第一篇:碳纤维增强复合材料分层缺陷的检测研究
碳纤维增强型复合材料分层缺陷的检测研究
贾继红
【1】,许爱芬
【1】,路学成【2】,谢霞
【2】
摘要:碳纤维增强型复合材料由于其高温下仍保持高硬度、高强度,质量轻等性能被广泛应用于军事工业,但复杂的制造过程使得缺陷不可避免并影响使用。本文采用正交小波对碳纤维复合材料的探伤信号进行多尺度分析,通过对小波基、分解层数地选取以及对细节信息地处理和分析,总结出判定分层缺陷的损伤程度的方法,使得材料在失效前被提早发现。实验表明该方法有效。
关键词:碳纤维;复合材料;小波分析;无损检测
Tisting Study On Lamination Of Carbon fibrerein forced
composite material Jia Ji Hong[1],Xu Ai Fen[1],Lu Xue Cheng[2],Xie Xia[2]
Abstract: Carbon fibrerein Composite materials was widely used in war industry for keeping high-hardness、high-strength,and light weight etc,but the defect could not be helped after complicated manufacturing,and influenced use.Applied the orthogonal wavelet to explore carbon fibre reinforced composite material for the multiple-dimensioned analysis, put forward a method for estimating damaging degree by selecting basic wavelet、decomposing layer-number and detail signal processing.It’s advantage is that prevent the materal from invalidating,,and this method was proved effective.Key words: Carbon fibrerein ;Composite materials;Wavelet analys;nondestructive test
1.引言
近年来,碳纤维增强型复合材料在工业甚至国防建设中有了长足发展,特别是在飞机制造上,机体结构的复合材料化程度是衡量飞机先进性的一个重要指标。然而,碳纤维复合材料是复杂的各项异性多相体系,其质量存在离散性,成型过程与服役条件极其复杂,环境控制、制造工艺、运输以及操,作等都可能造成材料缺陷【2】使得结构失效。因此,结构材料的无损检测(NDT)无论是在制造上还是在实时应用上都显得尤为重要。
分层缺陷是碳纤维复合材料中最常见的缺陷形式,复合材料层合板在压缩载荷作用下将依次发生脱粘分层、分层扩展、再屈曲、最后压缩破坏。含分层损伤的复合材料层合板在面内压缩载荷作用下,其圆形分层缺陷上下端点的局部区域内材料受横向拉应力作用为主;分层缺陷大小对复合材料层合板的抗压强度和屈曲临界载荷影响显著;分层缺陷大小对复合材料层合板的压缩弹性模量影响不显著;对于4.40 mm厚复合材料层合板,当分层缺陷尺寸达到孔隙30 %就要考虑修补【3】。
超声检测是目前无损检测中应用最广泛的一种。在超声缺陷检测中,回波信号通常是一种被探头中心频率调制的宽带信号,该信号是属于时频有限的非平稳信号,因此选用具有时频局部放大能力的小波变换技术对信号进行处理和分析非常适宜。2.小波变换基本原理
2-1小波变换的特点
小波(wavelet)有两个特点:一是“小”,即在时域和频域都具有紧支集或近似紧支集;二是正负交替的“波动性”,也就是直流分量为零。小波分析是将信号分解成一系列小波函数的叠加,而这些小波函数都是由一个母小波函数经过平移与尺度伸缩得来的。相比傅里叶变换:用不规则的小波函数来逼近尖锐变化的信号显然要比光滑的正弦曲线好得多。由于所研究的信号为复合材料的超声检测信号,采样取得,故选用一维离散小波变换。
2-2离散小波变换
在实际应用中,为了方便使用计算机进行分析、处理,信号f(t)都要离散化为离散序列,伸缩因子a 和平移因子τ也必须离散化,成为离散小波变换,记为DWT。
离散小波变换定义为:
*WTf(a0j,k0)f(t)a(t)dt
j0,1,2,...,kZ j,k00为了减小小波变换系数冗余度,将小波基的α、τ离散化,而待分析信号f(t)和分析小波j,k(t)中的时间变量t并没有离散化。
002-2-1 小波基的选择
主要通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。虽然依据的标准不同,但总的来说,具有对称性的小波不产生相位畸变;具有好的正则性的小波易于获得光滑的重构曲线,从而可以减少误差。综上考虑,选用Daubechies(dbN)小波作为小波基。
Daubechies(dbN)小波: dbN 是简写,N 为小波的阶数。小波ψ(t)和尺度函数φ(t)中的支撑域为2N-1,ψ(t)的消失矩为N。除N=1 外,dbN 不具有对称性(即非线性相位)。dbN 没有明确的表达式(除了N=1 外),但转换函数h 的平方模是很明确的。Daubechies 小波具有以下特点:
ⅰ 在时域上是有限支撑的,即ψ(t)长度有限。而且其高阶原点矩tp(t)dt0,p=0~N;N值越大,ψ(t)的长度就越长。ⅱ 在频域上ψ(ω)在ω=0 处由N 阶零点。
ⅲ ψ(t)和它的整数位移正交归一,即:(t)(tk)dtk。ⅳ 小波函数ψ(t)可以由所谓“尺度函数”φ(t)求出来。尺度函数φ(t)为低通函数,长度有限,支撑域在t=0~(2N-1)范围内。如图2.1 和2.2 所示,此为 Daubechies 小波(N=1、2、3、4、5、10)的ψ(t)及φ(t)的波形。
图2.1 db1-db10 的小波函数 Fig 2.1 Function of wavelet db1-10
图2.2 db1-10 的尺度函数
Fig 2.2Scale function of wavelet db1-10 2-2-2 小波分解层数的确定
根据小波分析理论,因为小波分解过程是迭代的,理论上它能无限进行下去。小波分解层数越多,信号的高低频部分就分解的越彻底;同时,分解层数越多,计算量也就越大,由于在小波分解过程中每次分解都会对所得到的系数进行“二次采样”,这样就使得系数的长度变为上一层系数长度的一半。本实验研究使用的信号长度为128,如果按定义进行分解,当分解了7 次以后,系数的长度值就会变为1,如果再分解下去就失去了实际意义。因此,分解层数要小于等于7。
借鉴熵的标准可以完成分解层数的选择。
⑴ 信息熵的定义:对于给定信号s ={s(k)},信息熵定义为:
E(s)p(k)logk
1p(k)
p(k)其中,s(k)2s2是信号的第k 个元素的规范化能量,此处将信号归
1plog()limxlogx0p的值定义为0; 一化处理。根据:x0,将p=0 时 ⑵ 信息熵的物理意义:反映了信源输出消息之前平均不确定性程度的大小,熵越大,信息的不确定性越大;
