第一篇:比的应用 教案及PPT
《比的应用》导学案
班级: 姓名:
一、自主学习,获取新知
1、弄清题意并思考:题目中要分配的是,是按的比例进行分配的。2、3、画图展示你的想法
4、再求出各有多少毫升,解答如下:
5、检验的方法。(有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4。)
二、巩固训练,及时反馈
1、某妇产科医院上月新生婴儿303 名,男女婴儿人数之比是51︰50。上月新生男女婴儿各有多少人?
2、一共有多少名游客?多少名救生员?
三、拓展训练,强化知识
1、小张、小王和小李合伙买彩票,结果他们中了一个二等奖,奖金金额为9000元。本期彩票小张出资200元,小王出资300元。小李出资400元,他们三人各应分得奖金多少元?
2、有一个长方形的花坛,周长200米,长与宽的比是3∶2。这个花坛的长和宽分别是多少米?
3、学校把栽70棵树的任务,按照六年级三个班的人数分配给各班。一班46人,二班44人,三班50人。三个班各应栽树多少棵?
4、用120cm的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体的长、宽、高分别是多少?
第二篇:比的应用 教案
课 题:比的应用 教学目标:
1.理解按一定比来分配一个数量的意义,感受比在生活中的广泛应用。
2、根据题中所给的比,掌握各部分占总数量的几分之几,能熟练
用乘法求各部分量。
3、建构“解决按照一定的比进行分配的实际问题”的模型,进一步体会比的意义,感觉比在生活中的广泛应用,提高解决问题的能力。教学重点:能够熟练解决按照一定的比进行分配的实际问题。教学难点:理解按一定比来分配一定数量的意义。教学具准备: 教师:课件 学生:练习本 教学过程:
一、创设问题情景,体会按比分配的由来。
师:有甲乙两人一起加工玩具,一共获得120元的酬劳,请问怎样分配这120元呢? 生:用120除以2。
师:那这是我们以前学过的什么分法? 生:按平均分配法。
师:如果甲做了其中5个,乙做了其中3个,这时平均分给两人还合理吗? 生:不合理,因为甲做的比乙多。师:那按什么来分才合理? 生:应该按比例分配。师:应该按几比几来分? 生:5:3。
师:在生活当中我们常常需要把一个数按照一定的比进行分配,这种分配方法我们通常叫做按比分配。
二、建立模型。
师:这是一瓶清洗剂的浓缩液,在生活当中需要在清水中加入一定的浓缩液配置成一定浓度的稀释液,谁看说说看,什么是稀释液?稀释液是怎样配置的? 生:稀释液就是用浓缩液和清水混合在一起的液体叫稀释液。师:稀释液由哪两个部分组成? 生:浓缩液和清水。
师:如果按1:4的浓缩液和水配置了500亳升的稀释液,由按1:4的浓缩液和水这种句,你可以联想到什么? 生:浓缩液的体积占水的1/4。师:还可以联想到什么? 生:水的体积是浓缩液的4倍。师:还有吗?
生:浓缩液体积占稀释液的1/5。师:还可以联想到什么? 生:水的体积占稀释液的4/5。
师:那根据这些数学信息,你能提出一个什么数学问题?
生:如果稀释液有500毫升,那么浓缩液有多少毫升,水有多少毫升? 师:怎么解?
生:水:500×4/5=400毫升 浓缩液:500×1/5=100毫升。
生1:1+4=5 500÷5=100(毫升)100×1 = 100(毫升)100×4 =400(毫升)分析思路:先求出一共平均分成几份,再看水和浓缩液各占几份,就求出了最后的问题。
生2:水:500×4/5=400毫升 浓缩液:500×1/5=100毫升。
分析思路:先看再看水和浓缩液各占稀释液的几分之几,再根据单位一乘对应分率得部分量,求出最后问题。
师:那怎么证明这种解答方法是正确的?
生:水的体积加上浓缩液的体积看看是不是500毫升。
师:在生活中我们常常需要清洗水果,不太油腻的盘子,这种情况我们只需要按1:8的比例配置,那请解释下面一题:按1:8的浓缩液和水配置了一瓶360毫升的稀释液,那浓缩液和水的体积各是多少?
