第一篇:湿法制粒
湿法制粒
湿法制粒是在药物粉末中加入黏合剂,靠黏合剂的桥架或黏结作用使粉末聚结在一起而制备颗粒的方法。它包括挤压制粒、转动制粒、流化制粒和搅拌制粒等。湿法制成的颗粒经过表面润湿,具有颗粒质量好,外形美观、耐磨性较强、压缩成型性好等优点,在医药工业中应用最为广泛。
基本信息中文名称: 湿法制粒
方
法: 药物粉末中加入黏合剂
包
括: 挤压制粒、转动制粒、流化制粒等 优
点: 表面润湿,具有颗粒质量好 目录: 1湿法制粒2制粒机理 湿法制粒
制粒
制粒是把粉末、熔融液、水溶液等状态的物料经加工制成具有一定形状与大小粒状物的操作。几乎所有的固体制剂的制备过程都离不开制粒过程。所制成的颗粒可能是最终产品,如颗粒剂;也可能是中间产品,如片剂。制粒操作使颗粒具有某种相应的目的性,以保证产品质量和生产的顺利进行。如在颗粒剂、胶囊剂中颗粒是产品,制粒的目的不仅仅是为了改善物料的流动性、飞散性、黏附性及有利于计量准确、保护生产环境等,而且必须保证颗粒的形状大小均匀、外形美观等。而在片剂生产中颗粒是中间体,不仅要改善流动性以减少片剂的重量差异,而且要保证颗粒的压缩成型性。制粒方法有多种,制粒方法不同,即使是同样的处方不仅所得制粒物的形状、大小、强度不同,而且崩解性、溶解性也不同,从而产生不同的药效。因此,应根据所需颗粒的特性选择适宜的制粒方法。
在医药生产中广泛应用的制粒方法可以分为三大类:湿法制粒、干法制粒、喷雾制粒,其中湿法制粒应用最为广泛。此外,还有一种新型制粒法――液相中晶析制粒法。
湿法制粒
湿法制粒机理 湿法制粒首先是黏合剂中的液体将药物粉粒表面润湿,使粉粒间产生黏着力,然后在液体架桥与外加机械力的作用下制成一定形状和大小的颗粒的方法。经干燥后最终以固体桥的形式固结。
制粒机理
粒子间的结合力
制粒时多个粒子粘结而形成颗粒,Rumpf提出粒子间的结合力有五种不同方式[10]: 固体粒子间引力
固体粒子间发生的引力来自范德华力(分子间引力)、静电力和磁力。这些作用力在多数情况下虽然很小,但粒径<50μm时,粉粒间的聚集现象非常显著。这些作用随着粒径的增大或颗粒间距离的增大而明显下降,在干法制粒中范德华力的作用非常重要。自由可流动液体
(freely movable liquid)产生的界面张力和毛细管力 以可流动液体作为架桥剂进行制粒时,粒子间产生的结合力由液体的表面张力和毛细管力产生,因此液体的加入量对制粒产生较大影响。液体的加入量可用饱和度S表示:在颗粒的空隙中液体架桥剂所占体积(VL)与总空隙体积(VT)之比,即。液体在粒子间的充填方式由液体的加入量决定,参见图16-25。(A)干粉状态;(a)S≤0.3时,液体在粒子空隙间充填量很少,液体以分散的液桥连接颗粒,空气成连续相,称钟摆状(pendular state);(b)适当增加液体量0.3
(immobile liquid)产生的附着力与粘着力 不可流动液体包括高粘度液体和吸附于颗粒表面的少量液体层(不能流动)。因为高粘度液体的表面张力很小,易涂布于固体表面,靠粘附性产生强大的结合力;吸附于颗粒表面的少量液体层能消除颗粒表面粗糙度,增加颗粒间接触面积或减小颗粒间距,从而增加颗粒间引力等,如图16-26A[11]。淀粉糊制粒产生这种结合力。
粒子间固体桥 粒子间机械镶嵌
(mechanical interlocking bonds)机械镶嵌发生在块状颗粒的搅拌和压缩操作中。结合强度较大(如图16-26C),但一般制粒时所占比例不大。由液体架桥产生的结合力主要影响粒子的成长过程,制粒物的粒度分布等,而固体桥的结合力直接影响颗粒的强度和其它性质,如溶解度。湿法制粒首先是液体将粉粒表面润湿,水是制粒过程中最常用的液体,制粒时含湿量对颗粒的长大非常敏感。研究结果表明,含湿量与粒度分布有关,即含湿量大于60%时粒度分布较均匀,含湿量在45%~55%范围时粒度分布较宽。科学家们为找到最适宜含湿量的计算方法作了不少努力,普遍认为湿式转动制粒时第一粒子间的液体以毛细管状存在。从液体架桥到固体架桥的过渡
在湿法制粒时产生的架桥液经干燥后固化,形成一定强度的颗粒。从液体架桥到固体架桥的过渡主要有以下二种形式: 架桥液中被溶解的物质
(包括可溶性粘合剂和药物)经干燥后析出结晶而形成固体架桥。高粘度架桥剂靠粘性使粉末聚结成粒
干燥时粘合剂溶液中的溶剂蒸发除去,残留的粘合剂固结成为固体架桥。
第二篇:干法制粒
【干货】干法制粒
2016-02-18丁亚丽药物一致性评价
干法制粒是继传统的湿法混合制粒而发展起来的一种新的制粒工艺,它是利用物料本身的结晶水,通过机械挤压直接对原料粉末进行压缩→成型→破碎→造粒的一种制粒工艺。其特点:原料粉末连续地直接成型、造粒,省略了加湿和干燥工序,节约了大量的电能;环保式的制粒工艺,无需添加粘合剂,既节能又无污染。干法制粒机是一种投入少,效率高,节省人力、物力、财力的节能环保型设备。本文通过干法制粒与湿法制粒的比较来阐述干法制粒的节能降耗。干法制粒概述
制药工业涉及对各种活性的药品原料以及一种或多种赋形剂的加工处理,这些原料药大部分是细的粉末,且这些粉末粒径大小不