⑶ 信息熵表示信源输出每个符号所提供的平均信息量,它是一种信息的测度。分别对原始信号和低N(N=1,2,3,4,5)级细节系数求信息熵,分解层数越多,得到的细节系数的熵越小,表明信息的确定性越大,若细节系数的熵与原始信号的熵之比小于5%,则认为此时细节系数已确定,分解层数已满足要求,不需要进一步分解。本实验选择db5 小波函数对信号进行分解,按信息熵的定义公式进行计算,当进行第五层小波分解时,第五层细节的系数信息熵与原始信号的信息熵之比恰好小于5%,故分解层数选择5。3.材料损伤程度的判定
将超声检测的原始信号进行去噪处理,去噪后的信号如图3.1 所示:
图3.1去噪后的原始信号
Fig 3.1 Original signal of obliterated noise 原始信号即使是去除了噪声也很难从中分辨带有损伤特征的重要部分,更不可能判断材料的损伤情况。因此,需要将原始信号(s)进行细节提取,即小波变换:选用db5 为小波基对原始信号进行5层分解,分解后的近似系数和细节系数如图3.2所示:
图3.2 损伤信号的5 层分解
Fig 5.8 Decompose of 5 layers of damaged signal 由图可知,5层分解能够清楚地显示信号所有细节特征,可从中提取显示缺陷特征的细节进行分析。以此方法分别对三个原始去噪信号(采自三个损伤程度不同而材料相同的复合板)进行5层小波分解,提取三个信号的第5层细节系数进行分析和比较,如图3.3~图3.5所示:
图3.3 损伤信号1的第5 层细节系数
Fig 3.3 Detal information of No.5 layer of damaged signal 1 5
图3.4 损伤信号2的第5 层细节系数
Fig 3.4 Detal information of No.5 layer of damaged signal 2
图3.5 损伤信号3的第5 层细节系数
Fig 3.5 Detal information of No.5 layer of damaged signal 3
先从三个复合板的细节信息中找出每个板的各次底面回波和缺陷处回波:相邻两个底面回波出现的时间间隔是相同的;由于回波能量越来越小,故底面回波幅值依次减小;缺陷处回波介于两次底面回波之间,幅值介于首次回波和残余噪声之间。缺陷信号在每个频率上的值都是对称分布,幅值分布比较均匀,且大部分都在一定区域之内,幅值大小描述了损伤程度。通过比较三个信号的细节系数可知:试件3 受损最严重,试件2 次之,试件1 最轻,但试件1 较其它两个板受损数量多。分析结果与实际损伤情况相同,证明该判定方法有效。4.结论与展望
论文通过分析小波理论和信息熵概念,结合分析信号的特点,对小波基和分解层数进行了选择;对三个材料、结构相同,损伤不同的复合板的原始去噪信号进行小波分解,通过分析、对比最高层细节系数,判定了三个复合板的损伤程度,并总结出判定方法。
参考文献
1.曹永友,李青青,王强.碳纤维增强复合材料在汽车上应用的新进展.汽车工艺与材料AT&M,2008,10:54~57 2.张博明,叶金蕊,周正干.增韧树脂基碳纤维复合材料结构无损检测技术研究,航空制造技术,2010(17):78~81 3.方一帆,刘文博,张璐,王荣国.飞机用复合材料结构分层损伤研究进展,实验技术与管理(Vol.27 No.9),2010,9:49~57 4.董晓马,张为松.小波分析技术在复合材料损伤检测中的应用.仪器仪表学报,2004,25(4):489~491 5.冯占英,殷晓华,叶鹏.小波变换在超声导波信号分析中的应用,军事交通学院学报(Vol.13 No.9),2011,9:86~90
第二篇:碳纤维增强树脂基复合材料性能的研究
碳纤维增强树脂基复合材料性能的研究
摘 要:碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的 重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领 域和发展趋势。
新材料的研究、发展与应用一直是当代高新技术 的重要内容之一。其中复合材料,特别是先进复合材料 在新材料技术领域占有重要的地位,对促进世界各国 军用和民用领域的高科技现代化,起到了至关重要的 作用,因此近年来倍受重视。
复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。【1】
碳纤维增强复合材料(CFRP)是目前最先进的复合 材料之一。它以轻质高强、耐高温、抗腐蚀、热力学性能 优良等特点广泛用作结构材料及耐高温抗烧蚀材料,而这些优 异的性能可使碳纤维成为一种十分良好的增强材 料。目前,碳纤维大部分应用于碳纤维增强树脂基 复 合 材 料(Carbon Fiber Reinforced Polymer Composite,简称CFRP)。是其它纤维增强复合材料所无法比拟的。因为环氧树脂的热机械 性能、抗蠕变性能、粘接性能优异而且吸湿性好; 固化收缩率和线膨胀系数小;固化温度较低;较高 温度下稳定性好;尺寸稳定性、综合性能好[2];而 且又与有机材料的浸润性能好等优点,所以近年来 应用最多的就是碳纤维增强环氧树脂复合材料。目 前为止,CFRP 可以应用于航空、航天,体育用品,交通工具,建筑材料等多个领域。无论是军用还 是民用,随着研究的不断深入和工厂的大规模生产,其应用领域更为广阔。
碳纤维增强树脂基复合材料的性能【10】
碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。
(1)具有高的比强度和比模量。CFRP的密度仅为 钢材的 1/5,钛合金的 1/3,比铝合金和玻璃钢(GFRP)还轻,使其比强度(强度 / 密度)是高强度钢、超硬铝、钛合金的4倍左右,玻璃钢的2倍左右;比模量(模量/ 密度)是它们的3倍以上。CFRP轻而刚、刚而强的特性 是其广泛用于宇航结构材料最基本的性能。
(2)耐疲劳。在静态下,CFRP 循环 105 次、承受 90%的极限强度应力时才被破坏,而钢材只能承受极 限强度的 50%左右。对于碳纤维增强树脂基复合材 料,在应力作用下呈现粘弹性材料的疲劳特性,显示出 耐疲劳特性。CFRP呈现出良好的抗蠕变性能,这可能 与碳纤维的刚性有关。
(3)热膨胀系数小。碳纤维的热膨胀系数α具有 显著的各向异性,使其复合材料的α也具有各向异 性。
(4)耐磨擦,抗磨损。CFRP 有优良的耐疲劳特 性、热膨胀系数小和热导率高的特性,具耐磨擦、抗磨 损的基本性能。再加之碳纤维具有乱层石墨结构,自 润滑性好,适用于摩擦磨损材料。比磨耗量可用以下 三式表示。
Wr=KLª
a=(b+2)/ 3
N=(So /S)/ b
式中Wr 为比磨耗量; K为比例常数; S为循环作 用的应力; So 为材料的拉伸强度; N为断裂时的循环次 数。CFRP具有高的拉伸强度,是优良的摩擦材料。
(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性 主要取决于基体树脂。长期在酸、碱、盐和有机溶剂环 境中,刻蚀、溶胀等使其变性、腐蚀,导致复合材料性能 下降。
(6)耐水性好。碳纤维复合材料的耐水性好,可长 期在潮湿环境和水中使用。一般沿纤维方向(0°)的强度 保持率较高,垂直于纤维方向(90º)的保持率较低。这可 能与基体树脂的吸湿、溶胀有关。
(7)导电性好。碳纤维具有导电性能。对于 CFRP 导电性能来自碳纤维,基体树脂是绝缘体。因此,CFRP 的导电性能也具有各向异性。
(8)射线透过性。CFRP对 X射线透过率大,吸收 率小,可在医疗器材(如 X光机)方面应用。增强机理 碳纤维增强树脂基复合材料是以聚合物为基体(连续相),纤维为增强材料(分散相)组成的复合材料。纤维材料的强度和模量一般比基体材料高得多,使它 成为主要的承载体。但是必须有一种粘接性能好的基 体材料把纤维牢固地粘接起来。同时,基体材料又能起到使外加载荷均匀分布,并传递给纤维的作用【11】。