生:先算出总份数,用1+8=9,然后再算出浓缩液的体积,列式:360×1/9=40毫升,再算出水的体积:360×8/9=320毫升。
师:通过今天的学习谁能归纳在生活中按比分配方法解决实际问题的一般步骤? 生:先求出总体积平均分成的份数,再求浓缩液的体积,最后再求水的体积。师:算浓缩液和水的体积之前先确定什么? 生:先确定浓缩液和水各占稀释液的几分之几? 师:总共归纳有三条:
1、求出总份数?
2、求各份数分别占总份数的几分之几?
3、用分数乘法求出每部分是多少?
三、练习提高。
1、用一根长48厘米的铁丝围成一个长方形,长和宽的比是5 : 3,这个长方形的面积是多少?
2、某妇产医院上月新生婴儿303名,男女婴儿人数之比是51:50。上月新生男女婴儿各有多少人?
3、学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班44人,三班有50人。三个班各应栽多少棵树?
4、用120cm的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体 的长、宽、高分别是多少?
四、全课小结。
第三篇:教案 比的应用一二
第14讲 比的应用
(一)一、知识要点
我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。运用这种方法解决一些实际问题可以化难为易,化繁为简。
二、精讲精练
【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是():():()。【思路导航】
甲、乙两数的比 2:3 乙、丙两数的比 4:5 甲、乙、丙三数的比 8:12:15 答:甲、乙、丙三数的比是 8:12:15。练习1:
1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是():():()。2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。这三个小组各有多少人?
【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。①一、二两组人数的比 2:3 二、三两组人数的比 4:5 一、二、三组人数的比 8:12:15 ②总份数:8+12+15=35 ③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)
答:第一小组有32人,第二小组有48人,第三小组有60人。练习2:
1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。每种作物各是多少公亩?
2.黄山小学六年级的同学分三组参加植树。第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。已知第一组的人数比二、三组人数的总和少15人。六年级参加植树的共有多少人?
3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。已知数学组与科技组共有69人。数学组比作文组多多少人?
【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。原来甲校有图书多少本?
【思路导航】由甲、乙两校原有图书本数的比是7:5可知,原来甲校图书的本数是两校图书总数的7/(7+5),由于甲校给了乙校650本,这时甲校的图书占两校图书总数的3/(3+4),甲校给乙校的650本图书,相当于两校图书总数的7/(7+5)-3/(3+4)=13/84。
650÷(7/(7+5)-3/(3+4))×7/(7+5)=2450(本)答:原来甲校有图书2450本。练习3:
1.小明读一本书,已读的和未读的页数比是1:5。如果再读30页,则已读和未读的页数之比为3:5。这本书共有多少页?
2.甲、乙两包糖的重量比是4:1。从甲包取出130克放入乙包后,甲、乙两包糖的重量比为7:5。原来甲包有多少克糖?
3.五年级三个班举行数学竞赛。一班参加比赛的占全年级参赛总人数的1/3,二班与三班参加比赛人数的比是11:13,二班比三班少8人。一班有多少人参加了数学竞赛?
【例题4】从前有个农民,临死前留下遗言,要把17头牛分给三个儿子,其中大儿子分得1/2,二儿子分得1/3,小儿子分得1/9,但不能把牛卖掉或杀掉。三个儿子按照老人的要求怎么也不好分。后来一位邻居顺利地把17头牛分完了,你知道这到底是怎么回事吗?
【思路导航】因为1/2+1/3+1/9=17/18,17/18﹤1,就是说三兄弟并未将全部牛分完,所以我们求出三个儿子分牛头数的连比,最后再按比例分配。
① 三个儿子分牛头数的连比:1/2:1/3:1/9=9:6:2 ② 总份数:9+6+2=17 ③ 三个儿子各分得牛的头数:17×9/17=9(头)17×6/17=6(头)17×2/17=2(头)答:大儿子分得9头,二儿子分得6头,小儿子分得2头。练习4:
1.图书室取出一批书,按照一年级得1/2,二年级得1/3,三年级得1/7,正好是41本,各年级各得多少本?