一、密度不均、流动性不好、易于成层。因此,必须经过一个关键的制粒工序,才能进行下道压片、胶囊填充或原料药以颗粒形式进行直接包装等。而目前的制粒工艺主要有4种:
1.1 传统的湿法制粒
即槽形混合机先混合成湿的“软材”,然后通过摇摆颗粒机制粒。目前,此种方法还在被一些厂家所沿用,但此类设备存在着混合不均匀、清洗不干净、密封不良及漏油等问题。
1.2 新的湿法混合制粒
即高效湿法混合制粒,它是利用混合搅拌浆将粉粒物料与粘合剂搅拌混合成润湿软料,并由高速破碎刀切割制成湿的“软材”颗粒,目前此种方法被普遍应用。其设备与工艺不完善之处:需用大量的粘合剂、清洗产生的污水对环境造成污染。另外,制出的湿颗粒目数分布范围广而不均匀、细粉多,一般多用于压片或胶囊填充。
1.3 一步沸腾制粒
此工艺是将喷雾技术和流化技术综合运用,使传统的混合、制粒、干燥过程在同一密闭容器中一次完成。同样,其设备与工艺需用大量的粘合剂,清洗后需污水处理,且制粒时间偏长。
1.4 干法制粒
此工艺是利用物料本身的结晶水,依靠机械挤压原理,直接对原料粉末进行压缩→成型→粗碎→造粒,且能进行连续造粒的一种节能降耗、操作简单方便的工艺。干法制粒与湿法制粒比较
干法制粒与湿法制粒是各有千秋,各有其应用。但干法制粒同以上3种湿法制粒相比较,具有以下的优势:
(1)干法制粒比起湿法制粒投入设备少、维护成本低、占地面积少,故其生产成本低。
(2)干法制粒比湿法制粒工艺简单,中间环节少,既可控制粉尘飞扬又减少粉料浪费。同时,无废气排放、减少环境污染。
(3)干法制粒比起湿法制粒来,最大的优势是低能耗,这由于干法制粒无需加湿再干燥。
(4)干法制粒无需添加任何粘合剂;有些药物(抗生素类、热敏性强)以及中药提取物比重达不到要求,又不能加粘合剂,必须通过干法制粒工艺来完成。
(5)干法制粒后成品的粒度均匀,堆积密度增加、流动性改善及可控制崩解度,同时便于后序加工、贮存和运输。3 干法制粒的节能降耗
节能是加强用能的管理,采取技术上可行、经济上合理以及环境和社会可以承受的措施,尽可能减少从能源生产到消费各个环节中的损失和浪费,更加有效、合理地利用能源;降耗是减少投入、降低生产中的消耗。本文以生产200 kg/h物料进行制粒为例,对干法制粒与湿法制粒在节能降耗方面作一比较。
3.1 设备投资少
湿法制粒投入设备:(1)SL150型湿法制粒机1台,生产能力50 kg/批,制粒时间10 min/批左右,加上辅助时间一般4批/h,即200 kg/h;(2)FG120型沸腾干燥机1台,生产能力(湿料)120 kg/批,干燥时间15~45 min(约2批/h),折合成干粉为200 kg/h);(3)TA120压缩空气机1台、YK200摇摆颗粒机1台。总设备需投入40万~50万元。
干法制粒投入设备:(1)GL200干法制粒机1台,生产能力200 kg/h;(2)ZL制冷机1台。2台设备可联接为一体,需投入35万~40万元。
具体选用设备的技术参数如表1所示。
表1 选用设备的技术参数表
产品名称
生产能力
总功率/kW
外形尺寸 /mm 600×1 250×2 700
840×420×820 2 200×1 010×1 460 GL200干法制粒机 200 kg/h 18.12 制冷机 5~25 ℃ 0.725 SL150湿法制粒机 FG120沸腾干燥机 TA120压缩空气机
kg/批 120 kg/批 1.5 m3/min 18.5 11 700×2 200×3 130 640×670×1 460 YK200摇摆颗粒机 300 kg/h 2.2 1 160×470×1 230
产品名称 GL200干法制粒机
制冷机 SL150湿法制粒机 FG120沸腾干燥机 TA120压缩空气机 YK200摇摆颗粒机
蒸汽用量 /(kg/h)
/ / / 211 / /
压缩空气量 /(m3/min)
/ / 0.5 0.9 / /
备
423.2 空间与厂房需求小
从表1可知:湿法制粒机所占空间为2 220 mm×1 010 mm×1 460 mm;沸腾干燥机主机空间为1 700 mm×2 200 mm×3 130 mm及辅机、风机及管道空间;压缩空气机所占空间1 640 mm×670 mm×1 420 mm;摇摆颗粒机所占空间为1 160 mm×470 mm×1 230 mm。把以上设备进行综合考虑,整套湿法制粒设备所需厂房为4 m×4 m×4 m、4 m×2.5 m×4 m、4 m×2.5 m×3 m共3间,总面积约36 m2。
干法制粒所占空间为2 600 mm×1 300 mm×2 700 mm(包含制冷机的空间),考虑到生产时辅助空间及安全生产所需保证的空间,干法制粒所需厂房为3.6 m×2.5 m×3.2 m,总面积约9 m2 ,其只占湿法的1/4。
3.3 操作人员少
干法制粒只需2名操作工人,而湿法制粒需4~6名操作工人。相应工资支出费用干法为湿法的1/3。3.4 设备的维修、保养费用低
湿法制粒工艺:加料→加粘合剂混合制粒(包含供压缩空气工序)→整粒→沸腾干燥(包含供蒸汽及压缩空气工序)→出粒等多道工序。
