今后高考增添许多例题在课堂上讲;还有,培养学生自主学习能力的做法也露出不可避免的局限性,它几乎使课堂教学成为每一个学生的个人行为,学生间缺乏交往和合作。而知识技能主要是靠学生的独立思考和自主的笔头训练,才能保证有机会发展他们的各种能力。所以每节课要合理分配时间,在两者之间取平衡。
【案例三】在学指数函数的性质时,由小组分工合作,分别在同一直角坐标系中画的图象,让小组的同学一起探究,图形特征,从而得到指数函数的性质。在探究过程中,学生在列表时不少人自变量x取1,2,3,图象自然也只画了第一象限内的一小段;而有的画了一、四象限内的部分,就想当然,也就把曲线画穿过轴„„由于是分工,所以学生每人就不需画出所有的图形,有时间指正(或更正)错误,欣赏别人的成功,同时加深对图形的理解,这样既省了时间,又能达到探究互助的目的。
3、学生实际水平、教材内容互相整合,做好初高中教学的衔接,使学生思维发展自然流畅。
许多教师错误地认为只要是教材中有的就一定有用,一定要学,却不能进行正确的筛选,忘记自己既是教材的实验者,更重要的也是教材的修订者和研究者,教师在这次课改中必须明确一个事实那就是“课程实施并非现成方案的照本宣科,而是微观层面的课程再研制过程”.新教材为教师的发展提供了自由发展的空间,但也存在不同的缺陷,因此教学中如果只是依赖手中的教材那将会对学生的学习造成不利的影响.所以我们要认真学习和研究教材,从学生的实际出发,依据课标, 把握方向, 找准定位。
【案例四】二次函数是中学应用广泛的初等函数,曾经是初中阶段的学习重点,由于初中的教学要求仅限于作图、确定函数解析式和理解函数的基本性质,随着函数概念和性质学习的不断深入,高中教材没有设计独立的章节引导学生学习,我在教学中,充分利用二次函数作为载体,把函数的性质(单调性、奇偶性、最大值与最小值)的学习逐步引向深入,二次函数的“升级”,正好是初高中数学教学的衔接,再一次贴近学生的思维过渡期。
总之,在教学反思的行动中,我们要永远保持敏感而好奇的心灵,“好奇心”唤起关心,唤起对现在存在或可能存在的东西的关心。正是好奇心使人们摈弃熟悉的思维方式,用一种不同的方式来看待同一事物。还要经常、反复地进行反思,通过反思来理解对象、理解自己,让自己与对象对话、与自己对话,使自己的教学水平、教学能力不断地提升。
第四篇:函数概念教学反思
函数概念教学反思
山东省济钢高级中学 翟争艳
函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习,乃到一生的数学学习过程。然而函数这部分知识在教学中又是一大难点。这主要是因为概念的抽象性,学生理解起来不容易,接受起来就更难。函数成了高一新生进入高中的一条拦路虎。有些学生高中毕业了,对函数这个概念也没有理解透彻。突破了它后面的学习就容易了。所以在函数概念的教学上要下足功夫,争取不让学生吃夹生饭。我注意对知识进行重组,努力去揭示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。本班学生思维活跃,课堂上能从多个不同的角度积极提出问题,并解决问题,全员参与,热情高涨。应当说在学生的共同努力下,本节课比较好地完成了预定的教学目标。给我留下较深印象的有以下几处:
一、设置问题情境,激发学生的学习兴趣。
首先复习初中函数的定义,强调变量之间的依赖关系,接着提出问题,在这个定义下,y=5是函数吗,大部分学生认为它不是函数,有的说:它只是一个式子,而没有自变量,有的说:5没有发生变化,用已有概念不太容易回答的问题,引发学生的认知冲突。学生学习热情高涨,学习积极性和主动性得到了充分调动,急于解决问题。
二.探究课本三个实例,概念形成。
提出问题2:你从例题中了解到哪些信息?自变量,因变量的取值范围是什么?自变量与因变量有何关系?问题情景的设置应形成逐层深入环环相扣的问题链,以问题解决为线索,引导学生主动讨论、积极探索。学生独立思考2-3分钟,然后分组讨论,交流。讨论、整理出本组同学所想到的各种想法。实际问题引出概念,激发学生学习兴趣,给学生思考、探索的空间,让学生体验数学发现和创造的历程,提高分析和解决问题的能力。通过小组讨论、自主回答,不同层次的学生选取适合自己的问题,同分享团队协作的喜悦成果,调动了学生的积极性。体现学生学习方式的变革,倡导自主学习、合作学习、探究学习的学习方式;体现“以人为本”思想,强调课堂教学的有效性,不仅强调在实践中完成学
生自身知识的建构,并要求在完成学习任务的同时有所感悟、有所创造.在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注自变量和因变量的范围,逐步使学生体会两个集合之间的对应关系,了解函数概念的本质,同时也为下节课函数的表示法做好铺垫。在整个交流中,我既有对正确认识的赞赏,又有对错误见解的分析。师生互动,抓住函数概念这一重点,举出实例来突破理解对应法则f这一难点。函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。我形象地将这一系统比喻成计算机,输入的数集为定义域,输出的数集为值域。让学生看得见、摸得着,把抽象的函数概念形象化,效果很好。
三、师生合作,总结归纳函数定义。
最后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。通过教师的再提炼又得到观点,再揭示近代函数定义的本质:在讲解概念时,在多媒体上有意识的用不同颜色的字体,突出强调重点,调动学生的非智力因素理解概念。在这个近代函数定义下,完成提出的问题,y=5是函数,大家有种恍然大悟的感觉,解决课前提出的问题,觉得学有所用。