2.古罗马富豪约翰逊再临终前,对怀孕的妻子写下这样一份遗嘱:如果生下来是个男孩,就把遗产的三分之二给儿子,母亲拿三分之一;如果生下来的是女孩就把遗产的三分之一给女儿,三分之二给母亲。结果他的妻子生了双胞胎,一男一女,这是他没有预料到的。求出接近于遗嘱条件,把遗产分给三个继承人的比。
(1)从儿子、母亲、女儿所得的比例来看,他们三人所得的遗产的比是():():()。(2)从母亲至少得遗产的1/3来看,儿子、母亲、女儿所得遗产的比是():():()。3.甲、乙、丙三人共做零件900个。甲做总数的30%,乙比丙多做1/3。三人各做多少个?
【例题5】两个相同的瓶子装满酒精溶液。一个瓶中酒精与水的体积之比是3:1,另一个瓶中酒精与水的体积之比是4:1。若把两瓶酒精溶液混合,混合液中酒精与水的体积之比是多少?
【思路导航】抓住两个瓶子相同的关系,分别求出每个瓶中的酒精占瓶子容积的几分之几再解答。
① 一个瓶中酒精占瓶子容积的比 3/(1+3)= 3/4 ② 另一个瓶中酒精占瓶子容积的比 4/(1+4)= 4/5 ③ 两瓶子里的酒精占一个瓶子容积的比 3/4+4/5 = 31/20 ④ 水占一个瓶子容积的比 2-31/20 = 9/20 ⑤ 混合液中酒精与水的比 31/20:9/20=31:9 答:混合液中酒精与水的比是31:9。练习5:
1.两块一样重的合金,一块合金中铜与锌的比是2:5,另一块合金中铜与锌的比是1:3。现将两块合金合成一块,求出锌合金中铜与锌的比。
2.将一条公路平均分给甲、乙两个工程队修筑。甲队已修的与剩下的比是2:1,乙队已修的与剩下的比是5:2。这条公路已修了全长的几分之几?
3.光华电视机厂上半年生产的电视机产量占全年的5/8,照这样的速度计算,全年可超产1000台。这个工厂上半年生产电视机多少台?
第15讲 比的应用
(二)一、知识要点
比是反映数量关系的一种常见形式,也是解数学题的一种重要工具,有了它,我们处理倍数关系、解答分数应用题就方便灵活得多。在这一讲,我们讲探讨稍复杂的比是应用题。
二、精讲精练
【例题1】甲、乙两个学生放学回家,甲要比乙多走1/5的路,而乙走的时间比甲少1/11,求甲、乙两人速度的比。
【思路导航】因为 速度=路程÷时间,所以,甲、乙速度的比=甲路程/甲时间:乙路程/乙时间
(1)甲、乙路程的比:(1+1/5):1=6:5(2)甲、乙时间的比:1:(1-1/11)=11:10(3)甲、乙速度的比:6/11:5/10=12:11 答:甲、乙速度的比是12:11。练习1:
1.小明和小芳各走一段路。小明走的路程比小芳多1/5,小芳用的时间比小明多1/8。求小明和小芳速度的比。
2.甲走的路程比乙多1/3,乙用的时间比甲多1/4。求甲、乙的速度比。
3.一个人步行每小时走5千米,如果骑自行车每1千米比步行少用8分钟。这个人骑自行车的速度和步行速度的比是多少?
【例题2】制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。现在有1590个零件的制造任务分配给他们三个人,要求在相同的时间内完成,每人应该分配到多少个零件?
【思路导航】先求出工作效率的比,然后根据同一时间内,工作总量的比等于工作效率的比进行解答。
甲、乙、丙工作效率的比: 1/6:1/5:1/1.5=15:18:20 总份数:15+18+20=53 甲 :1590×15/53=450(个)乙 :1590×18/53=540(个)丙 :1590×20/53=600(个)
答:甲、乙、丙分配到的零件分别是450个、540个、600个。练习2:
1.加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。现在有1825个零件需要甲、乙、丙三人加工。如果规定用同样的时间完成任务,那么各应加工多少个?
