世界风力发电发展态势及我国风力发电所需的关键原料

时间:2019-05-13 10:04:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《世界风力发电发展态势及我国风力发电所需的关键原料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《世界风力发电发展态势及我国风力发电所需的关键原料》。

第一篇:世界风力发电发展态势及我国风力发电所需的关键原料

据专家估算:全球风能1700太瓦,大洋、高山和保护区域的风力是采集不到的,除去这些以及一些风力达不到开发要求的地区,依然有40~85太瓦的风能,目前世界只利用了0.02太瓦的风能。风力发电是风能利用的主要形式,风力发电成本低于其他新能源,并有进一步降低成本的可能;风力发电是最清洁最安全的,目前世界风力发电发展速度超过其他新能源发展,未来风力发电很可能成为全球电力的主要来源之一。据我国专家估算,我国可开发利用风能至少十几亿千瓦,快速推进风力发电是我国实现减排目标的必要途径之一。

根据美国发布的可再生能源标准(RES),到2012年美国可再生能源占10%,2025年占25%。2004~2008年美国新安装风力发电机新增风电年均增长率为29%。2008年新增风电占新增可再生能源的42%。美国政府承诺长期支持风力发电,投资数十亿美元制造风电涡轮机和建设智能电网,2009~2029年安装风力发电机将每年新增风力发电能力4亿瓦~16亿瓦,到2030年风力发电总容量累计增加到305亿瓦,届时风力发电满足电力需求的20%。欧盟风力发电装机总容量56535兆瓦。丹麦风力发电占本国电力的20%,西班牙占13%,葡萄牙占12%,爱尔兰9%,德国8%。德国规划到2020年可再生能源发电占25~30%,德国于1991年制定法律鼓励发展可再生能源,主要是风力发电,德国风力发电涡轮机生产能力占世界22%,未来几年内将在海岸建大型风力发电场。

2006年我国风电装机总容量仅2588兆瓦,2008年增加到12121兆瓦,年均增长率为116%。据中国风能协会预测,2010年我国风电总装机容量达20亿瓦,2020年达到80亿瓦,2030年达到180亿瓦,2050年达到500亿瓦。我国政府将强力支持建设智能电网,解决风电输送问题,未来风电将成为我国电力的主要来源之一。

一台大型风力发电涡轮机需要稀土2吨,铜5吨,铝3吨,钢300吨; 3兆瓦大型风机转子叶片长约54米,玻璃纤维/碳纤维混合增强复合材料叶片最轻的达13.4吨,单只叶片需要玻璃纤维和碳纤维约6吨。2009年我国风电装机总容量已经达到22亿瓦,根据我国风电发展规划,到2020年风电装机总容量达到80亿瓦,需新增风电装机容量58亿瓦,若以3兆瓦风力发电涡轮机计算,2010~2020年期间我国需要新安装大型风力发电涡轮机19333台,累计需要稀土金属4万吨,铜10万吨,铝6万吨,钢600万吨,玻璃纤维和碳纤维约36万吨。到2030年风电装机总容量达到180亿瓦,需新增风电装机容量122亿瓦,已3兆瓦风力发电涡轮机计算,2020~2030年我国需要新安装大型风力发电涡轮机40666台,累计需要稀土金属约8.2万吨,铜20.33万吨,铝12.19万吨,钢1219.98万吨,玻璃纤维和碳纤维约73.2万吨,所需稀土主要是钕,用于生产稀土永磁材料。2009年我国风电装机总容量已经超过2010年的规划目标,估计我国风力发电规模会远远超过规划目标,2010~2020年期间我国风力发电行业对稀土金属实际需求量很可能是按规划估算需求量的2倍以上,对玻璃纤维和碳纤维实际需求量是估算的2倍多。为此建议国土资源部相关部门应充分调查我国风力发电行业现状和发展计划,准确的估算我国风力发电行业对稀土金属等产品的需求量,以保证正确控制稀土金属及其氧化物生产总量,为风电行业发展提供足够的高质量的矿物原料。