四.对练习题的设计由浅入深,层层递进,突出本节课的重点,突破难点。知识应用的目标落实的比较好。
总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。倡导课前预习,先学后教,以学定教,学生能课前自主解决的内容课堂不讲,增加课堂容量,追求课堂教学效益的最大化;引导学生学会阅读教材、理解教材,体会数学概念的形成过程,由具体实例到抽象知识再用抽象知识解决具体问题的认知过程,注重培养学生的自学能力和良好的学习习惯.但也存在一些不足:
1.语言方面还不够精炼,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。其实知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,所以在课下要下功夫,找到突破难点的好方法。
2.由于学生提前预习,先学后教,课堂教学中知识缺乏系统性、完整性;课堂容量大,时间有些紧,课堂留白不足.3.在学生回答问题时,应该关注学生所表现出来的态度,用恰当的语言给与肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强信心,激发学生学习的兴趣。
在今后的教学中要不断的反思与探索,不断提高自己的业务能力和水平,使自己更为成熟和完善,更好的服务于学生。
第五篇:函数概念教学反思
函数概念教学反思
函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:
1、函数源于在现实生活,具有广泛的应用。
2、函数是沟通代数、几何、三角等内容的桥梁。
3、函数部分内容蕴涵重要数学方法,分类讨论的思想,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相关问题,所以函数成了高一新生进入高中的一条拦路虎。突破了它后面的学习就容易了。所以在函数概念的教学上要下足功夫,争取不让学生吃夹生饭。我注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。
课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。我是这样处理函数概念这部分教学的: 为了节省时间,我提前给学生复习范围,复习有关初中函数的定义,课本引例以及回答的问题,让学生学有准备。
一、激情引趣,提高学生的问题意识
首先课本引例,引出初中函数的定义。
二、分析实例
在问题的设计和给出时,关键是要把握探究的新问题与学生原有知识点之间的距离“度”。通过小组讨论、自主回答,由不同层次的学生选取适合自己的问题,调动了学生的积极性。在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注 和 的范围,逐步使学生体会到变化的过程,了解函数概念的本质。同时也为下节课函数的表示法做好铺垫。引导学生体会到数学来源于生活并为生活服务,同时也渗透职业高中学生的奋斗目标。
三、数学建模
在数学教学过程中,突出“问题解决---数学建模---解决问题”的探究过程。我先引导学生将实例1抽象出数学模型,再由学生自己将实例2抽象出数学模型。在这一环节中,学生到黑板前板演,其他学生补充,进一步理解通过函数的对应图来认识函数,达到数形结合的效果,使学生对概念理解上更直观。
然后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。
通过教师的再提炼又得到观点,再揭示近代函数定义的本质:
1、函数是描述的是两个非空数集之间的一种特殊对应关系。
2、对于函数符号,学生较难理解,以符号的简洁美,引起学生的有意注意,加强学生理解。
3、函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。通过例题的讲解,进一步地巩固了定义域与值域,同时突出了值域与集合b的关系。
总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。但也存在一些不足,比如,有的时候语言方面还不够精炼,在今后的教学就中要不断的反思与探索,走向更为成熟与完善 课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。
我是这样处理函数概念这部分教学的:
为了节省时间,我提前给学生复习范围,复习有关初中函数的定义,二个引入的实例以。函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:
1、函数源于在现实生活,具有广泛的应用。
2、函数是沟通代数、几何、三角等内容的桥梁。
3、函数部分内容蕴涵重要数学方法,分类讨论的思想,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。
然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相关问题,所以函数成了高一新生进入高中的一条拦路虎。突破了它后面的学习就容易了。
