第一篇:石油烃类VOCs污染防治技术
石油烃类VOCs污染防治技术
关键词:烃类VOCs污染 原油泄露治理 土壤整治 油罐清洗治理 烃类污染治理
中国经济高速发展,环境却遭受严重破坏,惨痛的现实教训触动着国人的神经,也触动着国家政策的不断改变。资料统计,目前每年有800多万吨石油进入世界环境。原油污染土壤,损害植物根部,阻碍根的呼吸与吸收,导致植物死亡。芳香烃类物质对人及动物的毒性较大,如果经较长时间较大浓度接触,会引起恶心、头疼、眩晕等症状。此外,石油中的多环芳烃类物质具有强烈的三致作用。泄漏的原油等烃类物质如遇明火,会造成火灾事故;如果泄漏的烃类进入受限空间内,VOC达到爆炸下限,极易发生爆炸,甚至造成群死群伤的灾难性事故发生。技术介绍:
百索福烃类污染防治产品是一种水基的专利技术产品,其中混合了非离子和阴离子表面活性剂及其它特制成分,具有缓和烃类物质的独特优势。当作为一种2%-8%的溶液使用时,该产品可以用于原油和烃类等各种范围的物质,可降低挥发性、增加可溶性、加速生物降解。应用范围:
抑制挥发性有机蒸汽抑制 污染土壤的现场/异地整治 污染土壤的生物修复 危险溢出物的围堵和清理 污泥和油脂溶解
油/燃料储罐的清洗&脱气 设备 & 坚硬表面去污 油井石蜡控制
产品特性:
百索福烃类污染防治产品是一种能降低液体表面张力的化合物,使液体更加容易扩散或“湿润”,降低两种液体间(像油和水)或一种液体和一种固体间的界面张力。表面活性剂的分子结构由亲水性“头”和亲油性“尾”组成。亲水性“头”迁移到水表面;亲油性的“尾”可以延伸到空气,或是如果水混合了油,成油相。表面活性剂分子在表面的队列和集合改变了水在水/空气、水/油或者水/固体界面的表面性质。在适当条件下,表面活性剂分子形成胶团-球形结构,完全密封油滴使其在水溶液中被乳化。
产品优势: 降低挥发性
使溢出燃油不燃烧 减少油罐清洗的爆炸下限 抑制修整现场的VOCs
增加可溶性
使碳氢化合物从土壤中提取出 去除坚硬表面的除油污和油脂 控制油井&天然气井的石蜡积聚
加速生物降解
使碳氢化合物更容易进行自然生物降解
第二篇:VOCs 污染防治管理制度
VOCs 污染防治管理制度
一、目的和适用范围
为规范公司内部环境管理,控制公司 VOCs 挥发,使公司环境监管制度化、常态化,从根本提升公司环保管理水平,降低公司环境风险,特制定本制度。
二、管理内容与要求
公司环境安全生产办为主要管理部门,公司采购仓储、车间、污水、废气处理站各配备兼职环保专员 1名,各部门主管为本部门环保负责人。
1.环保巡检。为掌握公司 VOCs 现状,及时排查环保隐患,使公司环保巡 查形成制度化、常态化,查漏补缺,确保公司生产现场无明显异味。
1.1环境安全生产办负责编制巡检计划及检查台账、整改单据,并组织实施。对公司废气气味控制、隐患检查、整改情况进行跟踪与考核。
1.2环境安全生产办下属废气处理工日常检查要求每天一次, 检查结果填写 “检查保养记录表” , 对发现的问题要求当事部门规定时间内整改完毕, 到期不能完成整改的须上报情况说明, 环境安全生产办将对各部门整改情况进行跟踪。
1.3环境安全生产办定期组织各部门主管,联同安全主任进行环保、安全联合检查,对所查出问题进行统计,并进行通报,限期整改,整改完成后,应及时通知环境安全生产办进行验收。1.4自查中不能现场解决的隐患要逐项进行分析研究。定措施、定进度、定 人员,定责任、定标准,落实整改要求。资金需要量较大的项目列入大修计划, 上报公司领导。
1.5内容包括:污染防治设施和设备运行情况、排污口情况、生产工作中污染事故隐患、生产现场设备、管道的跑、冒、滴、漏现象。
2.污染治理设施管理。为加强公司 VOCs 治理设施的管理,提高污染治理设 施的运行能力和设备利用率,使公司达标排放运行、减少 VOCs 排放的目标得到 有效保障。
2.1VOCs 治理设施包括公司车间排放收集管道、活性炭吸附包等,环境安全生产办负责公司污染防治设施的管理工作, 对各部门污染治理设施运行状况进行检查, 提出整 改要求,并监督落实。
2.3污水站负责公司污染治理设施的运营维护,保证正常运行;负 责设施的日常管理。
2.3各部门的环保治理设施必须与生产设施同步运行,设备划分到人,经常 性地对设备进行维护保养。
3.公司 VOCs 控制。要求公司各部门高度重视环保问题,从产废源头摸排、减少污染物的排放,达到控制 VOCs 排放的目的。
3.1环境安全生产办负责建立公司环保各类迎检数据,保存好涉及大气防治的相关资料、通知等。及时发布上级环保信息, 及时了解上级政策和检查情况, 发布相关消息, 规避检查所带来的风险。