这种复合材料的特点是,在应力作用下,使纤维的 应变与基体树脂的应变归于相等,但由于基体树脂的 弹性模量比纤维小得多,且易塑性屈服,因而当纤维和 基体处在相同应变时,纤维中的应力要比基体中的应 力大得多,致使一些有裂口的纤维先断头,然而由于断 头部分受到粘着它的基体的塑性流动的阻碍,断纤维 在稍离断头的未断部分仍然与其周围未断纤维一样承 担相同的负荷。复合增强的另一原因是基体抑制裂纹 的效应,柔软基体依靠切变作用使裂纹不沿垂直方向 发展而发生偏斜,导致断裂能有很大一部分用于抵抗 基体对纤维的粘着力,从而使银纹在 CFRP 整个体积 内得到一致,而使抵抗裂纹产生、生长、断裂以及裂纹 传播的能力都大为提高。因此,CFRP的力学性能得到 很大的改善和提高【12】。实验部分
1.1 实验原料
碳纤维(12K/T-300):台湾台塑厂;环氧树脂 E51:星辰化工无锡树脂厂;固化剂:二乙烯三胺(DETA)分析纯,国药集团化学试剂有限公司;活 性稀释剂:市售。
1.2 实验仪器及设备 电子天平:H10KS,上海仪器总厂;电热恒温 鼓风干燥箱:DHG-9030 型,上海精密实验设备有 限公司;搅拌器:DF-1 型,荣华仪器制造有限公 司;模具:自制。
1.3 复合材料的制备
(1)将碳纤维干燥,条件为:150 ℃/2 h;(2)按规定配比配制树脂胶液;
(3)采用手糊成型工艺制作层合板,并固化,固化条件为 100 ℃/3 h + 150 ℃/2 h;
(4)用万能制样机切割标准样条;
其中制作的层合板长宽为 200 mm×200 mm,厚度为 5 mm 的方形板材,基体树脂每层用量为 20 g,碳纤维每层平铺,一共为 8 层,层与层之间的碳 纤维丝束成十字交叉排列。
试验结果与讨论
2.1 碳纤维含量对硬度的影响 显微硬度试验结果示于图 1。可以看出, 随着 碳纤维含量的增加, 试样的硬度呈现 S 形增加趋 势, 增加幅度由小到大又由大到小。碳纤维是脆性 材料, 具有高的强度和比模量, 所以加入碳纤维能提 高试样的硬度[ 5]。基体是树脂材料, 其硬度较低, 当 碳纤维含量较低时, 由于在基体中较分散, 所以对显 微硬度的贡献较小;当碳纤维含量> 10%, 碳纤维的 作用变的非常明显, 所以硬度有较大幅度的增加;但 是, 当碳纤维含量> 25% , 碳纤维的增强作用逐渐达 到饱和, 硬度的增加速度开始下降。总之, 碳纤维的 加入对硬度的提高非常明显。
图y为不同碳纤维含量样品的电导率。从中可 以看出, 当碳纤维含量< 10%时, 电阻随纤维含量的 增加急剧下降;当碳纤维含量> 10%时, 体积电阻的 变化趋于平缓, 电阻值的下降与碳纤维含量的增加 并不成正比, 有一个渗滤阀值, 这个渗滤阀值约为 15%。这表明, 碳纤维/ 酚醛树脂复合体系在碳纤维 含量为 15%以上, 试样具有一定的导电性能[ 6]。
上述结果可用以下理论解释, 当复合体系中导 电填料的含量在达到一个临界值前, 其电阻率急剧 下降, 在电阻率导电填料含量曲线上出现一个狭窄 的突变区域。在此区域内, 导电填料含量的任何细 微变化均会导致电阻率的显著改变, 这种现象通常 称为渗滤现象, 导电填料的临界含量称为渗滤阀值。在突变区域之后, 即使导电填料含量继续提高, 复合 材料的电阻率变化甚小, 这反映在突变点附近导电 填料的分布开始形成导电通路网络。导电高分子材 料的导电现象是由导电填料的直接接触和填料间隙 之间的隧道效应的综合作用产生的;或者说是由导 电通道、隧道效应和场致发射三种导电机理竞相作 用的结果。在低导电填料含量及低外加电压下, 导 电粒子间距较大, 形成链状导电通道的几率极小, 这 时隧道效应起主要作用;在低导电填料含量和高外 加电压时, 场致发射理论变得显著;在高导电填料含 量下, 导电粒子的间距小, 形成链状导电通道几率较 大, 这时导电通道机理的作用明显增大[ 7]。
碳纤维含量对耐磨性的影响
试样磨损完毕后, 每个试样磨损前、后的质量磨 损量与碳纤维含量的关系如图 3 所示。从图 3 可以 看出, 随着碳纤维含量的增加, 复合材料的磨损率下 降、耐磨性能提高, 且提高程度随着碳纤维含量的增加而减小, 最后趋于不变。
综上所述,碳纤维增强树脂基复合材料品种结构 变化繁多,加工成型技术不断更新,基础理论研究方兴 未艾,应用领域相当广泛,这些事实充分证明了这一材料在工程塑料中的领先地位。随着基础研究和应用研 究的不断深入,该材料在取代金属、节约能源、特殊专 用等方面将发挥独特的作用,其巨大的潜力必将得到 进一步挖掘。
总结碳纤维复合材料的现实应用有以下几个方面: 4.1 航空航天领域的应用[13] 碳纤维复合材料与钢材相比其质量减轻 75%,而 强度却提高 4 倍,其最早最成熟的应用当属在航空航 天领域,如军用飞机、无人战斗机及导弹、火箭、人造卫 星等。早在 1970 年代初期,美国军用 F-14 战斗机就部 分采用碳纤维复合材料作为主承力结构。在民用航空 领域,如波音 767 和空中客车 A310 中,碳纤维复合材 料也占到了结构质量的 3%和 5%左右。近几年随着碳 纤维工业技术和航空航天事业的不断发展,碳纤维在 这一领域的应用更加广泛,如用于制造人造卫星支架、卫星天线、航天飞机的机翼、火箭的喷焰口、战略导弹 的末级助推器、机器人的外壳等。
4.2 体育休闲领域的应用 体育休闲用品是碳纤维复合材料应用的另一个重 要领域,如高尔夫球杆、滑雪板、滑雪车、网球拍、钓鱼 竿等。用碳纤维复合材料制成的球拍与传统的铝合金 球拍相比,其质量更轻、手感和硬度更好、对震荡和振 动的吸收也更好,且使用寿命大大延长。同时由于复合 材料本身的可设计性,使得制造商在球拍的硬度、弹 性、球感、击球性能的设计上,有了更大的想象空间。而 碳纤维钓鱼竿由于其良好的韧性与耐用性,更是被广 泛青睐。近年来,碳纤维复合材料在运动及休闲型自行 车零组件方面的应用也非常广泛。
4.3 交通运输领域 碳纤维增强复合材料在交通运输方面主要是汽车 骨架、螺旋桨芯轴、轮毂、缓冲器、弹簧片、引擎零件、船 舶的增强材料等,尤其在汽车方面的应用更是潜力巨 大。早在 1979 年,福特汽车公司就在实验车上作了试 验,将其车身、框架等 160 个部件用碳纤维复合材料制 造,结果整车减重 33%,汽油的利用率提高了 44%,同 时大大降低了振动和噪音。
4.5 其他工业领域 防弹产品方面,包括防弹头盔、防弹服、防弹运钞 车和防弹汽车等;电子工业方面,包括各种反射面天 线、印刷电路板、壳架等;生物工程和人体医学方面,包括人造关节、骨骼、CT扫瞄床板等;地铁车辆、发热 材料和电热用品以及机械制造工业等复合材料产品 多种多样,层出不穷,充分体现了其应用多元化的趋 势和特点。
【1】360百科
[2] 张金祥.新型 BMI/环氧树脂共固化体系的研究[D].大连:大连理 工大学,2011.
10张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋 势.纤维复合材料,2004,30(1):50~58.王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.北京:科学 出版社,2004.12彭树文.碳纤维增强尼龙66的研究.工程塑料应用 13 苏小萍.碳纤维增强复合材料的应用现状.高科技纤维与应 用, 2004,29(5):34~36.