干法制粒工艺:加料后,连续地直接压缩成型、造粒,整个制粒只有1道工序。
由于每个加工设备都需要相应的维修、保养,故干法的维修保养成本低。
3.5 能量消耗少
3.5.1 制粒过程的耗电量对比
干法制粒200 kg的原料需耗电量Q=18.845 kW×1 h=18.845 kW·h;
湿法制粒200 kg的原料需耗电量Q=46.7×1 h=46.7 kW·h。
因此,干法制粒耗电量只占湿法制粒的40.4%。
3.5.2 制粒过程的蒸汽耗量对比
干法制粒过程不需要蒸汽,湿法制粒蒸汽消耗量为211 Kg/h,而蒸汽量与用电度数关系为Q=2.6/3 600×1 000×211=152 kW·h。注:每度电产生的热能约为3 600 kJ,每g20 ℃水蒸发为100 ℃的蒸汽需要热能为:80×4.31J/(kW·h·g)+2 260汽化热=2 600 J=2.6 kJ。
3.5.3 对比结论
二项对比进行综合分析可知:干法制粒耗电量只占湿法制粒的9.5%,大大地节省了能耗。同样,成本支出也大大减少(按1元/ kW·h计算,生产200 kg的物料就可省电费179.9元)。
3.6 无需消耗粘合剂
干法制粒过程是依靠物料自身的结晶水,利用机械挤压、破碎原理直接造粒,不需要添加粘合剂。湿法制粒的原理就是在药物粉末中加入液体粘合剂,靠粘合剂的架桥或粘结作用使粉末聚结在一起而制备成颗粒。粘合剂一般采用水、糊精、淀粉浆、酒精等等,不同的物料,不同用途粘合剂不同,消耗量也有所不同,一般占物料的5%~30%。
3.7 环保性
干法制粒过程中压轮冷却是利用制冷机强制循环冷却,不但冷却效果好而且不消耗水资源。因此,制粒过程中无废气、废水产生。清洗过程工艺简单,清洗方便,制粒部件除压轮外都可拆卸清洗,且生产设备少,故产生的污水也少。
湿法制粒从准备加料到整个制粒过程,应始终通气,故易粉尘飞扬。其中,沸腾干燥是利用离心风机使筒体内形成高压、蒸汽经过滤纯净后,热空气再通过料斗气体分布板形成沸腾床,对物料进行热交换,干燥物料同时也通过捕集装置排出湿气流。因此,干燥过程会产生大量的废气。湿法制粒从加湿到干燥工序多,设备也多,且需添加粘合剂,故清洗时需消耗大量的水,产生大量的污水。结语
综上所述,干法制粒从设备投入到产品输出,无论它的成本,还是能耗都比湿法制粒低许多。随着干法工艺的不断完善,以及能源渐渐紧张,干法制粒工艺将逐步替代湿法制粒流水线的投入。据德国客户反映的信息,目前在固体制剂行业中,国外客户使用干法制粒比例占市场的85%,可见它的优点已被国内外大都多药厂所认可。总之,干法制粒机是投入少,效率高,节省人力、物力、财力的节能环保型新设备。
第三篇:干法制粒技术
干法制粒技术
干法制粒: 它是干粉经挤压、破碎、整粒,制成所需干颗粒的过程。使用的设备就是干法造粒机。关于干法造粒机的讨论,本楼主查遍了百度、谷歌等网站,未找到类似的阐述干法造粒机缺陷及改进的文献。究其原因,可能是大家关注的不多,另外,这种设备的使用用户相对也不多。
一、干法造粒作业的目的以下几点: 1.将物料制成理想的结构和形状; 2.为了准确定量、配剂和管理; 3.减少粉料的飞尘污染;
4.制成不同种类颗粒体系的无偏析混合体; 5.改进产品外观;
6.防止某些固相物产生过程中的结块现象; 7.改善分离状原料的流动特性;
8.增加粉料的体积质量,便于储存和运输;
9.降低有毒和腐蚀性物料处理作业过程中的危险性; 10.控制产品的溶解速度;
11.调整成品的空隙率和比表面积; 12.改善热传递效果和帮助燃烧; 13.适应不同的生物过程。
二、粉体物料颗粒形状性质
在用强压造粒法进行造粒过程中,粉末是在限定的空间中通过施加外力而压紧为密实状态的。产生稳定团聚的力有絮团的桥连力、低粘度液体粘结力、表面力和互聚力。团聚操作的成功与否,一方面取决于施加外力的有效利用和传递,另一方面也取决于颗粒物料的物理性质。颗粒形状是指一个颗粒的轮廓边界或表面上各点所构成的图像。颗粒形状直接影响粉体的其他特性,如流动性、填充性等,亦直接与颗粒在混合、贮存、运输、烧结等单元过程中的行为有关。工程中,根据不同的使用目的,人们对颗粒的形状有不同的要求。例如:高速干压法成型的墙地砖坯粉,要求在模具中填充迅速、排气顺畅,故以球形粒子为宜;混凝土集料则要求强度高和紧密的填充结构,因此碎石的形状希望是正多面体。反过来,颗粒形状因形成的过程不同而不同,例如,简单摆动式颚式破碎机会产生较多的片状产物;喷雾干燥制备的粉料则多为球形颗粒。因此,对各种颗粒形状需要定量加以描述,以示区别。
另一方面,在理论研究和工业实际中,往往将形状不规则的颗粒假定为球形,以方便计算粒径,实验结果也容易再现。正因如此,从而成为理论计算与实际情况出入很大的主要原因之一。所以一般需将有关理论公式中的颗粒尺寸乘以表示外形影响的系数加以修正。