2.甲、乙、丙三人在同一时间里共制造940个零件。甲制造一个零件需5分钟,比乙制造一个零件所用的时间多25%,丙制造一个零件所用的时间比甲少2/5。甲、乙、丙各制造了多少个零件?
3.加工某种零件要三道工序,专做第一、二、三道工序的工人每小时分别能完成零件48个,32个,28个,现有118名工人,要使每天三道工序完成的零件个数相同,每道工序应安排多少工人?
【例题3】两个服装厂一个月内生产服装的数量是6:5,两厂西服价格的比是11:10。已知两厂这个月内总产值为6960万元。两厂的产值各是多少万元?
【思路导航】因为产值=价格×产量,所以
甲产值:乙产值=(甲价格×甲产量):(乙价格×乙产量)两厂的产值比为:(11×6):(10×5)=66:50 甲厂产值为:6960×66/(66+50)=3960(元)乙厂产值为:6960×50(66+50)=3000(元)答:两厂的产值分别是3960万元和3000万元。练习3:
1.甲、乙两个长方形长的比是4:5,宽的比是3:2,面积的和是242平方厘米。求甲、乙两个长方形的面积分别是多少平方厘米?
2.苹果和梨的单价的比是6:5,王大妈买的苹果和梨的重量的比是2:3,共花去18元。王大妈买苹果和梨各花了多少元?
3.大、小两种苹果,其单价比是5:4,重量比是2:3。把两种苹果混合,成为100千克的混合苹果,单价为每千克4.40元。大、小两种苹果原来每千克各是多少元?
【例题4】A、B两种商品的价格比是7:3。如果它们的价格分别上涨70元,它们的价格比就是7:4,这两种商品原来的价格各是多少元?
【思路导航】
解法一:因为A、B两种商品涨价的数值相同,所以涨价后两种商品价格差不变。由于价格差不变,所以价格差对应的份数也应该相同。
原价格比=7:3=21:9 现价格比=7:4=28:16 【这样前后项的差都是12,价格涨了(28-21)=7份,是70元】 70÷(28-21)=10元 A:10×21=210(元)B:10×9=90(元)解法二:由于两种商品的价格不变,选两种商品的价格差做单位“1“进行解答。(1)原来A商品的几个是价格差的几倍 7÷(7-3)=7/4(2)后来A商品的价格是价格差的几倍 7÷(7-4)=7/3(3)A、B两种商品的价格差是 70÷(7/3-7/4)=120(元)(4)原来A商品的价格是 120÷(7-3)×7=210(元)(5)原来B商品的价格是 120÷(7-3)×3=90(元)答:A、B两种商品原来的价格分别是210元和90元。练习4:
用两种思路解答下列应用题:
1.甲、乙两个建筑队原有水泥重量的比是4:3。甲队给乙队54吨水泥后,甲、乙两队水泥重量的比是3:4。原来甲队有水泥多少吨?
2.甲书架上的书是乙书架上的4/7,两书架上各增加154本后,甲书架上的书是乙书架上的,甲、乙两书架上原来各有多少本书? 3.兄弟两人,每年收入的比是4:3,每年支出的比是18:13。从年初到年底,他们都结余720元。他们每年的收入各是多少元?
【例题5】如图是甲、乙、丙三地的线路图,已知甲地到丙地的路程与乙地到丙地的路程比是1:2。王刚以每小时4千米的速度从甲地步行到丙地,李华同时以每小时10千米的速度从乙地骑自行车去丙地,他比王刚早1小时到达丙地。甲、乙两地相距多少千米?