函数的概念表现出来的都是抽象的数学形式,在数学的教学中,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。所以函数概念的教学更忌照本宣科,我注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。
及回答的问题,让学生学有准备。
一、激情引趣,提高学生的问题意识
首先复习初中函数的定义,在这个定义下,以学生乘车与车费问题,引出 是函数吗?大部分学生认为它不是函数,有的说:它只是一个式子,而没有自变量,有的说:0.5没有发生变化,用已有概念不太容易回答的问题,引发学生的认知冲突,有到了承上启下的作用。营造出一种宽松的探究心向,使问题呈现巧而生趣,找准与教材内容之间的结合点.二、分析实例
以 “2003-2008年二职高一学生入学人数表”,销“售计算器求收款总数 =25 ”两个实例引入,在问题的设计和给出时,关键是要把握探究的新问题与学生原有知识点之间的距离“度”。通过小组讨论、自主回答,由不同层次的学生选取适合自己的问题,调动了学生的积极性。在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注 和 的范围,逐步使学生体会到变化的过程,了解函数概念的本质。同时也为下节课函数的表示法做好铺垫。引导学生体会到数学来源于生活并为生活服务,同时也渗透职业高中学生的奋斗目标。
三、数学建模
在数学教学过程中,突出“问题解决---数学建模---解决问题”的探究过程。我先引导学生将实例1抽象出数学模型,再由学生自己将实例2抽象出数学模型。在这一环节中,学生到黑板前板演,其他学生补充,进一步理解通过函数的对应图来认识函数,达到数形结合的效果,使学生对概念理解上更直观。
然后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。
通过教师的再提炼又得到观点,再揭示近代函数定义的本质:
1、函数是描述的是两个非空数集之间的一种特殊对应关系。
2,对于函数符号,学生较难理解,以符号的简洁美,引起学生的有意注意,加强学生理解。
3、函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。我形象地将这一系统比喻成计算机,输入的数集为定义域,输出的数集为值域。
为了让学生更清楚定义域、值域、对应法则,我让学生设计了一个VB的小程序,根据学生已有的计算机基础,学生很快地现场编程,突出了计算机数学与专业紧密相联,焕起学生对数学的学习热情。
通过例题的讲解,进一步地巩固了定义域与值域,同时突出了值域与集合B的关系。
通过小组竞赛,加深学生对概念的理解。
总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。但也存在一些不足,比如,在学生编程的时候,我提出了要解决引入的“乘车问题”,但我马上发现学生的眼光都集中到编程那里,当时就改变了教学策略,如果把这一问题能当堂解决就更好了。有的时候语言方面还不够精炼,在今后的教学就中要不断的反思与探索,走向更为成熟与完善。
函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的数学学习过程。其重要性主要体现在:
1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。
2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。
3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。
然而函数这部份知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来相当不容易,接受起来就更难这又是由于函数这部份知识的主要思想特点体现于一个“变”字。即研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的关点去看侍和接触相关问题,这与初中学习知识的以静态观点为中习的思维特点有较大差异,所以函数成了高一新生进入高中首先到的一条拦路虎,有些学生高中毕业了,对函数这个概念也没有理解透澈。
实际上,在学习函数这部份知识中,函数概念是最重要的,也就是最难的地方,突破了它后面的学习就容易了。现行的数学教材,其主要内容表现的都是数学知识的技术形式。函数的概念亦是如此,不管是传统定义也好,还是近代定义也好,表现出来的都是抽象数学形式,在数学的教学中,学习形式化的表达是一项基本要求,但是不能只限于形式表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。对数学知识的教学要返璞归真,努力揭示数学概念、法则,结论发展过程和本质。对越是抽象的数学概念,越是如此。所以函数概念的教学更忌照本宣科,要注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。
篇二:函数的概念教学反思
函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。继而,通过例题,思考、探究、练习中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。