3.2生产车间、污水站要时刻关注厂区气味大小情况,遇气味较大 时,应及时排查气味来源,采取必要整改措施,降低气味浓度。3.3VOC废气塔中的活性炭要根据要求进行更换,保证 VOCs 治理措施符合上级环保部门要求及各类监测指标。
3.4各部门要对本部门跑冒滴漏及密封不严、管道损坏现象进行彻底摸查, 并纳入日常巡检中, 对能够通过维修、更换的要尽快整改, 对不能独立完成整改 的及时上报环保部,制定整改方案进行整改,从源头有效的控制 VOCs 的挥发。
4.考核细则。针对以上管理要求, 环境安全生产办将检查各部门执行情况, 并纳入考 核范围内,具体考核办法如下: 4.1发生以下情况,环保部将视情节严重程度,进行通报批评: 4.1.1各部门环保员巡检不及时,无巡检记录。4.1.2各部门迎检记录填写不及时、不规范。
4.1.3对污染防治设施保养不及时,没有纳入保养记录。4.1.4限期整改未完成,且未说明原因。
4.1.5对环保部所下达的通知及要求没有落实或执行不到位 4.2发生以下情况, 环境安全生产办将视情节严重程度,进行经济处罚
4.2.1环境安全生产办不知情情况下,擅自停用污染防治设施的。4.2.2上级环保部门检查,迎检资料不齐全,现场发现异常。4.2.3对现场环境异常,监测数据异常没有及时上报。
第三篇:挥发性有机物(VOCs)污染防治技术政策
《挥发性有机物(VOCs)污染防治技术政策》(征求意见稿)编制说明
《挥发性有机物(VOCs)污染防治技术政策》编制组 2012年8月
项目名称:挥发性有机物(VOCs)污染防治技术政策 项目统一编号:51.1.1 承担单位:中国环境保护产业协会、解放军防化研究院(中国人民解放军63971部队)、中国科学院生态环境研究中心
主要起草人:燕中凯、栾志强、刘媛、王喜芹、郝郑平、王海林等 项目管理负责单位及负责人:清华大学环境学院 高志永 环保部科技标准司项目管理人:刘睿倩
目 录 项目背景..................................................................14 1.1 任务由来............................................................................................................14 1.2 工作过程..............................................................................................................14 2 挥发性有机物(VOCs)污染与控制现状...........................................................15 2.1 VOCs污染排放源与排放特点......................................................................15 2.2 VOCs污染末端治理技术现状..................................................................................20 2.3 国内外VOCs污染防治相关政策法规与标准......................................................26 3 技术政策编制必要性............................................................................................31 4 源头控制与典型行业清洁生产技术....................................................................32 4.1 石油炼制和石油化工行业......................................................................................32 4.2储运销过程..................................................................................................................32 4.3 含VOCs产品的生产....................................................................................................33 4.4 