【思路导航】
解法一:根据路程的比和速度的比求出时间的比,从而求出王刚和李华所用的时间,再求出各自所走的路程。
王刚和李华所用时间的比 1/4:2/10=5:4 王刚所用的时间 1÷(5-4)×5=5(小时)甲地到丙地的路程 4×5=20(千米)甲、乙两地的路程 20×(1+2)=60(千米)
解法二:如果李华每小时行4×2=8千米,他将与王刚同时到达丙地。现在他每小时多行10-8=2千米。在王刚从甲地到丙地的这段时间内,李华比应行的路程多行了10×1=10千米。据此,可求出王刚从甲地到丙地的时间。
王刚从甲地到丙地的时间10 ×1÷(10-4×2)=5(小时)甲、乙两地的路程4×5×(1+2)=60(千米)
解法三:如果王刚每小时行10÷3=5千米,就能和李华同时到达。由此可见,王刚走完甲地到丙地的路程,用每小时4千米的速度和每小时5千米的速度相比,所用的时间相差1小时。再根据1千米的路程,两种速度所用的时间相差 1/4-1/5= 1/20小时。最后求出甲地到丙地的路程。
甲地到丙地的路程1÷(1/4-1/(10÷÷2)=20(千米)甲、乙两地的路程20×(1+2)=60(千米)答:甲、乙两地相距60千米。练习5:
1.一辆汽车在甲、乙两站间行驶,往返一次共用去4小时(停车时间不算在内)。汽车去时每小时行45千米,返回时每小时行30千米。甲、乙两地相距多少千米?
2.甲做3000个零件比乙做2400个零件多用1小时,甲、乙工作效率的比是6:5。甲、乙每小时各做多少个?
3.下图是甲、乙、丙三地的路线图。已知甲地到丙地的路程与乙地到丙地的路程的比是2:3。一辆货车以每小时40千米的速度从甲地开往丙地,一辆客车同时以每小时50千米的速度从乙地开往丙地,客车比火车迟1小时到达丙地。求甲、乙两地的路程?
第四篇:比的应用教案
比的应用
教学目标:
1.结合生活实例,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2.培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。3.掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。
教学重点和难点:
掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。
教学过程:
一、谈话引入
师:前两节课我们学习了比的意义和基本性质,今天我们就来运用比的知识解决一些实际问题。(课题:比的应用)
出示课件:3月12日是植树节,实验小学把种植42棵小树苗的任务分配给六年级人数相等的两个班,两个班各应栽多少棵树?
学生列式计算,板书: 42÷2=21(棵)
师:两个班栽树棵数的比是多少?(21:21=1:1)
师:把一个数量分成了两个相等的部分,这是一种什么分配方法?(平均分配)课件出示:李明与黄华合伙投资办厂,李明出资20万元,黄华出资30万元,一年后盈利100万元,怎样分配利润才合理?
师:这里的“盈利”和“利润”是什么意思?(赚的钱)
师:现在还按1:1的比平均分配的话,你觉得公平吗?应该按什么来分?
课件出示:李明与黄华合伙投资办厂,李明出资20万元,黄华出资30万元。根据出资的多少,把一年后的盈利100万元按2:3的比进行分配。
课件出示:生活中,常常需要像这样把一个数量按照一定的比分成不同的几个部分。
二、新知探究
1.课件出示:把一年后的盈利100万元按2:3的比分给李明和黄华。两人各应分多少万元?
(1)读题,问:这里被分配的是什么?分成了几个部分?是按怎样的比进行分配的?(2)从“2:3”中你获得了什么信息?(李明分到的钱占2份,黄华分到的钱占3份,一
共分了5份。李明分到的钱占总数量的32,黄华分到的钱占总数量的。)55(3)师:通过刚才的分析,你能把这个比转化成我们以前学过的份数或者分率关系来解决最后的问题吗?试试看。(课件提示:份数
分率)(4)学生解题,指名不同算法学生板演。(5)集体交流,说解题思路。
(6)检验方法。
2.师:李明和黄华看到工厂效益这么好,于是经过商量,决定把100万元的利润拿出80万元进行技术改造,用于提高生产效率,其余的利润按 2:3的比例分配,这时两人各分得多少万元?
算一算,填一填:
(1)这里被分配的是(),有多少万元?