在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的坐标,观察点P 的坐标横坐标与纵坐标的变化规律。使学生看到函数描述了变量之间的依赖关系,即无论点P在哪个位置,点P的横坐标总对应唯一的纵坐标。由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。
篇三:函数的概念教学反思
学习培训提供的视频,结合本节课的上课经历,我反思如下:
一、备课要完备,上课按照备课来走
备课要多研究课本,研究课本的题目设置,备课前还要翻看海南省五年来高考题,以做到和编书者出题者步调一致。比如新课改后课本多是举例引入或得出概念、公式、定理,淡化逻辑证明,而高考更多是考基础性常规题,那么老实备课的时候就要注意重视应用,淡化理论。
我个人的问题是上课思路容易混乱,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。那么解决方法就是(1)备课的时候,通过举例和好玩的生活实例直接引入核心内容,从直观上接受重点“任意x唯一y”,尽可能简化解释,多做具体示例;(2)上课时铺开课本和备课本,是不是扫两眼,禁止临时加话。(3)在备课基础上,上课讲完备课的内容即可,在各内容之间加一句简单的承上启下的连接就行了。
二、对学生睡觉者记名上报德育处,没有观众的表演没有激情
我认为学习是学生的权利,而不是我强迫学,所以之前我从不管学生讲话玩手机睡觉。但是后面发现居然有一大片睡觉,而且我明明很有激情,讲着讲着我就困了。于是我采用了请班长科代表记名,每堂课交名单给我,期末汇总上交德育处的方法,正好12月12日学校在升旗时,发布了一个自动退学处分,学生都是害怕开除的,所以后面每节课,只有个别自我放弃的学生睡觉了。上课一眼扫下去,都坐得端端正正,我就有更多表演的欲望和随机应变的串场内容。
三、上课多一些夸张的表情和声调,以抵抗数学高难度带来的乏味 数学对海南学生来说,难是肯定的,所以极易疲惫。老师要充满爱的去搞笑,娇嗔耍宝装萌讲笑话,或者夸张发音,故意带口音,跟学生一唱一和瞎说,都可以带来学生一笑。长期还会融洽师生关系,得到学生的喜爱。
四、核心还是重点反复强调,难点要技巧性突破
对一个老师来说,不管你的课堂多么生动活泼,这只是形式,核心还是在知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,千万不要把师生都绕进去。
每章结束后,我会和学生一起在书皮上把本章核心知识点简洁总结,方便翻看。不重要的不需要记忆,我会直接告诉学生。
最后,把一本课本和高考强调的核心知识点总结成好记的数字:比如必修1是7。比如必修2是71221k。
篇四:函数的概念教学反思
函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。
函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.
根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容 易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识.在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善;在巩固议练活动中,提高学生解决问题的能—本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.
探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获. 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业.本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.
篇五:函数的概念教学反思
对于教师来说,'反思教学' 就是教师自觉地把自己的课堂教学实践, 作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。进一步充实自己,优化教学,并使自己逐渐成长为一名称职的人类灵魂工程师。以下是我在上了函数的概念之后的一点反思:
这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。
这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。
函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。
本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。
我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。
总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程,是一堂比较成功的课。
遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。
(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。
(2)根据学生的接受能力可将内容安排两节课的教学。
共2页: 上一页
下一页