第三篇:复合地基检测方案
复合地基检测方案
一、检测依据
1、《建筑地基基础设计规范》(GB50007-2002)
2、《建筑地基处理技术规范》(JGJ79-2002)
3、《建筑桩基检测技术规范》(JGJ106-2003)
4、《建筑地基基础工程施工质量验收规范》(GB50202-2002)
5、设计单位提供的《检测任务书》
二、CFG桩检测
CFG桩检测项目包括复合地基承载力检测和桩体完整性检测。
(一)复合地基承载力检测
1、检测方法
采用单桩复合地基静载荷试验。
2、仪器设备
拟采用RS-JYB静载荷测试系统,改测试系统每套由以下设备组成:
油压千斤顶
2000KN 1台 位移传感器
4只 压力传感器
1只 桩基静载荷测试分析系统
1台 电动油泵
1台 钢梁、承压板及其他附件若干。
3、检测数量 工程总桩数0.5%~1%,且每个单体工程场地测点数不少于3根。具体检测数量可参考《检测任务书》,具体桩号随机抽取或由监理现场确定,对施工有疑问的桩必须检测。
4、试验要点(1)载荷装置
采用承重梁加配重反力装置,用千斤顶配合高压油泵施加反力,试验补载、控制加荷量、记录沉降位移均有仪器自动控制。(2)加载与沉降观测 ①试验加载量
采用国标规定的慢速维持荷载法。试验最大荷载大于设计要求值的两倍。
②加载分级
加荷级差取最大加载量的1/8~1/12,第一级载荷加倍。③相对稳定标准
每加一级荷载前后均应各读记承压板沉降量一次,以后每半小时读记一次。当一小时内沉降量小于0.1mm时,即可加下一级荷载观测。
④静载荷试验加载过程中出现下列情况之一时,即可终止加载: a、沉降急剧增大,土被挤出或压板周围出现明显裂缝。b、累计的沉降量已大于承压板宽度或直径的6%。c、总加载量达到设计要求值的两倍以上。⑤桩头处理
将桩头截至设计标高并凿平。试验前垫约1.5cm厚中砂或粗砂并找平,试验正式开始前应预压。
⑥试验时间
应在桩身强度达到要求后进行试验。⑦资料处理及试验结果分析
当压力~沉降曲线上极限荷载能确定,而其值不小于对应比例界限的2倍时,可取比例界限;当其值小于对应比例界限的2倍时,可取极限荷载的一半。
当压力~沉降曲线是平缓的光滑曲线时,可按相对变形值确定:以粘性土为主的地基,取s/b(或s/d)=0.015所对应的压力为复合地基基本承载力;以粉土或砂土为主的地基,取s/b(或s/d)=0.01所对应的压力为复合地基基本承载力。按相对变形确定的承载力值应不大于最大加载压力的一半。(二)桩体完整性检测
1、测试方法 采用低应变动力试验
2、仪器设备
(1)检测仪器采用武汉岩海公司生产的RS-1616K(P)型基桩动测仪,具有信号显示、储存和处理分析功能。
(2)激振设备为力锤。
3、检测数量
不少于单位工程总桩数的10%,且每个单体工程不少于2根。具体检测数量可参考《检测任务书》,具体桩号随机抽取或现场监理确定,对施工有疑问的桩必须检测。
4、试验要点
(1)在检测前,对被测桩头除去浮渣,凿除松动和有裂缝部分,大致凿平,中心激振处和传感器处要磨平。
(2)用黄油将传感器粘在桩顶安装传感器的地方,传感器安装应与桩顶面垂直,应有足够的粘贴强度,传感器地面粘接剂越薄越好,传感器应安装在距中心2/3半径处。
(3)通过现场试验选择不同材质的锤头和锤垫,力棒的长短根据桩的长短相应确定。
(4)激振方向应沿桩轴线方向。
(5)电源及测试系统应处于正常状态,接地良好,方可接通电源开始检测。检测时用力棒进行激振,测试信号由基桩动测仪通过加速传感器接收并存储。
(6)测试参数的确定:
① 桩身波速可通过测试不少于5根现场完整桩,确定该工地桩身的波速平均值vc。
② 采样时间间隔或采样频率根据桩长、桩身波速和频域分辨率合理选择。
③ 传感器的设定值按计量检定结果设定。
(7)根据桩径大小,桩心对称布置2~4个检测点;每个检测点记录的有效信号数应不少于3个,并采集2个以上好的波形。
(8)测试时应及时观察实测波形的重复性,若一致性较差或有异常,应分析原因,增加检测点数量。
(9)根据所测波形和桩的灌注日期、强度等级、地质情况等因素,判定桩的完整性。给出检测成果分析、结论、建议及整改措施。
三、砂石桩检测
砂石桩检测包括复合地基载荷试验和桩身密度试验,其中桩身密度试验可采用重型动力触探试验检查每米桩身的均匀性。
(一)复合地基承载力检测
检测方法、仪器设备、检测数量和检测要点同CFG桩的复合地基承载力检测。
(二)桩身密度检测
1、测试方法
采用重型动力触探(N63.5)检查每米桩的均匀性。
2、仪器设备
重型动力触探仪由穿心锤、钢砧和锤垫、触探杆、圆锥探头和导向杆。
3、检测数量
单位工程总桩数的1%且不小于3根。具体检测数量可参考《检测任务书》,具体桩号随机抽取或由现场监理确定,对施工有疑问的桩必须检测。
4、试验要点
① 先用钻具钻至试验桩顶标高以上0.3m处,然后对所需试验桩每米连续进行触探。②试验时,穿心锤落距为(0.76±0.02)m,使其自由下落。记录每打入砂石桩中0.10m时所需的锤击数(最初保护桩0.30m不记)。
③每贯入1m,宜将探杆转动一圈半;当贯入深度超过10m,每贯入20cm宜转动探杆一次。
④对实测击数进行杆长修正后,根据每贯入10cm的击数,绘制击数~贯入深度曲线,根据贯入深度的锤击数确定每米桩身的均匀性。
四、质量、工期保证措施
(一)质量保证措施
1、质量检测工作坚持“质量第一”的方针。质量检测的数据保证准确、可靠。对影响检测质量的各种因素,采取有效地措施进行控制,以确保检测质量。
2、用于检测的所有仪器设备均按国家质量技术监督局计量司“关于在计量认证中对检测仪器设备进行检定、校验的规定”的要求检定、校验合格。
3、对检验过程中影响检测质量的各种因素,制定切实可行的控制方法,确保检测质量。
4、制定各项管理制度,使其规范化和制度化,岗位人员层层负责。
(二)工期保证措施
1、甲方提前1天通知乙方进场检测,乙方检测人员及时进驻现场,并与施工方沟通,了解施工单位的工程施工安排和进度计划,以便安排检测工作。
2、仪器设备种类和数量满足各种检测工作的进度需要,并留有一定的富余量。
3、提前对仪器设备进行检验维修,使设备处于良好的工作状态,检查标定日期,对过期或即将到期的的仪器设备进行标定工作。
4、选派经验丰富的检测人员负责检测工作,人员数量满足进度要求,并对实验检测人员进行技术培训和服务意识教育。
5、检测前做好充分准备工作,易损件和各种材料准备充足,避免停工待料。
6、合理安排、组织协调各种实验检测工作,以保证检测不影响施工进度。
7、检测工作完成后,及时对资料进行整理、分析,保证在规定时间内及时提交检测报告。
五、费用计算
(一)CFG桩、砂石桩单桩复合地基静载荷试验
计费方式:按实际试验加载量计费,单价为120元/吨。
(二)CFG桩低应变动力测试
计费方式:按实际检测数量计费,单价为260元/根。
(三)砂石桩重型动力触探试验
计费方式:按实际测试深度计费,单价为350元/米。
第四篇:2012年表面缺陷检测研究现状报告
目前表面缺陷检测的主要应用领域在以下三个方面:
1,带钢表面缺陷检测
2,塑料薄膜缺陷检测
3,布匹表面缺陷检测
其中布匹表面缺陷检测包括有纺织布料检测和无纺布料检测: 纺织布料检测
缺陷主要包括:飞絮、蚊虫、脏点、断(错)经、断(错)纬、结头、漂白不匀等(根据国家的布匹检验标准,总共有超过50种以上的缺陷,这些缺陷将布匹分成不同档次)。印染过程中的缺陷包括:套印不准、偏色等。种类较多。
无纺布料检测
检测系统主要是为了发现生产过程中产品的缺陷信息并将信息图象进行自动分类判别。检测对象:纺粘、水刺、热扎、化学粘合、热风等无纺布材料生产过程中布面缺陷与疵点。检测内容:无纺布材料表面疵点(孔洞,熔点,亮点和昆虫等)种类较少。
布匹表面检测要求:
(1)实时性。系统要求实时地对布匹疵点进行标记和记录,这对图像采集和图像处理在速度上提出了很高的要求。通常布匹自动检测系统中,布匹运动速度高达60米/分,一般要求布匹检测系统能够检测到最小尺寸为0.5mm的疵点,因此系统需要有高性能硬件和高效率的检测算法支持才能保证检测系统与布匹运动同步。
(2)高检测精度。高精度检测是整个系统的核心。系统要能快速准确地鉴别和分出大小、方向、形状各异的疵点类型,可用于诊断生产前序步骤各个环节可能出现的问题。