第二篇:我国风力发电的发展

在我国,发展风能具有很大现实意义,不仅是环保原因,我国确实具有巨大的风能资源。我国幅员辽阔,海岸线长,风能资源非常丰富,既有陆地的、也有海上的。据中国气象科学研究院测算,我国东南沿海及其附近岛屿是风能资源非常丰富的地区,有效风能密度大于或等于 200W/m2的等值线平行于海岸线,沿海岛屿有效风能密度在 300W/m2以上,全年风速大于或等于 3m/s 的时数约为 7000~8000h,大于或等于 6m/s 的时数为 4000h。新疆北部、内蒙古、甘肃北部是风能资源丰富地区,有效风能密度为 200~300W/m2,全年风速大于或等于 3m/s 的时数为 5000h 以上,全年风速大于或等于 6m/s 的时数为 3000h 以上,黑龙江、吉林东部、河北北部及辽东半岛的风能资源也较好,有效风能密度为 200W/m2以上,全年风速大于和等于 3m/s 的时数为 5000h,全年风速大于和等于 6m/s 的时数为3000h。青藏高原北部有效风能密度在 150~220W/m2之间,全年风速大于和等于3m/s 的时数为 4000~5000h,全年风速大于和等于 6m/s 的时数为 3000h。目前探明全国陆地风能理论储量为 32.26 亿 kW,可开发利用的储量为 2.53 亿 kW,近海7.5 亿 kW,合计风能可达 10.03 亿 kW,居世界前列[6]。

1.3.1 小型风力发电行业的现状

我国于 20 世纪 50 年代后期开始风力发电技术的研究工作,1957—1958 年在江苏、吉林、辽宁、新疆等地建造了一些功率在 10kW 以下、风轮直径在 10 米以下的小型风力发电装置,但由于受当时的技术经济条件限制,其后处于停滞状态。我国较大规模地开发和应用风力发电始于 20 世纪 70 年代。我国自主开发研制生产的小型风力发电机,解决了居住分散的农、牧、渔民的生产生活用电。20 世纪 80 年代初,我国把小型风力发电作为农村电气化的措施之一,供农村一家一户使用。特别是在内蒙古地区由于风自然资源丰富和当地群众的需求,并得到了政府的支持,小型风力发电机的研究和推广得到了长足的发展,对于解决边远地区居住分散的农牧民群众的生活用电和部分生产用电起了很大作用。我国目前生产的小型风力发电机按额定功率从100W 到 10kW 共十种。其主要技术特点是:2~3 个叶片,侧偏调速、上风向,配套高效永磁发电机,再配以尾翼、立杆、底座、地锚和拉线。其中以户用微型机组技术最为成熟,有 50,100,150,200,300,500W 微型机组系列定型产品,并进行批量生产,不但满足了国内需求,还远销国外。

到 2006 年底,我国从事小型风力发电机组及其配套件开发、研制、生产的单位达到 78 家,其中:大专院校、科研院所 15 家,生产制造单位 38 家,配套件生产单位 25 家,目前我国小型风力发电机的年生产能力达 8 万台。从 1983—2006 年底,全国各生产厂家累计生产各种小型风力发电机组达 37.6 万余台,总容量为 6.52 万 kW,预计年发电量约

1.33 亿 kWh。所生产的小型风力发电机组,除满足国内用户需要外,还出口远销到 25 个国家和我国台湾、香港地区,累计出口各种小型风力发电机近1.7万余台。我国小型风力发电机保有量、年产量、生产能力均列世界之首

自 20 世纪的最后两年以来,全世界风力发电的装机容量快速增长,特别是在欧洲,为了实现减排温室气体的目标,对风电执行较高收购电价的激励政策促进了风电技术和产业的发展,风电成本继续下降。由于海上风能资源比陆地丰富,海上风电场在欧洲已经从可行性示范进入商业化示范阶段。风电机组技术继续向着增大单机容量的方向发展,正在研制风轮直径超过 100m 的 5MW 机组,预计 2013 年,单机容量达到 15MW。1996 年至 2000 年世界上风电增长率 5 年平均达到 31%,2000 年末装机总容量为 1770 万 MW,2001 年末达到 2447 万 MW,一年增加 677 万 kW,增长率为32%,说明风电高增率趋势仍然继