含VOCs产品使用过程的清洁生产工艺.............................................................35 5 典型行业排污与适用的末端治理技术...............................................................37 5.1 油气回收.................................................................................................................37 5.2包装印刷.........................................................................................................37 5.3 汽车制造...............................................................................................................38 5.4 光电产品制造.....................................................................................................39 5.5 家具制造.................................................................................................................42 5.6 装备涂装..................................................................................................................43 6 本技术政策的制定原则、依据和技术路线........................................................44 6.1 制定原则.......................................................................................................44 6.2 编制依据........................................................................................................44 6.3 技术路线.............................................................................................................44 7 主要技术内容的说明.............................................................................................45 7.1 总则..........................................................................................................45 7.2 源头控制.............................................................................................................47 7.3 末端治理与综合利用.........................................................................................50 7.4 鼓励研发的新技术新材料.........................................................................................52 项目背景 1.1 任务由来
2011年,环境保护部在《关于开展2011国家环境技术管理项目工作的通知》(环办函〔2011〕565号)中下达了《挥发性有机物(VOCs)污染防治技术政策》的编制任务,项目统一编号2011-8,承担单位有中国环境保护产业协会、中国人民解放军防化研究院和中国科学院生态环境研究中心。
1.2 工作过程
(1)2011年3月成立了《挥发性有机物(VOCs)污染防治技术政策》编制组。编制组在《吸附法工业有机废气工程技术规范》和《催化燃烧法工业有机废气工程技术规范》编制工作基础上,进一步收集了国家相关产业政策和行业发展规划、国内外有关VOCs综合排放标准和行业排放标准、VOCs污染控制技术的发展和现状等资料,并开展了大量调研工作。
(2)现场考察
编制组深入北京、辽宁、长三角和珠三角等地的企业进行实地调研,并收集了相关数据,对典型污染行业的适用技术进行了归纳总结。
(3)技术政策编制培训
为了贯彻落实《国家环保技术管理体系建设规划》,规范污染防治技术政策的制修订工作,确保技术政策科学严谨,并具有可操作性,以推动我国污染防治技术的发展,环保部科技标准司制定了《污染防治技术政策编制要求》。为了指导和帮助技术政策编制人员更好地理解和把握该要求精神,科技标准司于2011年7月15日在北京召开技术政策编制培训会。编制组指派主要编制人员参加了培训,掌握了技术政策框架及其编制的指导思想。(4)研讨会
在上述工作基础上,综合考虑VOCs污染预防的复杂性,技术政策编制需要解决的涵盖范围和编制深度等重大问题,2012年2月组织召开管理部门、编制组、相关污染治理企业、污染行业工业协会、各方专家等共同参与的讨论会,听取管理部门的工作要求以及专家和企业代表的编制建议,对技术政策的范围和深度进行深入讨论。明确了本技术政策的适用范围(主要针对固定源,包括生活源和工业源,重点在工业源),加强对源头控制和末端治理的技术路线的描述(有选择性对重点行业进行说明),并考虑与现有法律法规、政策标准体系的衔接。会后课题组根据会议精神确定《挥发性有机物(VOCs)污染防治技术政策》体系框架,增加了生活源和工业源的相关内容,编制了《挥发性有机物(VOCs)污染防治技术政策》初稿及开题报告。(5)开题会
2012年4月,环境保护部科技标准司在北京组织召开了《挥发性有机物(VOCs)污染防治技术政策》开题论证会,参加会议的有中国环境保护产业协会、防化研究院、中科院生态环境研究中心、清华大学、中国矿业大学、华南理工大学、北京市环境保护科学研究院的专家和代表。
(6)2012年5月,与各相关工业协会进行合作调研,对我国典型行业污染的总量和趋势进行分析,确定需要重点说明的污染行业和治理技术,完善《挥发性有机物(VOCs)污染防治技术政策》征求意见稿和编制说明。2 挥发性有机物(VOCs)污染与控制现状 2.1 VOCs污染排放源与排放特点 2.1.1 VOCs污染排放源分析
VOCs排放源非常复杂,从大类上分,主要包括自然源和人为源,自然源主要为植被排放、森林火灾、野生动物排放和湿地厌氧过程等,目前仍属于非人为可控范围。VOCs主要人为源包括移动源和固定源,固定源中又包括生活源和工业源等。
移动源是指汽车、轮船、飞机等各种交通运输工具的排放。目前针对移动源已有《机动车污染防治技术政策》(环发[1999]134号)等专门的技术政策,在本项目中不再述及。
生活源VOCs排放对象复杂,包括建筑装饰、油烟排放、垃圾焚烧、秸秆焚烧、服装干洗等等。其中,建筑装饰、垃圾焚烧、秸秆焚烧等只能从源头进行控制。建筑装饰减少VOCs排放主要通过使用环保涂料解决,无组织的垃圾焚烧和秸秆焚烧等主要通过立法进行限制,另外可以通过农村家庭炉灶改造提高秸秆燃烧效率。餐饮油烟可以通过末端控制进行净化。服装干洗则主要在于设备的改进,通过推行密闭干洗机,使含VOCs溶剂密闭运行,可起到很好的减排作用。
工业源VOCs排放所涉及的行业众多,具有排放强度大、浓度高、污染物种类多、持续时间长等特点,对局部空气质量的影响显著。另外,工业源通过管控可以获得较明显改善,特别是工业源中的重点工业行业,因为产生的VOCs占比较大,一般为有组织排放,浓度高,易于收集和处理,且有较为成熟的治理技术。
工业源包括四个产污环节:VOCs生产过程环节,VOCs产品的储存、运输和营销环节,以VOCs为原料的工艺过程环节和含VOCs产品的使用过程环节。其中VOCs生产过程环节包括炼油与石化、有机化工等溶剂提炼或有机物产生的行业;储存、运输和营销环节主要是油品、燃气、有机溶剂的储存、转运、配送和销售过程,以VOCs为原料的工艺过程环节包括众多行业,如涂料行业,合成材料行业,食品饮料行业,胶粘剂生产行业,日用品行业,农用化学品行业和轮胎制造行业等;含VOCs产品的使用过程环节包括装备制造业涂装、半导体与电子设备制造、包装印刷、医药化工、塑料和橡胶制品生产、人造革生产、人造板生产、造纸行业、纺织行业、钢铁冶炼行业等等。其中,装备制造业涂装涵盖所有涉及到涂装工艺的行业,如机动车制造与维修、家具、家用电器、钢结构、金属制品、彩钢板、集装箱、造船、电器设备等众多行业。