(3)自适应能力。检测系统需要有很好的自标定能力。为了保证生产的连续性,往往要求标定过程在线完成。
国内外的研究状况:
国内外一般将疵点检测分成三个层次:疵点判别、疵点分割和疵点分类。
疵点判别要求有很好的实时性、简单并且最好能在硬件平台上实现。
主要采用的技术是:
(1)基于共生矩阵特征
(2)基于分形的特征
(3)基于自适应小波分解的特征
(4)基于模型的特征
(5)规则度和局部方位特征:该方法适用于结构性较强的纹理,易受噪声干扰。
(6)基于离散小波包分解的特征:
疵点分割
(1)疵点分割中最常用的滤波器是Gabor滤波器
(2)边缘检测算子
(3)形态学运算
(4)基于邻域关联的方法
疵点分类和评价
(1)基于几何特征
(2)基于统计特征
(3)基于频率特征
主要的问题:
1,布匹流水线对检测实时性要求较高
2,一般布匹使用的是高速高分辨率摄像头,拍摄照片
主要是为了检测出来杂质的数量,大小,颜色,位置。高速运动的布匹流水线对光线有产生反射,会产生大量的噪声。
一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:
1. 图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜色、位置不一定一致。
2. 杂质的形状难以事先确定。
3. 由于布匹快速运动对光线产生反射,图像中可能会存在大量的噪声。
4. 在流水线上,对布匹进行检测,有实时性的要求。
由于上述原因,图像识别处理时应采取相应的算法,提取杂质的特征,进行模式识别,实现智能分析。
市场上主要使用的系统:
国外的有:
(1)以色列EVS的I-TEX 验布系统
该验布系统用于检测单色、简单组织织物,在 330 cm幅宽时能以 100 m/min的验布速度检测出小至0.5 mm的疵点。系统采用神经网络技术,检测时,首先是初始的学习阶段,用时约1min,对织物的第一米记录其正常外观特征参数,然后进入检测阶段,寻找与正常外观不同的局部异常,对其分析、标记并记录。
(2)比利时Barco 公司的视觉 Cyclops 在线布匹检测系统
它拥有一个可以游动的摄像头,这使得它可以自由的适应布匹的宽度,而无需增加摄像头的数量。Cyclops 在线验布系统和相应的织布机一起工作,是一种在线疵点检测系统。Cyclops 当检测到严重疵点或者一个不断增长的疵点时,便会停车,进行修整。Cyclops 扫描系统包括 CMOS 摄像头和照明系统。检测软件在系统特殊硬件里和 PC 机里协同工作。每个 Cyclops 扫描头能扫描布匹宽度为 260 厘米。
(3)瑞士Uster公司的最新系统 Fabricsan 系统
该公司的系统能检测布匹速度的120 米/分,检测解析度0.3 毫米。它能检测布匹的宽度为 110-440 厘米。Uster 的布匹类分为两个坐标轴,Y轴表示不同的疵点类型对比,X轴表示疵点的长度。系统保存检测结果到数据库中,产生相关质量报表。
国内的有:
(1)无锡动视科技有限公司
检测对象
水刺无纺布、热合无纺布、浆粕气流成网无纺布、湿法无纺布、纺粘无纺布、熔喷无纺布、针刺无纺布、缝编无纺布等
主要性能
1.典型瑕疵: 污点、节点、蚊虫、异物、油污、褶皱、纤维等
2.检测宽度:任何宽度(增加相机的组合来满足不同的幅宽);
3.检测速度:最大2000m/min;
4.检测精度:最大检测精度为1um(增加相机的数量来提高检测精度)
(2上海恒意得信息科技有限公司
检查对象:无纺布
典型缺陷:污点、节点、蚊虫、异物、油污、褶皱、纤维等;
检测宽度:可满足2600mm以上幅宽(可通过相机的组合满足不同的幅宽)
检测速度:可适应300m/min以上的车速;
检测精度:0.2mm~1mm(取决于车速、材质以及相机数量)。
(3)QCROBOT Corporation
检测对象:纺织布料检测,棉纺异纤清除【QCROBOT-T02】
1,纺织布料材质在线鉴定,如棉纤维成熟度 绒毛鳞片结构分析 反射特性等
2,合成纱线横截面分析、纱线结构分析.3,花纹识别,纹理分析比较。
4,精准套色
5,实时监控产品质量、可检出纤维、纱线、织物.棉结等织物疵点(色差、断线,缺经、断纬、轻微划伤、吊经、磨损,油斑、水迹,断丝)
布匹检测系统主要应用于纺织行业中的各种布匹的生产缺陷检测以及布匹染印过程中出现的染印缺陷。缺陷主要包括:飞絮、蚊虫、脏点、断(错)经、断(错)纬、结头、漂白不匀等(根据国家的布匹检验标准,总共有超过50种以上的缺陷,这些缺陷将布匹分成不同档次)。印染过程中的缺陷包括:套印不准、偏色等。
检测对象:无纺布在线检测系统【QCROBOT-T03】
检测纺粘、水刺、热扎、化学粘合、热风等无纺布材料生产过程中布面缺陷与疵点检测
无纺布生产线速度:最大800米/分钟
检测幅宽:任何宽度(多相机)
图像精度:0.1mm-0.5mm
检测内容:无纺布材料表面疵点(孔洞,熔点,亮点和昆虫等)
最小疵点缺陷识别尺寸:0.2mm*0.2mm
发现疵点处理办法:报警(根据手动设定),自动记录位置(卷长方向和宽度方向),自动判别疵点类型,自动保存疵点图片信息。
检测结果汇总:系统自动生成无纺布卷材质量报表和疵点分布图表。
国内纺织业分布情况
我国纺织工业主要集中浙江、江苏、山东、广东、上海、福建六大省份,出口额占全国80%左右。
广东主要出口香港;
浙江的出口产品附加值不高;
江苏、山东以棉制品为主,利润较高;
上海是主要的出口口岸;
福建以针织、机织服装成衣为主。
当然这六大省市也存在分化,上海的发展明显已经减速,江浙两省填补了上海留下的大量空白。山东纺织业在环渤海经济圈已显示出强大的领头作用,其纺织业的发展具有很强的发展潜力。广东纺织业的增速不很理想,一方面是由于该地区纯加工贸易的模式存在弊端;另一面,该地区也逐渐有选择地退出传统行业而专注于新兴产业,但是广东纺织业的整体工业化水平高于江浙两省。
从区域分布的前景来看,短期内这个格局不会有很大的变化。可能存在的变化有两个:第一是福建可能超越上海;第二是中西部的产业质量可能会得到一些提高。但从中长期来看,随着中国纺织工业本身发展阶段的进一步跃升以及沿海省份在高新产业上的逐步壮大,国内特
别是中西部地区物流水平继续提高,纺织产业有向中西部转移的趋势。
中国纺织研究中心认为,“十二五”时期,东部沿海纺织产区继续保持长期稳定发展。目前,虽然低成本比较优势有所减弱,但凭借完备的配套产业体系和多年积累的技术优势,东部沿海地区仍将作为中国纺织业领先地区和主要的纺织出口基地。
苏浙沪的纺织业主要有以下几个特点:
(一)规模大,分布趋于集中。
江苏省作为门类齐全的纤维大盛面料大盛服装大省,服装年产量、销售额、利润都位居全国前列。
浙江省作为纺织行业的生产大省和市场大省,有43家企业进入行业“双百强”,支撑着中国印染业的“半壁江山”;化纤产量占全国26%,印染布占全国50%,生丝及丝织品分别占46%、53%,针织品占20%,服装占15%。
上海是开放性的国际大都市,是中西文化交流的交汇点、海派服饰的发源地,拥有中国纺织大学、拉萨尔国际服装设计学院、上海服装科技信息中心等众多的服装教育及研究机构,在全国纺织业领域具有举足轻重的地位。目前,国内聚酯聚合能力为1264万吨/年,苏浙沪占全国总能力的65.2%。
近年来,苏浙沪地区的纺织业集群现象日益凸现。中国纺织工业协会授牌的全国32个纺织产业基地市(县)和36个特色城(镇),苏浙沪地区占了很大比例。如孕育了波司登羽绒服、梦兰家纺、神花经编毛巾7个全国产销“单打冠军”的常熟市;拥有江苏阳光、四环生物、凯诺科技、华西村4家上市公司和30多家年销售收入过亿元纺织企业的江阴市;唐朝时即已“日出万丈布”,如今被形象地称为“托在一块布上的经济强县”绍兴县;化纤能力高达140万吨的杭州萧山区;领带产量占国内80%、全球30%的浙江嵊州市;家纺布艺产品年销量达50亿元的余杭区;一个衬衫产品售出15亿元的诸暨市枫桥。这些市县、城镇的纺织业快速发展,成为当地解决群众就业、增加财政收入、吸引外来资本、增强经济活力的重要支柱。
(二)产业链条长,专业市场发达。