续。2004 年全世界新增装机容量为 8000MW,2004年底全世界风电装机总容量为 47000MW,并作了 2020 年风电达到世界电力总量的12%的规划蓝图(即风力 12)。2005 年世界各国风电装机容量排在前十名的国家是德国、西班牙、美国、丹麦、印度、意大利、荷兰、英国、日本和中国。

世界上,在小型风力发电方面,中国和美国主要生产制造功率为 300W 到 3kW风力机,其中美国在 3kW 到 10kW 小型风力机上占明显优势。在欧洲,主要生产制造功率为 300W 到 100kW 风力发电机。到 2020 年,美国预计安装小型风力机容量为50000MW,可解决 10000 人就业。英国正在研制屋顶用小型风力发电机。世界各国的小型风力发电机正在努力向着:运动部件少、维护少、寿命长、采用新的电力电子技术和计算机技术等方向发展

我国的风力发电事业始于 20 世纪 50 年代,目前已经形成一定的规模。在大型风电方面,拥有 750kW 以下各类风力发电设备的制造能力,2006 年 1 月 28 日,首台兆瓦级变速恒频双馈异步风力发电机及控制装置研制成功,填补国内空白。2006 年 1月 10 日,1.2MW 永磁直驱风力发电机在哈尔滨试制成功,它是我国自主创新研制的容量最大的风力发电机。到 2005 年,全国 15 个省(自治区)已建风电场 62 座,累计运行风力发电机组 1864 台,总容量 126.6 万 kW。2010 年目标为总容量 500 万 kW,2020 年目标为总容量 3000 万 kW,2050 年预计达到 3-5 亿 kW 装机容量。但是,目前我国自行研制和开发大型风力发电机组的技术力量与国外相比相差很多,继续加大对风力发电技术研究的投入,实现关键技术的国产化是保证我国风电事业的持续稳定发展的当务之急。

设计了风力机电动变桨距系统方案,变桨距机构采用单片机控制,并搭建好电动变桨距风力机的试验样机。通过对风力样机做测试,得出风力机组的力矩与风速比的一些重要数据。并通过Matlab51mu11nk软件分别在风速低于额定风速和在额定风速左右两种情况下进行仿真,最终提出的控制规律进行的变桨距调节能满足风力机的功率控制要求,为后续研究做好铺垫工作。

[1] 付文华, 田俊梅.小型风力发电机组的应用[J]: 太阳能.2005,(5): 47~49

[2] 李亚西, 武鑫, 赵斌, 许洪华.世界风力发电现状及发展趋势[J]: 太阳能.2004,(1): 6~7

[3] 张希良.风能开发利用[M].北京: 化学工业出版社, 2005

[4] 李德孚.小型风力发电机组行业现状及展望[J]: 可再生能源.2002,(4): 29~33

[5] 孟明, 王喜平, 许镇琳.风力发电机及其相关技术[J]: 微特电机.2004,(9): 37~42

[6] 王承熙, 张源.风力发电[M].北京: 中国电力出版社, 2002

[7] 宫靖远.风电场工程技术手册[M].北京: 机械工业出版社, 2004

[8] F.Valenciaga, P.F.Puleston.Supervisor Control for a Stand-alone Hybrid Generation System Using Wind and Photovoltaic Energy[J]: IEEE Trans.on Energy Conversion.2005, 20(2): 398~405

[9] 王承熙.风力发电实用技术[M].北京: 金盾出版社, 1995

[10] 叶杭冶.风力发电机组的控制技术[M].北京: 机械工业出版社, 2006

[11] A.M De Broe, S.Drouilhet, V.Gevorgian.A Peak Power Tracker for Small Wind Turbines in Battery Charging Applications[J]: IEEE Transactions on Energy Conversion.1999, 14(4):1630~1635

[12] 张国新.风力发电并网技术及电能质量控制策略.电力自动化设

备.2009,29(6):130~133

[13] Q.Wang L.Chang.An Independent Maximum Power Extraction Strategy for Wind EnergyConversion[J]: Proceeding of the 1999 IEEE Canadian Conference on Electrical and