自然界中和工业生产中遇到的颗粒并非理想的规则体,如球形,其形状是千差万别的:球形(spherical)、立方体(cubical)、片状(platy,discs)、柱状(prismoidal)、鳞状(flaky)、粒状(granular)、棒状(rodlike)、针状(needle-like,acicular)、纤维状(fibrous)、树枝状(dendritic)、海绵状(sponge)、块状(blocky)、尖角状(sharp)、圆角状(round)、多孔(porous)、聚集体(aglomelate)、中空(hollow)、粗糙(rough)、光滑(smooth)、毛绒的(fluffy,nappy)。
用数学语言描述的几何形状,除特殊场合需要三种数据以外,一般至少需要两种数据及其组合。通常使用的数据包括三轴方向颗粒大小的代表值,二维图像投影的轮廓曲线,以及表面和体积等立体几何各有关数据。习惯上将颗粒大小的各种无因次组合称为形状指数(shape index),立体几何各变量的关系则定义为形状系数(shape factor)。1 形状指数 1)均齐度(proportion)
颗粒两个外形尺寸的比值——长短度(elongation)N和扁平度(flackiness,flatness)M可以根据三轴径L、B、T之间的比值导出:
长短度N=长径/短径=L/B(≥1)
扁平度M=短径/厚高度=B/T(≥1)
当L=B=T时,即立方体的上述两指数均等于1 2)充满度(space filling factor)
体积充满度Fv,又称容积系数,表示颗粒的外接直方体体积与颗粒体积V之比,即:
Fv=LBT/V(≥1)
Fv的倒数可看作颗粒接近直方体的程度,极限值为1。
面积充满度 Fb,又称外形放大系数,表示颗粒投影面积A与最小外接矩形面积之比,即:
Fb=A/LB(≤1)
3)球形度(degree of sphericity)
球形度或称真球度,表示颗粒接近球体的程度:
ψ0=πDV2/S(≤1)DV=(6V/π)1/3
式中DV表示颗粒的球体积相当经,S为颗粒表面积,V为颗粒的体积。
对于形状不规则的颗粒,当测定其表面积困难时,可采用实用球形度,即:
ψ0′=与颗粒投影面积相等的圆的直径/颗粒投影的最小外接圆的直径(≤1)
4)圆形度(degree of circularity)圆形度又称轮廓比,表示颗粒的投影与圆接近的程度: ψc=πDH/L DH=(4A/π)1/2 L表示颗粒投影的周长。5)圆角度(roundness)
表示颗粒棱角磨损的程度,其定义为:
圆角度=∑ri/NR(≤1)
式中 ri——颗粒轮廓上的曲率半径;R——最大内接圆半径;N——角数。
形状系数
1)表面积形状系数
Фs=颗粒的表面积/(平均粒径)2=S/dp2(>1)2)体积形状系数
Фv=颗粒的体积/(平均粒径)3=V/dp3(≤1)3)比表面积形状系数
Φ=表面积形状系数/体积形状系数=Фs/Фv(>1)
对于球形颗粒,上述三个形状系数分别为:
Фs=πd02/d02=π
Фv =πdo3/6d03=π/6
Φ=Фs/Фv =6π/π=6
必须指出的是,由于颗粒的粒径表示方法很多,因此采用不同的粒径表示方法可以定义出不同的形状系数。另外,粒径值又与粒径的测量方法有关,因此形状系数的数值亦随测量方法不同而异。所以,在使用形状系数时,一定要注意颗粒径的具体表达形式。4)粗糙度系数
前述的形状系数是个宏观量。如果微观地考察颗粒,会发现粒子表面往往是高低不平的,有许多微小裂纹和孔洞。其表面的粗糙程度用粗糙度系数R来表示: R = 粒子微观的实际表面积/表观视为光滑粒子的宏观表面积(>1)
颗粒的粗糙程度直接关系到颗粒间和颗粒与固体壁面间的摩擦、粘附、吸附性、吸水性以及孔隙率等颗粒性质,也是影响造粒操作设备工件被磨损程度的主要因素之一。因此,粗糙度系数是一个不容忽视的参数。
目前干法制粒机进口的主要有日本友谊公司、德国亚历山大、美国 Fitzpatrick 公司等。
干法制粒或直接压片,应选择粘合性和可压性较好的辅料。这样有利于生产操作和成品的质量稳定。乳糖有较好的可压性,制得片剂外观也好;蔗糖有较好的可压性,但可能会吸潮;MCC的粘合性较好;可压性淀粉,可压性好,流动性也好,可作为必选;甘露醇的可压性和流动性都一般;糊精的粘合性也不错。
建议用可压性淀粉,乳糖,糊精,MCC,按照一定的比例组方,当然也要考虑主药的性质,估计会有较满意的结果。
干法制粒及粉末直接压片用辅料应有良好的流动性和压缩成型性,即干燥粘合作用。
(1)微晶纤维素 也用于湿法制粒的辅料。其喷雾干燥法制成的产品的流动性较好,药品的容纳量较大(即加入较多药品不致对其流动性及压缩成型性产生严重不良影响)。
(2)预胶化淀粉 部分预胶化的淀粉称为可压性淀粉。本品是由淀粉加工制成,其流动性好,休止角<40°,压缩成型性好,兼有崩解作用,压成之药片崩解快,药物的释放性能好;本品有自身润滑作用,推片力小。用本品压片时,应含有适量的水分,否则片剂的硬度不足;为改善片剂的外观而加入润滑剂时,如选用硬脂酸镁,应尽量减少用量,否则影响片剂的硬度,硬脂酸对片剂的硬度影响较小。
单用本品为稀释剂压成的药片的硬度虽较好,但片剂的脆碎度不太好,如与微晶纤维素配合应用,则效果更好。