苏浙沪地区已形成从纺织原料、织物织造到印染后整理、服装生产较长的纺织产业链条,上、中、下游产品丰富多样。纺织产业市场化程度高,专业市场网络化。如绍兴市纺织业专业市场起步早、数量多、规模大,主要有中国轻纺城、钱清化纤原料市尝越城区轻纺原料市尝装饰布市尝大唐袜业市尝嵊州领带城、上虞伞布市尝新昌兔羊毛衫市场等。其中,位于柯桥镇的“中国轻纺城”是全国面料市场的“晴雨表”,是亚洲规模最大、经营品种最多的纺织品集散中心,轻纺产品总销售额占全国的1/3,名列全国10大专业批发市场第2位,去年成交额达226亿元。中国轻纺城占地面积49.2万平方米,建筑面积60.5万平方米,营业用房1.35万间,拥有4大交易区19个专业市场,其中纺织品市场13个,轻纺原料市场1个,纺机及轻工类市场5个,具有较强的辐射力和影响力。
(三)设备改造步伐快,技术装备水平高。
近年来,苏浙沪十分重视纺织技术装备水平的提高,不断加大投入,各种新型纺织加工设备明显增加,并成为全国喷水织机最集中的地区。化纤行业,多数采用的是涤纶长丝和聚酯国产嫁接装备。织造行业,多数为进口纺机、织机,主要来自比利时、日本和意大利等世界三大纺机先进国家,无梭化程度高,部分企业如纵横集团、越隆纺织、南方集团等甚至高达100%,居全国领先地位;江苏吴江的盛泽、南马两个乡镇拥有无梭织机4万台,比绍兴县的织机多三分之一,拥有千台织机的企业不在少数。印染行业,生产装备通过大规模技术改造已达到或接近国际先进水平。服装行业,大力推广使用计算机辅助设计(CAD)、辅助制造(CAM)、辅助管理技术,立体熨烫包装,吊挂式生产流水线等国际先进生产技术与管理技术,大大促进了产业升级。
(四)名牌产品多,知名度高。
苏浙沪纺织业的上、中、下游产品知名度高,部分产品是中国名牌,甚至世界名牌。江苏省437个著名商标中,纺织业商标有72个,占16.5%;27个驰名商标,纺织业产品有红豆、虎豹、波司登、AB、阳光、梦兰、雅鹿等7个,占26%;“波司登”羽绒服连续9年全国销量遥遥领先,2003年“波司登”的品牌价值达36.18亿元,成为中国最有价值的服装品牌。江苏是中国的面料基地之一,“阳光”、“黑牡丹”、“太平洋”等一批面料品牌支撑起了“江苏面料”的天空,阳光集团、海澜集团等企业生产的超薄色织府绸、牛仔布及色织布在国内独领风骚。浙江省首次推出的十大专业商标品牌基地,纺织服装独占七席——湖州织里的中国童装、宁波鄞州的中国服装、嵊州的中国领带、诸暨大唐的中国袜业、海宁的中国皮革、义乌大陈的中国衬衫、义乌的中国袜业等七大专业商标品牌基地。上海以发展国际时尚品牌服装(饰)博览会等会展经济为动力,把服装业全面推向时尚化、品牌化、国际化,加快发展步伐。
第五篇:碳纤维增强SiC陶瓷复合材料的研究进展(精)[范文模版]
碳纤维增强SiC陶瓷复合材料的研究进展 邹世钦,张长瑞,周新贵,曹英斌
(国防科技大学 410073航天与材料工程学院国防科技重点实验室,湖南长沙)
摘 要: 碳纤维增强 SiC 陶瓷基复合材料具有良好的高温力学性能,是航空航天和能源等领域新的高温结构材料研究的热点之一。本文回顾了增强体碳纤维的发展,对材料的成型制备工艺,材料的抗氧化涂层研究进展和现有的一些应用做了综述,并展望了碳纤维增强 SIC 陶瓷基复合材料以后的研究重点及发展前景。关键词: 陶瓷基复合材料;碳纤维;碳化硅;陶瓷中图分类号: TQ342+.742;TQ174.75+8.2 文献标识码: A 文章编号: 1007-9815(2003)02-0015-06 前言
在航空航天工业和能源工业等领域,随着新型发动机的研制和新概念航天运载器的发展,对高温结构材料提出了更高的要求。如航空发动机 的热效率主要取决于涡轮前的进口温度,当发动机的推重比为 10 1 650时,涡轮前进口温度达℃,在这样高的温度下,传统的高温合金材料已经无法满足要求,材料研究者把目光转向了陶瓷材料,高温结构陶瓷成为了研究的热点。
SiC 陶瓷具有良好的高温强度、高温稳定性和高温抗氧化能力,但由于其分子结构的键合特点,缺乏塑性变形能力,表现为脆性,严重影响了其作为结构材料的应用。碳纤维拥有良好的高温力学性能和热性能,在惰性环境中超过 2 000℃仍能保持其力学性能不降低,用碳纤维增强 SiC 陶瓷,材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既增强了材料的强度和韧性,又保持了 SiC 陶瓷良好的高温性能,是获得高性能高温结构陶瓷的极好方法。许多国家开展了碳纤维增强 SiC 陶瓷复合材料应用于高温热结构部件的研究,并且取得了丰硕的成果。
碳纤维的发展历史可以追溯到 19 1875世纪。年美国发明家爱迪生研制成功以碳丝作灯丝,1910 年钨丝研制成功,碳丝的研究停止。作为结构材料使用的碳纤维的发展始于 20 50世纪年代,1950 年美国空军基地研究所以人造丝碳化制得纤维;1958 Union Carbide 年美国公司实现人造丝制碳纤维的工业化;1958 年后,日本、英国等国开始碳纤维的研究与生产;目前日、美、英、德等几个国家有生产高性能的商品碳纤维的公司。
碳纤维根据制备原料不同,可以分为粘胶基
碳纤维、PAN 基碳纤维和沥青基碳纤维。粘胶基碳纤维由于产率低、性能差、成本高等原因己逐步被淘汰,目前主要集中在 PAN 基和沥青基两种。PAN 基碳纤维主要是高强度型,沥青基碳纤维主要是高模量型,还有高强和高模兼具的碳纤维。
目前碳纤维的开发朝两个方面发展:一是高性能化,通过设计更合理的微观结构和更先进的处理工艺来提高纤维的力学性能,外观上则表现为纤维直径减小、纤维束丝数增加,日本东丽公司的 TX1 9.实验室的碳纤维抗拉强度已经达到3GPa ;二是低成本化,由于碳纤维生产成本高,价格昂贵,在很多领域的应用受到限制,美 FORTAFIL 公司开发了Fortafil 系列纤维,在保
1
增强体碳纤维的发展
62.4
Reaction Sistering反应烧结()[14] 层、功能层和抗冲蚀层等多层复合组成(如图 1 反应烧结通过 Si+C 反应完成。有研究表明所示)。
抗冲蚀层的功能是阻挡氧气进入材料内部,抵抗气流冲蚀。抗冲蚀层最常用的是致密的 CVD-SiC Ir Al涂层,另外、2O
3、Y 2O
3、Ta 2O
5、Si 2N 2O、ZrO 2和莫来石(3Al 2O 3・2SiO 2)等也被用来作抗冲蚀层材料[18-21]。功能层的作用是形成玻璃态可流动物质封填涂层微裂纹,阻止氧的进入。最初用作功能层的材料是 P2O 5,B 2O 3,SiO 2 等玻璃态物质,目前常用的功能层材料是能氧化形成玻璃态物质的化合物 B4C、TiB
2、Si-B、Si-W、Si-[22-27, 18] Hf、MoSi
2、Si-Zr 等。粘接层的功能粘接基体与涂层系统,减少涂层与基体间的热膨胀不匹
[28]配,粘接层材料最常用的是涂层 SiC。
Si C 900和在℃ 便有 SiC 生成,但是通常制备反应的温度在Si 的熔点1 414℃ 以上,Si 以液相或气相状态与 C 反应,最终材料中可能会有少量未与 C 反应的自由硅存在。如坂本昭(日)用SiC、Si、C 粉末与丙烯酸类树脂制成泥浆浸渍碳纤维,干燥成型后加压烧结,得到碳纤维增强
[6,15] SiC 材料。Fischedick C 等以沥青或树脂等的先驱体浸渍碳纤维预制体后裂解制得多孔 C/C 材
[16] 料,在液相或气相条件下渗 Si,得到SiC。也可通过小分子烃的 CVI C/C 工艺制备材料后渗Si,但CVI C Si C的与的反应活性不如裂解。Vogli 等将橡木加工成所要的形状后在惰性气体保护下 800℃ 碳化,随后在 1 550℃ 以上真空渗 Si 或 SiO(Si/SiO 2),得到 C/SiC 复合材料,室温 280MPa 弯曲强度 330MPa,1 300℃ 弯曲强度
[14,17]
有许多比较有效的抗氧化涂层体系。如等开发的f /SiC 材料抗氧化保护体系由Goujard C SiC/B4C/SiC 3 3 CVD 层组成,层均由工艺制备,内层 SiC120-140μm,B 4C 10-15层μm,外层 SiC40-60μm,涂层总厚度约160-200μm [29];Franc SiC/AlN/Al等开发的2O 3 3 层体系,外层可以是 Al2O
3、H f O
2、ZrO 2 TiB等,中间层可以是
2、AlN、HfN、ZrC、Pt、Ir 等,用该涂层体系的空间飞行器部件使用温度达到 2 000℃;
近年来抗氧化涂层体系又有新的发展。