列式计算:
(2)从“2:3”可以看出,李明分得()份,黄华分得()份,一共分了()份。(3)李明分到的钱占总数的(),有多少万元? 列式计算:
(4)黄华分到的钱占总数的(),有多少万元? 列式计算:
三、应用
1.生活中像这样把一个数量按照一定的比分成几个部分的问题还有很多。
课件出示:用2份水泥、3份沙子和5份石子配制一种混凝土。要配制6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
师:从这段话里你知道了一个什么常识?(混凝土可以用2份水泥、3份沙子和5份石子来配制。)
师:混凝土中水泥、沙子和石子的比是多少?(2:3:5)
师:问题中被分配的是什么?分成了几个部分?是按怎样的比进行分配的? 算一算各种成分的含量,集体交流,检验。
2.师:通过刚才的学习,你认为解答按比分配的应用题的方法是怎样的?
小结:首先要弄清被分配的是什么?有多少?是按什么进行分配的?根据一定的比分析各部分量占总量的几分之几,再求总量的几分之几是多少。或者先求每份的数量,再求各部分中这样的几份有多少。
3.亮出你的“神眼”:
一块长方形地的周长有40m,长和宽的比是4:1.长和宽各有多少米?
4+1=5 4=32(m)
宽:40×= 8(m)长:40×
答:这块长方形地的长有32m,宽有8m。
24.课件出示:王爷爷家里的菜地共800㎡,他准备用种西红柿。剩下的按2:1的面积比
5种黄瓜和茄子。三种蔬菜的面积分别是多少平方米?
四、作业(第49页1、2题,练习十二1、5题)
第五篇:比的应用教案
比例的应用
教学内容:
第23至24页例
1、例2以及相应的“做一做”,练习五第1至4题。
教学目的:
1.知识目标:让学生掌握用比例解应用题的方法。
2.能力目标:让学生感受生活中的数学,体验数学的应用价值。
3.情感目标:培养学生运用所学知识解决实际问题的能力。
教学重难点:
利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。
教学过程:
一、复习。
1.判断下面各题中的两个量成什么比例关系?(1)速度一定,路程和时间(正)(2)三角形的面积一定,底和高(反)(3)一个为0的自然数与它的倒数(反)(4)Y=3X Y与X(正)(5)每块砖的面积一定,砖的块数和总面积(正)
二、引入。
一辆汽车从甲地开往乙地行驶路程和时间表: 路程(千米)70 140 350 „„
时间(小时)1 2 5 „„ 1.观察提问:(1)表中相关的量是哪两种量,汽车行的路程和时间成什么比例? 为什么? 师从表中圈出140 350 25 师:将其中一个数当作未知数能编一道就用题吗?(2)学生试编。
如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?
(3)生汇报所编之题,(选其中一题)师出示例1。
师:你们自编的题目会用以前学过的方法解答吗?学生试做;汇报:(师板书)生: 归一 140÷2×5
倍比 140÷(5÷2)
分数 140÷2/5 或140×5/2
方程 140÷2=X÷5
师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢? 今天我们就探讨如何用比例解答应用题(板书课题)
三、新知。
1.学生分组讨论,尝试用所学的比例知识来解答应用题。2.讨论后,请两组学生上来写写他们的列式。
解:设两地之间的距离有X千米。140 / 2 = X / 5 师:请讲讲你们的解题思路。
学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比 ,根据比例的意义列出等式。
师:140 / 2表示什么? X / 5 表示什么? 3.学生总结一下解比例应用题的步骤:(1)读题,找出条件和问题。
(2)找准变量和定量,判断两种相关联的量成什么比例。
(3)设未知数。
(4)根据比例意义列出等式并解答。
齐读解题步骤,师:这几步中,最关键的是哪步? 4.出示刚才学生编的另一题: 一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。
师:这道题的定量变了吗?路程和时间成什么比例关系? 生试独立完成。集体订正。请学生讲讲解题思路。
四、巩固练习:
1.补充条件,使它成为一道完整的应用题,并用比例解答。
一台织布机织布,4小时织布80千米,照这样式计算()一共可以织多少千米? 学生1:补充“3小时”后,全体学生试做。
学生2:补充“再织3小时”学生试做。
请不同做法的学生板书,并说说解题思路。
生1:间接设
生2:直接设
解设3小时织布X米 解设 一共可织布X米 80/4= X/4+3 80/4=X/3 X=60 X=140 60+80=140