参考网站:

第三篇:风力发电考试

1.电力系统:用于生产,传输,交换,分配,消耗电能的系统:

一次部分:用于能量生产,传输,交换,分配,消耗的部分

二次部分:对一次部分进行检测,监视,控制和保护的部分

2.风电场和常规电厂的区别:单机容量小;电能生产比较分散,发电机数目多;输出的电压等级低;类型多样化;功率输出特性复杂;并网需要电力电子换流设备

3.风电厂电气一次系统组成:风电机组;集电系统;升压站;厂用电系统。

4.变压器铜损:铜导线存在着电阻,电流流过消耗一定功率,变为热量

变压器铁损:铁心中的磁滞损耗和涡流损耗

5.常用的开关电器:断路器(切断电路),隔离开关(在电气设备和熔断器间形成明显的电压断开点,运行方式改变时倒闸操作),熔断丝(有故障电流时断开电路),接触器(电路正常开合闸,无法断开故障电路)。

6.集肤效应:靠近导体表面处的电流密度大于导体内部电流密度的现象。随电流频率升高,集肤效应使导体的电阻增大,电感减小!

7.电流互感器:串接一次系统,将大电流变为小电流

二次开路后果:出现的高压电危机人身及设备安全;铁心中产生大量剩磁;长时间作用铁心过热

8.电压互感器作用:并接一次系统,将高电压变成低电压

二次侧短路:引起很大短路电流,造成互感器烧毁

9.电气设备选择的技术条件:按照正常工作状态选择;按照短路状态校验;电气选择的环境因素;环境保护

10.电流继电器和电压继电器有何作用?他们如何接入电气一次系统?

电流继电器反应一次回路中的电流越限,用于二次系统的保护回路,用以启动时间继电器的动作或直接触发断路器分闸。

电流继电器用于继电保护装置中的过电压保护或欠电压闭锁

11.配电装置的最小净距:无论在正常最高工作电压或出现内,外部过电压时,都不至使空气间隙被击穿。

12.A,B,C,D,E类安全净距的具体含义

A1:带电部分至接地部分之间的最小安全净距

A2:不同相的带电导体之间

B1:带电部分至栅状遮栏间的距离和可移动设备在移动中至带电裸导体间的距离 B2:带电部分至网状遮栏

C:无遮拦裸导体至地面

D:停电检修的平行无遮栏

E:屋内配电装置通向屋外的出线套管中心线

12.雷电类型:直击雷;感应雷;球星雷。

13.雷电防护:避雷针,避雷线,避雷器,避雷带和避雷网,接地装置

14.风电场防雷性能衡量标准:耐雷水平,雷击跳闸率

15.变流系统的功能,电力变换,控制功率,控制转矩,调节功率因素

第四篇:风力发电报告

国内外风力发电技术 的现状与发展趋势

风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。引

风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。

风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。风力发电基本知识

2.1 风能的计算公式

空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为

(1)

其中:单位时间质量流量m=ρAV

(2)

在实际中,式中:

PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W;

(3)Cp—叶轮的风能利用系数;

m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3;

A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。

2.2 贝茨(Betz)理论

第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。

贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。

通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为

—空气密度,kg/m3;

(4)

式中:Pmax—风轮所能产生的最大功率;

A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。

这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。将(4)式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率

(5)

(5)式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。

能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593[3]。

2.3 温度、大气压力和空气密度

通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。

(6)

式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa; t—温度,℃。

从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。

2.4 风力机的主要组成

1)小型风力发电机

小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。(1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。

(2)发电机

在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。

(3)塔架

塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。

(4)调向机构

垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。

(5)限速机构

当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。(6)贮能装置

贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。(7)逆变器

用于将直流电转换为交流电,以满足交流电气设备用电的要求。2)大型风力发电机

大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。风力机与风力发电技术

3.1 风力机与风力发电技术的发展史

风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的P·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。