Kondo Y等以2O 3 CVD-SiC 粉末在内层上于1 500℃ 以上烧结,得到 SiC/Y2SiO 5-Y 2Si 2O 7-YxSiy 2 1 600层抗氧化保护体系,在℃ 以上仍有良好的抗氧化保护作用[20-22]。H.Fritze CO等通过高能2脉 [30]。
3
抗氧化研究进展
碳纤维增强 SiC 陶瓷复合材料拥有良好的高
温力学性能和热性能,但是在氧化性气氛中,高于 400℃ 碳纤维就会氧化,材料性能迅速降低,导致材料失效。这是影响其在氧化性气氛中长效应用的致命弱点,为此必须解决材料的抗氧化性问题。目前主要通过整体抗氧化涂层来对材料进行抗氧化保护。
抗氧化涂层要求。① 在所保护温度范围稳
冲激光(λ=10.6μm,Δt =170μs,j =3×10w ・cm)定,涂层与基体不易剥落或者分离;② 低的氧和
在碳纤维增强陶瓷基复合材料表面制备莫来石涂碳的扩散系数;③ 良好的抗冲蚀性能;④裂纹自愈合功能;等等。
为满足这些要求,典型的涂层体系由粘接 抗冲蚀层活性功能层粘接层基底材料
层,基体温度的升高不超过 100℃,所得涂层均匀、致密,在空气中的抗氧化保护温度达 1 900K [31-32]。Naslain CVI 等以工艺制备了基体与涂层融为一体的碳纤维增强抗氧化保护陶瓷材料,基体为(PyC-SiC)n BN-SiC或()n,每层的厚度为几十 nm,在氧化性气氛中,PyC-SiC 或 BN-SiC 既是基体又是涂层,有裂纹自愈合功能,有良好的抗氧化保护性能
[33-34]。
图1 涂层体系的基本组成4
近年来的应用
8in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregnation and pulse chemical vapor infiltration[J].J.Am.Ceram.Soc.2001,84: 1 683-1 688.[7] BYUNG JUN OH, YOUNG JIN LEE,et al.Fabrication
of carbon/silicon carbide composites by isothermal chemical vapor infiltration, using the in situ whisker-growing and matrix-filling process[J].J.Am.Ceram.Soc.2001,84: 245-247.[8] JINGYI DENG, YONGLIANG WEi,et al.Carbon-fiber-reinforced composites with graded carbon-silicon carbide matrix composition[J].J.Am.Ceram.Soc.1999,82: 1 629-1632.[9] YONGDONG XU, LITONG ZHANG,et al.Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J].Carbon, 1998,36: 1 051-1 056.[10] WENCHUAN LIU, YONGLIANG WEI,et al.Carbon-fiber-reinforced C-SiC binary matrix composites[J].carbon, 1995,33: 441-447.[11] , 曹英斌张长瑞, 等.Cf /SiC陶瓷基复合材料发展状况[J].宇航材料工艺, 1999(5: 10-14.[12] D.KLOSTERMAN, R.CHARTOFF,et al.Laminated object manufacturing, a New Process for the Direct Manufacture of Monolithic Ceramics and Continuous Fiber CMCs[J].Ceram.Eng.& Sci.Proceedings, 1997,18(4: 113-120.[13] M.M.ANGELOVICI, R.G.BRYANT,et al.Carbon/ ceramic microcomposites, preparation and properties[J].Mater.Lett, 1998,36: 254-265.[14] E.VOGLI, J.MUKERJI,et al.Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide[J].J.Am.Ceram.Soc.2001,84:1 236-1 240.[15].CMC(网村清人セラミツクス基复合材料[J].日本复 合材料学会志, 1994,20: 34-41.[16] J.S.FISCHEDICK, A.ZERN,et al.The morphology of silicon carbide in C/C-SiC composites[J].Mater.Sci.& Eng.A, 2002,332: 146-152.[17] DONG-WOO SHIN, SAM-SHIK PARK,et al.Silicon/ silicon carbide composites fabricated by infiltration of a silicon melt into charcoal[J].J.Am.Ceram.Soc.1999,82:3 251-3 253.[18] H.LEITE, U.DAMBACHER,et al.Microstructure and properties of multilayer coatings iwth covalent bonded hard materials[J].Surf.Coat.Tech.116-119, 1999: 313-320.[19] Z.FAN, Y.Song,et al.Oxidation behavior of fine-grained SiC-B4C/C composites up to 1400 oC[J].Carbon, 2003,41: 429-436.[20] M.APARICIO, A.DURAN,et al.Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites[J].J.Am.Ceram.Soc.2000,83:1 351-1 355.[21] J.D.WEBSTER, M.E.WESTWOOD,et al.Oxidation protection coatings for C/SiC based on yttrium silicate[J].J.Eur.Ceram.Soc.1998,18: 2 345-2 350.[22] LAIFEI CHENG, YONGDONG XU,et al.Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to
1500℃[J].Mater.Sci.Eng.A, 2001,300: 219-225.[23] LAIFEI CHENG, YONGDONG XU,et al.Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites[J].Carbon, 2002,40: 2 229-2 234.[24] LAIFEI CHENG, YONGDONG XU,et al.Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J].Carbon,2001,39: 1 127-1 133.[25] J.D.WEBSTER, F.H.HAYES,et al.Thermodynamic modelling and experimental studies in the design of integrated oxidation protection systems for ceramic matrix composites[J].Key.Eng.Mater.127-131, 1997: 1 225-1 232.[26] M.E.WESTWOOD, R.J.DAY,et al.The use of finite element analysis in the design of integrated oxidation protection systems for ceramic matrix composites[J].Key.Eng.Mater.127-131, 1997: 1 233-1 240.[27] LAIFEI CHENG, YONGDONG XU,et al.Oxidation behavior of C-SiC composites with a Si-W coating from room temperature to 1500℃[J].Carbon, 2000,38: 2 133-2 138.[28] , 刘荣军周新贵, 等.CVD法制备SiC 先进陶瓷材料研 究进展[J]., 2002(7: 46材料工程-49.[29] S.GOUJARD, L.VANDENBULCKE,et al.The