(3)乳糖(喷雾干燥品等)、磷酸氢钙、硫酸钙等均可用干法制粒及粉末直接压片。
(4)复合辅料 国外有多种直接压片用的辅料,医学`教育网搜集整理多数主要由糖类组成,例如前述的“Ludipress”即由乳糖、PVP、交联PVP组成,并成细颗粒状;再如“Di-Pac”主要由蔗糖制成:“Soludexl5”由麦芽糖糊精等组成:“Emdex”中含有90%~92%的葡萄糖及2.25%的麦芽糖。上等复合辅料的休止角均在30°左右或小于30°,流动性很好,压缩成型性好,片剂的外观、崩解及药物溶出均较好,可以大幅度地简化片剂生产过程。迄今我国尚无国产优质复合辅料上市,急待填补空白。
第四篇:干法制粒技术
干法制粒技术
干法制粒: 它是干粉经挤压、破碎、整粒,制成所需干颗粒的过程。使用的设备就是干法造粒机。关于干法造粒机的讨论,本楼主查遍了百度、谷歌等网站,未找到类似的阐述干法造粒机缺陷及改进的文献。究其原因,可能是大家关注的不多,另外,这种设备的使用用户相对也不多。
一、干法造粒作业的目的以下几点: 1.将物料制成理想的结构和形状; 2.为了准确定量、配剂和管理; 3.减少粉料的飞尘污染;
4.制成不同种类颗粒体系的无偏析混合体; 5.改进产品外观;
6.防止某些固相物产生过程中的结块现象; 7.改善分离状原料的流动特性;
8.增加粉料的体积质量,便于储存和运输; 9.降低有毒和腐蚀性物料处理作业过程中的危险性; 10.控制产品的溶解速度; 11.调整成品的空隙率和比表面积; 12.改善热传递效果和帮助燃烧; 13.适应不同的生物过程。
二、粉体物料颗粒形状性质
在用强压造粒法进行造粒过程中,粉末是在限定的空间中通过施加外力而压紧为密实状态的。产生稳定团聚的力有絮团的桥连力、低粘度液体粘结力、表面力和互聚力。团聚操作的成功与否,一方面取决于施加外力的有效利用和传递,另一方面也取决于颗粒物料的物理性质。
颗粒形状是指一个颗粒的轮廓边界或表面上各点所构成的图像。颗粒形状直接影响粉体的其他特性,如流动性、填充性等,亦直接与颗粒在混合、贮存、运输、烧结等单元过程中的行为有关。工程中,根据不同的使用目的,人们对颗粒的形状有不同的要求。例如:高速干压法成型的墙地砖坯粉,要求在模具中填充迅速、排气顺畅,故以球形粒子为宜;混凝土集料则要求强度高和紧密的填充结构,因此碎石的形状希望是正多面体。反过来,颗粒形状因形成的过程不同而不同,例如,简单摆动式颚式破碎机会产生较多的片状产物;喷雾干燥制备的粉料则多为球形颗粒。因此,对各种颗粒形状需要定量加以描述,以示区别。
另一方面,在理论研究和工业实际中,往往将形状不规则的颗粒假定为球形,以方便计算粒径,实验结果也容易再现。正因如此,从而成为理论计算与实际情况出入很大的主要原因之一。所以一般需将有关理论公式中的颗粒尺寸乘以表示外形影响的系数加以修正。
自然界中和工业生产中遇到的颗粒并非理想的规则体,如球形,其形状是千差万别的:球形(spherical)、立方体(cubical)、片状(platy,discs)、柱状(prismoidal)、鳞状(flaky)、粒状(granular)、棒状(rodlike)、针状(needle-like,acicular)、纤维状(fibrous)、树枝状(dendritic)、海绵状(sponge)、块状(blocky)、尖角状(sharp)、圆角状(round)、多孔(porous)、聚集体(aglomelate)、中空(hollow)、粗糙(rough)、光滑(smooth)、毛绒的(fluffy,nappy)。
用数学语言描述的几何形状,除特殊场合需要三种数据以外,一般至少需要两种数据及其组合。通常使用的数据包括三轴方向颗粒大小的代表值,二维图像投影的轮廓曲线,以及表面和体积等立体几何各有关数据。习惯上将颗粒大小的各种无因次组合称为形状指数(shape index),立体几何各变量的关系则定义为形状系数(shape factor)。
形状指数
1)均齐度(proportion)
颗粒两个外形尺寸的比值——长短度(elongation)N和扁平度(flackiness,flatness)M可以根据三轴径L、B、T之间的比值导出:
长短度N=长径/短径=L/B(≥1)
扁平度M=短径/厚高度=B/T(≥1)
当L=B=T时,即立方体的上述两指数均等于1
2)充满度(space filling factor)
体积充满度Fv,又称容积系数,表示颗粒的外接直方体体积与颗粒体积V之比,即:
Fv=LBT/V(≥1)
Fv的倒数可看作颗粒接近直方体的程度,极限值为1。
面积充满度 Fb,又称外形放大系数,表示颗粒投影面积A与最小外接矩形面积之比,即:
Fb=A/LB(≤1)
3)球形度(degree of sphericity)
球形度或称真球度,表示颗粒接近球体的程度:
ψ0=πDV2/S(≤1)
DV=(6V/π)1/3
式中DV表示颗粒的球体积相当经,S为颗粒表面积,V为颗粒的体积。
对于形状不规则的颗粒,当测定其表面积困难时,可采用实用球形度,即:
ψ0′=与颗粒投影面积相等的圆的直径/颗粒投影的最小外接圆的直径(≤1)
4)圆形度(degree of circularity)
圆形度又称轮廓比,表示颗粒的投影与圆接近的程度:
ψc=πDH/L
DH=(4A/π)1/2 L表示颗粒投影的周长。
5)圆角度(roundness)
表示颗粒棱角磨损的程度,其定义为:
圆角度=∑ri/NR(≤1)
式中 ri——颗粒轮廓上的曲率半径;R——最大内接圆半径;N——角数。
形状系数
1)表面积形状系数
Фs=颗粒的表面积/(平均粒径)2=S/dp2(>1)
2)体积形状系数
Фv=颗粒的体积/(平均粒径)3=V/dp3(≤1)
3)比表面积形状系数
Φ=表面积形状系数/体积形状系数=Фs/Фv(>1)
对于球形颗粒,上述三个形状系数分别为:
Фs=πd02/d02=π
Фv =πdo3/6d03=π/6
Φ=Фs/Фv =6π/π=6
必须指出的是,由于颗粒的粒径表示方法很多,因此采用不同的粒径表示方法可以定义出不同的形状系数。另外,粒径值又与粒径的测量方法有关,因此形状系数的数值亦随测量方法不同而异。所以,在使用形状系数时,一定要注意颗粒径的具体表达形式。
4)粗糙度系数
前述的形状系数是个宏观量。如果微观地考察颗粒,会发现粒子表面往往是高低不平的,有许多微小裂纹和孔洞。其表面的粗糙程度用粗糙度系数R来表示:
R = 粒子微观的实际表面积/表观视为光滑粒子的宏观表面积(>1)
颗粒的粗糙程度直接关系到颗粒间和颗粒与固体壁面间的摩擦、粘附、吸附性、吸水性以及孔隙率等颗粒性质,也是影响造粒操作设备工件被磨损程度的主要因素之一。因此,粗糙度系数是一个不容忽视的参数。
目前干法制粒机进口的主要有日本友谊公司、德国亚历山大、美国 Fitzpatrick 公司等。
干法制粒或直接压片,应选择粘合性和可压性较好的辅料。这样有利于生产操作和成品的质量稳定。乳糖有较好的可压性,制得片剂外观也好;蔗糖有较好的可压性,但可能会吸潮;MCC的粘合性较好;可压性淀粉,可压性好,流动性也好,可作为必选;甘露醇的可压性和流动性都一般;糊精的粘合性也不错。
建议用可压性淀粉,乳糖,糊精,MCC,按照一定的比例组方,当然也要考虑主药的性质,估计会有较满意的结果。
干法制粒及粉末直接压片用辅料应有良好的流动性和压缩成型性,即干燥粘合作用。
(1)微晶纤维素 也用于湿法制粒的辅料。其喷雾干燥法制成的产品的流动性较好,药品的容纳量较大(即加入较多药品不致对其流动性及压缩成型性产生严重不良影响)。(2)预胶化淀粉 部分预胶化的淀粉称为可压性淀粉。本品是由淀粉加工制成,其流动性好,休止角<40°,压缩成型性好,兼有崩解作用,压成之药片崩解快,药物的释放性能好;本品有自身润滑作用,推片力小。用本品压片时,应含有适量的水分,否则片剂的硬度不足;为改善片剂的外观而加入润滑剂时,如选用硬脂酸镁,应尽量减少用量,否则影响片剂的硬度,硬脂酸对片剂的硬度影响较小。单用本品为稀释剂压成的药片的硬度虽较好,但片剂的脆碎度不太好,如与微晶纤维素配合应用,则效果更好。
(3)乳糖(喷雾干燥品等)、磷酸氢钙、硫酸钙等均可用干法制粒及粉末直接压片。(4)复合辅料 国外有多种直接压片用的辅料,医学`教育网搜集整理多数主要由糖类组成,例如前述的“Ludipress”即由乳糖、PVP、交联PVP组成,并成细颗粒状;再如“Di-Pac”主要由蔗糖制成:“Soludexl5”由麦芽糖糊精等组成:“Emdex”中含有90%~92%的葡萄糖及2.25%的麦芽糖。上等复合辅料的休止角均在30°左右或小于30°,流动性很好,压缩成型性好,片剂的外观、崩解及药物溶出均较好,可以大幅度地简化片剂生产过程。迄今我国尚无国产优质复合辅料上市,急待填补空白。
干法制粒需要注意的几个方面
干法制粒的优点:干法制粒一般情况下不需要加入添加剂,直接可以将干粉制成颗粒,增加堆积密度,改善外观和流动性及可控制崩解度,便于贮存和运输,较湿法制粒节省能源,改善湿法制粒的多道工序,减少污染。另对于某些湿热条件下不稳定的药物制粒效果更为明显。
干法制粒的适用范围:一般含结晶水的物料、中药提取物,以及含一定水分(3%-8%)左右的物料均可用干法制粒,除少数特殊物料如面粉、炭黑、石墨之类的物料很难制粒,还有纯中药粉碎的没经过特殊处理的也很难造粒,可以考虑加入适当辅料;粉料的细度在80-300目左右较佳,对较粗或较细粉对干粉制粒均有较大影响:对较粗的粉,制粒的颗粒不均匀,对较细的粉末,在送料和压片时存在一定的难度,会直接影响颗粒的成品率。干法制粒机的成品率:干法制粒机的原理就是将干粉直接压制成薄片再进行粉碎和整粒,所以干法制粒中成品率高与低,首先与物料配方有着直接的关系,可压性好的物料成品率要高点;另与所压的片的强度及制粒的刀具结构及粉碎速度快慢有很大的关系,压片的强度与压力的大小和送料、压片速度有关,送料过程也是一个预压过程和脱气过程,如果尽可能的将物料中空气排尽,并且让物料有一个预停留区,这样压出的片就不会出现断断续续,这样在其他情况不变的情况下,成品率相对也会提高;制粒的刀具结构会直接影响颗粒的成品率,如果所压的片在制粒箱体内频率粉碎,这样也会降低成品率,本公司参考国外制粒方式采用滚压式,使物料很快从筛网中滚压出去,而提高成品率,另粉碎速度越慢颗粒成品率越高,在不堵网孔的情况下尽可能慢点。