随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。

1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kW、600kW、750kW、850kW、1MW、2MW。1991年丹麦在Vindeby建成了世界上第一个海上风电场,由11台丹麦Bonus 450kW单机组成,总装机4.95MW。随后荷兰、瑞典、英国相继建成了自己的海上风电场。

目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的Vestas(包括被其整合的NEG-Micon),美国的GE风能,德国的Nordex、Repower、Pfleiderer/Prokon、Bonus和德国著名的Enercon公司。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW到5MW。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。

3.2 风力机的种类

风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。

水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。国内外风力发电的现状

4.1 世界风力发电的现状

目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。

2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。

2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。

国内风力发电的现状

根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kW,实际可开发量为2.53亿kW。海上风能可开发量是陆地风能储量的3倍。内蒙古 实际可开发量

0.618亿kW 西藏

实际可开发量

0.408亿kW 新疆

实际可开发量

0.343亿kW 青海

实际可开发量

0.242亿kW 黑龙江

实际可开发量

0.172亿kW

2005年中国除台湾省外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW相比,2005年当年新增装机增长率为254%。

截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kW相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kW.h[9]。

中国“十一五”国家科技支撑计划重大项目“大功率风电机组研制与示范”支持1.5~2.5MW、2.5MW以上双馈式变速恒频风电机组的研制;1.5~2.5MW、2.5MW以上直驱式变速恒频风电机组的研制;1.5MW以上风电机组叶片、齿轮箱、双馈式发电机、直驱式永磁发电机的研制及产业化;1.5MW以上双馈式风电机组控制系统及变流器、直驱式风电机组控制系统及变流器的研制及产业化;近海风电场建设关键技术的研究;近海风电机组安装及维护专用设备的研制;大型风电机组相关标准制定及风电技术发展分析等16个课题的研究[10]。“十一五”末,我国风电技术的自主研发能力将接近世界前沿水平。

4.3小型风力发电机

4.3.1小型风力发电机行业现状

作为农村可再生能源主要支柱之一的小型风力发电行业在2005得到长足的发展,从事小型风电产业的开发、研制、生产单位达到70家。据23个生产企业报表统计,2005年共生产30kW以下独立运行的小型风力发电机组共33,253台,比上年增长34.4%,其中200W、300W、500W机组共生产24,123台,占全年总产量的72.5%;15个单位共出口小型风力发电机组5,884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南等24个国家和地区。并且,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象站和微波站等使用柴油发电机的用户逐步改用风力发电机或风光互补发电系统。

4.3.2 小型风力发电机行业发展趋势

1)由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50W机组不再生产,100W、150W机组产量逐年下降,而200W、300W、500W和1kW机组逐年增加,占总年产量的80%。

2)由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时间的发展方向。

3)随着国家《可再生能源法》及《可再生能源产业指导目录》的制定,相继还会有多种配套措施及税收优惠扶植政策出台,必将提高生产企业的生产积极性,促进产业发展。

4)目前我国尚有2.8万个村、700万户、2,800万人口没有用上电,且分散居住在边远山区、农牧区、常规电网很难达到,有关专家分析700万无电用户中、300万户可用微水电解决用电,而400万户可以用小型风力发电或风光互补发电,满足农牧民用电需要[11]。4.3.3浓缩风能型风力发电机

浓缩风能型风力发电机由内蒙古农业大学新能源技术研究所研制,已获得中国实用新型专利(专利号:ZL94244155.9)。该型风电机组将稀薄的风能经浓缩风能装置加速、整流和均匀化后驱动叶轮旋转发电,从而提高了风能的能流密度,降低了自然风的湍流度,改善了风能的不稳定等弱点,提高了风能品位,降低了风电度电成本。该风力发电机具有的切入风速低、发电量大、噪音低、安全性高、寿命长、度电成本低等特点。浓缩风能型风力发电机可独立运行、风光互补运行、多机联网运行和并入低压电网运行。现已研制开发的系列产品有200W、300W、600W、1kW、2kW等机组。浓缩风能型风力发电机经过中试后,可以向中、大型机组发展。这种新型风电技术在中国和世界的应用,将有效地提高风电系统的供电水平和质量,有效地利用低品位的风能,提高风电商品竞争力,具有重要的经济益和生态环保效益[12]。结