oxidation behaviour of two-and three-dimensional C/SiC thermostructural materials protected by chemical-vapour-deposition polylayers coatings[J].J.Mater.Sci.1994,29: 6 212-6 220.[30] L.D.BENTSON, R.J.PRICE,et al.Moisture and oxidation resistant carbon/carbon composites[P].美国专利:5298311, 1994-03-29.[31] H.FRITZE, J.JOJIC,et al.Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J].J.Eur.Ceram.Soc.1998,18: 2 351
-2 364.高科技纤维与应用 243.第二十八卷 [32] H.FRITZE, J.JOJIC,et al.Mullite based oxidation protection for SiC-C/C composites in Air at temperatures up to 1900 K[J].Key.Eng.Mater.132136, 1997: 1 629- 1 632.[33] R.NASLAIN, R.PAILLER,et al.Processing of ceramic matrix composites by pulsed-CVI and related techniques[J].Key.Eng.Mater.206-213, 2002: 2 189-2 192.[34] F.LAMOUROUX, S.BERTRAND,et al.Oxidationresistant carbon-fiber-reinforced ceramic-matrix composites[J].Compos.Sci.Tech.1999,59: 1 073 - 1 085.[35] 张建艺.陶瓷基复合材料在喷管上的应用 [J].宇航材 料工艺 , 2000(4: 14-16.[36] D.SAUCERAU, A.BEAURAIN.Demonstration of carbon/silicon carbide novoltex reinforced composite nozzle on a LH2-Lox engine[J].AIAA, 2 180-2 190; [37] R.OSTWETAG,et al.Space agency[spec.pub.]ESP SP[J].ESA SP-336(Adv.Struct.Mater., 1992: 241 [38] M.IMUTA, J.GOTOH.Development of High Temperature Materials Including CMCs for Space Application[J].Key Eng.Mater.164-165, 1999: 439 -444.[39] U.TRABANDT, H.G.WULZ, T.SCHMID.CMC for Hot Structures and Control Surfaces of Future Launchers[J].Key
Eng.Mater.164-165, 1999: 445- 450.[40] H.KAYA.The application of ceramic-matrix composites to the automotive ceramic gas turbine[J].Compos.Sci.& Tech.1999,59: 861-872.[41] Y.SANOKAWA, Y.IDO,et al.Application of continuous fiber reinforced silicon carbide matrix composites to a ceramic gas turbine model for automobiles[J].Ceram.Eng.& Sci.Proc.1997,18(4: 221-228.Development of carbon fiber reinforced ceramic matrix composites ZOU Shin-qin;ZHANG Chang-rui;ZHOU Xin-gui;CAO Ying-bin(Key Laboratory of National Defence Technology, College of Aerospace & Materials Engineering, National University of Defence Technology, Changsha 410073, China Abstract: Carbon fiber feinforced ceramic matrix composites,an outstanding high temperature structure cermic,is applied in advanced aero-engines, earo-spaceplane, atomic engery generator, etc.This paper is a review on the development of carbon fiber,the preparation of Cf/SiC parts, the progress of anti-oxidation coatings and the application of carbon fiber feinforced ceramic matrix composites.Problems for further research efforts are also briefly discussed.Key words: ceramic matrix composites;carbon fiber;silicon carbide;ceramic(上接 10 页)Carbon nanofiber and it's applications ZHAO Jia-xiang(Aerospace reaearch Institute of Materials and Processing Technology, Beijing 100076, China Abstract: In this paper the present status and development of carbon nanofiber in the world were briefly introduced, including manufacturing carbon nanofiber, properties and application of carbon nanofiber.The market and perspective of development were also discussed.Key words: carbon nanofibers;application
0571-63373236 碳纤维补强片材 杭州索奇先进复材公司