国内标准只要成品率达30%干法制粒机已符合要求。(以淀粉为标准20-60目)制粒过程中物料变色问题:一般物料通过干法制粒后颜色会和原来粉料有差异,因为粉的表面积比颗粒的表面积大,所以对光线的反射也有所不同,另经过压制后的颗粒较原粉的堆积密度增加,所以颗粒的颜色也会加深,一般情况下作用的压轮上的压力越大颜色会变得越深,作用在压轮上的压力不仅仅是油泵的压力,还与送料速度和压片速度有关,在压力和压片速度一定的情况下,送料速度越快,作用在压轮间的压力越大,反之越小,同样在压力和送料速度一定的情况压片速度越慢,作用在压轮间的压力越大,反之越小。故用户在使用干法制粒机时要根据物料的实际情况选择一个最佳的压力和速度,这样在保证产品性能基础上提高产品的一次成品率。
干法制粒参数的调整问题干法制粒机为适用于多种物料,所以干法制粒机的压力、送料、压片、破碎、整粒速度均可调整,这样对操作干法制粒机的要求就会高一点,一般出厂前生产厂家会提供一个相对参数,但在实际使用时要根据物料特性以及所要求的颗粒结实程度、颗粒大小进行合理调整,一般对于流动性较好的物料,送料速度可以较慢一点,对易成形物料压力可以小一点,对于所做颗粒较大的情况,破碎整粒速度可以慢一点,只要不堵筛网网孔即可,在调整时,可以将其他参数不变的情况下,适当改变一个参数进行调节。总之调整参数,只要掌握每个参数所表示的意义即可,在实际操作时根据具体情况进行调节,也是靠不断试验总结经验,达到最佳效果。
干法制粒颗粒的圆整度:对于干法制粒的颗粒的圆整度相对于湿法制粒要稍差,但干法制粒的圆整度与片的厚薄以及制粒刀具的形式有一定关系,(除物料本身原因外)可以通过改变片的厚度来提高颗粒的圆整度,一般可以根据颗粒大小来适当调节所压的片的厚薄,这样经整粒后颗粒的圆整度要好一点,另改进整粒刀的结构,也能提高颗粒的圆整度。总之,希望客户在选择干法制粒机之前,最好能给我们寄点物料,先做一下试验,看所做的颗粒是否能满足客户的需要,因为每一种料,每一个配方都会有不同的结果,这样让客户能选择到更合适的设备。
第五篇:浅析仿制药一致性评价片剂湿法制粒工艺的开发
浅析仿制药一致性评价片剂湿法制粒工艺的开发
仿制药质量和疗效一致性评价工作正在紧张地开展,很多人都关心产品能否顺利通过BE试验,来证明自己的产品质量。然而产品的质量,包括产品的安全性、有效性和质量可控性不仅仅通过某一批产品的BE通过证明,还是产品质量综合理解程度,产品具有持续稳定的安全性、有效性和质量可控性的体现。工艺开发是建立产品质量理解,产品质量持续稳定可控的保证手段一致。产品的工艺开发前,我们首先需要了解工艺开发的目标,并且通过工艺开发,了解各工艺因素(物料属性和工艺参数)如何直接或间接影响各项制剂质量属性变化,以及影响的程度大小,并根据研究结果建立各工艺因素,特别是关键工艺因素的控制策略,为后续产品生产和持续的质量控制提供重要的基础。
一、制剂工艺开发的基本考虑工艺因素、制剂质量属性、质量属性目标要求是工艺开发中的三个重要内容。这三项内容起初通常根据我们的经验和知识获得,并进行充分地研究评估。
1、工艺因素:包括原辅料的质量属性、工艺参数、中间体质量属性。工艺因素相互影响,并通过影响制剂最终的各项指标,影响到产品的安全性、有效性和质量稳定性,我们要选择什么样的工艺因素进行工艺研究很重要。
2、制剂质量属性:不同的剂型所需要考虑的质量属性经常差异较大。产品的质量属性,特别是关键质量属性与产品的安全性和有效性直接相关,所谓关键质量属性基于当该质量属性偏离目标要求时,可能对患者用药的安全性和有效性带来不利影响的严重程度。因此工艺开发时我们需要选定合适的质量属性,特别是关键质量属性。
3、质量属性目标要求:质量属性应该拟定什么样的目标要求,来获得产品的安全性、有效性和质量稳定性,是非常重要的。对于普通片剂而言,常见的质量属性有片剂的含量、含量均匀度、有关物质、溶出度、片剂硬度、脆碎度等。这些药学质量属性中,特别要提到的是溶出度,因为在没有充分的体内研究数据的情况下,如何拟定合适的溶出度条件及其对应的溶出度目标要求通常较难界定。因此在这种情况下,我们常见的做法是首先考察不同溶出条件下参比制剂的溶出特征和溶出曲线,并选定1-2个溶出条件,用在此条件下和参比制剂溶出曲线和崩解特征的相似程度作为工艺开发时该项质量属性的目标要求。因此选定的溶出条件的正确与否对工艺开发和产品质量的可靠度必然影响很大。在没有体内预BE数据的情况下,我们通常选择具有适当溶出速度,对处方工艺的关键变化有适当区分力的溶出条件。除了有适当的区分力,此溶出条件还要综合考虑药物的理化性质、药物的胃肠道吸收特点等,据此来增加相关的溶出条件,提高溶出条件的可靠度。比如:某弱酸性药物,主要吸收部位是胃和小肠,酸性介质中的溶出度很低,我们选择溶出介质的考虑不仅是选择合适pH值的介质,也要考虑选择酸性介质中合适的增溶剂种类和浓度。