在今后的20年内,国际上风力发电产业将是增长速度最快的产业,风力发电技术也将进入快速发展的黄金时期;在中国,并网型风力发电机组装机容量增长速度将明显加快,令世界瞩目,离网型风力发电机组发展的地域广、潜力大,装机总容量最终将超过并网型风力发电机组。

田德,吉林松原人,1958年8月生。内蒙古农业大学教授,华北电力大学教授,博士生导师。1985年赴日本留学,1992年9月获得日本明星大学电气工程学博士学位。现任中国农业工程学会理事、中国太阳能学会理事、《太阳能学报》编委、全国“百千万人才工程”第一、二层次人选。享受国务院政府特殊津贴。省级中青年突贡专家。省级优秀留学回国人员。主持完成的项目获内蒙古自治区科技进步一等奖1项,已获得中国实用新型专利1项。正申请国家发明专利3项。发表研究论文50余篇,多篇被EI收录。主持完成和正在主持的科研项目有:3项国家自然科学基金资助项目、3项国际合作项目、1项国家“十一五”科技攻关项目、9项省部级项目、3项横向项目。现从事离网型风力发电系统、并网型风力发电系统和可再生能源利用的研究。

[参考文献] [1]贺德馨.2020年中国的科学和技术发展研究[J].科技和产业,2004,4(1):36.[2][法]D·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[M].北京:机械工业出版社,1987:31~33.[3]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:11~13.[4]陈云程,陈孝耀,朱成名,等.风力机设计与应用[M].上海:上海科学技术出版社,1990:1~11,48~51 [5]世界风能协会.2005年全球风能统计[J].中国风能,2006(1):17~20

[6] The European Wind Energy Association, Greenpeace International.Wind Force 12.2002.http://,2006.12.17.[11]李德孚.2005年小型风力发电行业现状与发展[J].中国风能,2006,(2):9~11 [12]田

德,王海宽,韩巧丽.浓缩风能型风力发电机的研究与进展[J].农业工程学报(增刊),中国农业工程学会第七次全国会员代表大会暨学术年会论文集,2003,19:177~181.

第五篇:风力发电简介(定稿)

广州绿欣风力发电机提供更多绿色环保服务请登录查询

风力发电简介

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×109MW,其中可利用的风能为2×107MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。

风是一种潜力很大的新能源,人们也许还记得,十八世纪初,横扫英法两国的一次狂风力发电图暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风[1]在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。

利用风力发电的尝试,早在本世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。

目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。

1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。

风力发电如何利用风力来发电资料参考:

下载世界风力发电发展态势及我国风力发电所需的关键原料word格式文档
下载世界风力发电发展态势及我国风力发电所需的关键原料.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    风力发电技术

    风力发电技术和风能利用方式1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、......

    风力发电课程设计

    1.风力发电发展的现状1.1世界风力发电的现状近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种......

    风力发电前景

    风能作为一种清洁的可再生能源,越来越受到世界各国的重视。中国风能储量很大、分布面广,风力发电产业迅速发展,成为继欧洲、美国和印度之后的全球风力发电主要市场之一。 从200......

    发展风力发电具有什么优势

    发展风力发电具有什么优势? 风电技术日趋成熟,产品质量可靠,可用率已达95%以上,已是一种安全可靠的能源,风力发电的经济性日益提高,发电成本已接近煤电,低于油电与核电,若计及煤电的......

    风力发电的发展建议

    风力发电的发展建议 第一,进一步优化清洁能源政策。严格实施《可再生能源法》,促进风电产业的发展。国家还应参考国外对风电产业的补贴政策,出台具体的风电电价补贴措施。 第二......

    我国风力发电现状及其技术发展02

    2.3风力发电机组控制策略的发展风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率......

    我国风力发电现状及其技术发展02

    3存在的问题及展望 尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需......

    我国风力发电现状及其技术发展01

    2.2风力发电机组控制技术的发展控制技术是风力发电机组安全高效运行的关键技术[5,6],这是因为:1)自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等......