二、普通片剂高剪切湿法制粒工艺的开发普通片剂高剪切湿法制粒工艺通常包含如下工艺步骤:原辅料前处理、干粉混合、湿法制粒、干燥、整粒、总混、压片。工艺开发时,脑子里首先需有一个清晰的工艺开发流程,有一个以终为始的工艺开发思路。首先应考虑到最终片子的各项质量属性,如片剂的含量、含量均匀度、有关物质、溶出度、片重差异、硬度、脆碎度等。然后结合经验和知识思考上述工艺步骤中的哪些步骤、以及该步骤中的哪些工艺因素(物料属性和工艺参数)可能对片剂的哪些质量属性有较大影响。进一步,每个工艺步骤的工艺因素如何通过对中间体的质量属性的影响,一步步过渡到对最终制剂质量属性的影响,这样才能针对性地进行工艺开发。通过开发了解每一个步骤的工艺因素如何影响到最终制剂的质量属性,或通过影响中间体质量属性而过渡到影响最终制剂的质量属性。通过研究对整个工艺有充分地了解,并建立对产品的质量控制策略(原辅料控制策略、工艺参数控制策略、中间体控制策略、成品控制策略等)。具体研究时,可以将工艺倒过来考虑,因为最终制剂的质量属性往往受到前一个工艺步骤的物料属性和工艺参数影响,而前一个步骤的物料属性又往往受到其前面步骤的物料属性和工艺参数的影响。例如:对于湿法制粒的片剂而言,压片是片剂最终获得的最后一步,那么该步骤中压片的工艺参数和颗粒的质量属性是决定片剂各质量属性是否符合拟定目标要求的关键,而颗粒的质量属性又往往受到前面步骤的物料属性和工艺参数的影响,因此工艺开发过程中首先需特别重点关注和研究颗粒的质量属性(如颗粒的粒度、密度、流动性、水分等等)。由于颗粒的质量属性不能自行设定,受到前面几个工艺步骤的影响,因此工艺开发过程中需重点关注和研究各步骤工艺因素对颗粒质量属性的影响,以及进一步过渡到对最终制剂质量属性的影响,建立颗粒质量属性的控制策略。工艺开发时,选定考察的工艺因素和质量属性思路如下:第一步:分析制剂关键质量属性;第二步:对于每一个工艺步骤,分析影响到上述制剂关键质量属性的中间体关键质量属性;第三步:分析可能影响上述工艺步骤中中间体关键质量属性,进而影响到制剂关键质量属性的工艺因素,并进行考察。此外,有些工艺步骤及其工艺因素,不易通过对中间体质量属性(如颗粒的质量属性)的影响,而评估其对最终制剂的影响,如总混润滑步骤,难以通过对颗粒的常规质量属性的影响,评估其对制剂质量属性的影响。因此研究时还需要选择最终成品的质量属性,研究该步骤工艺因素对最终成品质量属性的影响。如润滑剂润滑强度对片剂硬度、溶出度的影响等。因此除了结合每个工艺步骤的工艺因素通过对中间体关键质量属性的影响而影响到制剂关键质量属性外,我们还需要通过直接对制剂质量属性影响的评估,来研究每个工艺步骤中的工艺因素的影响。以下列表说明片剂高剪切湿法制粒工艺开发时工艺因素和质量属性选择的考虑。工艺步骤主要关注的工艺因素(工艺参数和物料属性)主要考察的质量属性选择理由干粉混合1、原辅料粒径
2、混合速度和时间
3、混合物的填充体积
4、混合顺序
1、混合均匀度
2、混粉含量混粉的含量和混合均匀度,可能影响到制剂的含量和含量均匀度。选择
1、原辅料粒径、2、混合速度和时间、3、填充体积、4、混合顺序等可能影响到混合均匀度和混粉含量的工艺因素湿法制粒
1、搅拌速度
2、切刀速度
3、制粒时间
4、润湿剂量
5、润湿剂加入方式
6、湿整粒筛目
1、颗粒的粒度
2、颗粒的流动性
3、颗粒的堆密度
4、不同压片压力下的片剂的硬度、脆碎度。
5、片重差异
6、片剂的含量、含量均匀度
7、片剂的溶出度颗粒的质量属性直接影响到片剂的质量属性。本步骤中所列的湿法制粒相关工艺参数可能对颗粒的质量属性有很大的影响,并因此影响到片剂的质量属性。通过这些工艺研究,了解颗粒质量属性是否以及如何影响片剂质量属性,以及湿法制粒的工艺因素如何影响颗粒质量属性干燥整粒
1、干燥温度
2、干燥时间
3、鼓风强度
1、颗粒水分
2、有关物质
3、颗粒的粒度、流动性、堆密度
4、不同压片压力下的片剂的硬度、脆碎度。
5、片重差异
6、片剂的含量、含量均匀度
7、片剂的溶出度同前一步骤,颗粒的质量属性(粒度、堆密度、流动性、水分、有关物质)直接影响到片剂的质量属性。本步骤所列干燥整粒的工艺因素可能影响到这些颗粒的质量属性,进而影响到片剂的质量属性,通过研究,了解干燥整粒的工艺因素对颗粒的影响,以及进一步过渡到对片剂的影响。总混润滑
1、总混时间
2、润滑强度
1、片剂硬度、脆碎度
2、片剂溶出及溶出均一性颗粒润滑过度经常会导致片剂的可压性变化,影响硬度和脆碎。另外可能对溶出度造成一定的影响,因此考察本步骤中所列工艺因素对片剂相关质量属性的影响。压片
1、压片压力
2、压片速度
3、颗粒质量属性
1、片剂外观
2、片重差异
3、硬度、脆碎度
4、溶出度在若干批次片剂的工艺过程中,压片工艺时,自然需要考察该步骤重点工艺因素,包括颗粒质量属性、压力和压片速度等对片剂的质量属性影响。所选择的片的质量属性均是可能受到该步骤工艺因素变化影响较大或可直接反应其他关键质量属性是否符合目标要求的指标,如片重差异等。