工业源VOCs排放涉及的行业众多,目前缺乏权威认可的排放清单。2009年起环保部污控司组织中科院生态中心、清华大学、同济大学、解放军防化研究院、地质大学、华南理工大学等高等院校和科研院所中VOCs防治领域的专家对人为源排放情况进行估算。表1列出了估算的结果,其中工业源排放量占整个人为源的比重最高达55.5%,工业源中的重点工业行业包括石油炼制和储运、化工、溶剂使用(包括表面涂装)等。在工业源的四个产污环节中,含VOCs产品的使用过程环节排放最多,占整个工业源排放的60%以上(图1),应予以重点控制。
表1 重点行业排放VOCs占人为源的比重(2009年估算结果)
(2)在大多数情况下,生产工艺尾气中同时含有多种污染物。
在大多数的行业中,气态污染物往往是以混合物的形式排放。如喷涂废气中通常含有苯系物(BTEX)和酮类、脂类等;印刷废气中通常含有苯类、脂类、酮类和醇类等;制药行业中通常含有酸性气体、普通有机物和恶臭气体等。
(3)不同的生产工艺所排放的工艺废气工况条件(浓度、流量、连续或间歇、温度、湿度、颗粒物等)复杂多样。不同行业、同一行业中的不同工序所排放的有机气体的温度和湿度具有很大的差异。如一般喷涂过程中所排放的为常温气体,在化学化工、制药等行业所排放的往往为高温气体。在同一行业中,如汽车的喷涂线排放的为常温气体,而烘干线排放的则为高温气体。喷涂线漆雾经过水幕净化后会形成高湿度的废气,制药工业发酵灌尾气的湿度接近100%。在大多数情况下,常温废气中往往掺杂一定量的颗粒物。装备制造业涂装工艺中会产生大量的漆雾颗粒物等。
(4)生活源所排放的VOCs为面源,点多面广,通常为无组织排放,无法进行末端净化(除餐饮油烟外),一般通过政策导向或立法进行源头控制。2.2 VOCs污染末端治理技术现状
VOCs的末端控制技术可以分为两大类:即回收技术和销毁技术(图4)。回收技术是通过物理的方法,改变温度、压力或采用选择性吸附剂和选择性渗透膜等方法来富集分离有机污染物的方法,主要包括吸附技术、吸收技术、冷凝技术及膜分离技术等。回收的挥发性有机物可以直接或经过简单纯化后返回工艺过程再利用,以减少原料的消耗,或者用于有机溶剂质量要求较低的生产工艺,或者集中进行分离提纯。销毁技术是通过化学或生化反应,用热、光、催化剂或微生物等将有机化合物转变成为二氧化碳和水等无毒害无机小分子化合物的方法,主要包括高温焚烧、催化燃烧、生物氧化、低温等离子体破坏和光催化氧化技术等。
吸附法是利用各种固体吸附剂(如活性炭、活性炭纤维、分子筛等)对排放废气中的污染物进行吸附净化的方法。吸附法设备简单、适用范围广、净化效率高,是一种传统的废气治理技术,也是目前应用最广的治理技术。主要包括固定床吸附技术、移动床(含转轮)吸附技术、流化床吸附技术和变压吸附技术等。国内目前主要是采用固定床吸附技术,吸附剂通常为颗粒活性炭和活性炭纤维。近年来,国外和我国台湾地区较多地采用了移动床(分子筛转轮吸附浓缩)技术。
吸附浓缩-催化燃烧技术是将吸附和催化燃烧相结合的一种集成技术,将大风量、低浓度的有机废气经过吸附/脱附过程转换成小风量、高浓度的有机废气,然后经过催化燃烧净化(见图5)。该方法适合于大风量、低浓度或浓度不稳定的废气治理,通常适用的浓度范围低于1500mg/m3。国内由防化研究院于1990年研制成功的固定床有机废气浓缩装置(“一种处理有机废气的空气净化装置”,专利号CN2175637),采用低阻力的蜂窝状活性炭作为吸附剂,成为目前我国喷涂、印刷等行业大风量、低浓度有机废气治理的主体设备之一。后来又发展了活性炭纤维吸附剂固定床吸附浓缩装置、沸石转轮吸附浓缩/热空气脱附/燃烧装置(见图6)等。
2.2.2 焚烧与催化燃烧技术
在有机废气治理中,热力焚烧法只是在一些特殊的情况下被采用,如在汽车、家电等的烤漆废气处理,虽然此类废气中的有机物浓度并不高,但燃烧炉所产生的热量可以进行回收并用于烤漆房的加热,热量利用较好。此外,当废气中含有能够引起催化剂中毒的化合物时,如含硫、卤素有机物,不宜采用催化燃烧法的,通常也采用热力焚烧法。当废气中有机物浓度较低时,采用燃烧法能耗较大。为了提高热利用效率,降低设备的运行费用,近年来发展了蓄热式热力焚烧技术(RTO,见图7),并得到了广泛应用。蓄热系统是使用具有高热容量的陶瓷蓄热体,采用直接换热的方法将燃烧尾气中的热量蓄积在蓄热体中,高温蓄热体直接加热待处理废气,换热效率可达到90%以上,而传统的间接换热器的换热效率一般在50%~70%。
目前,VOCs治理技术中催化燃烧技术相对成熟。早期的催化燃烧技术主要用于高浓度或者高温排放的有机污染物的治理,由于对空气的加热升温需要耗费大量的热能,在大风量、低浓度的VOCs治理中运行成本过高。蓄热式催化燃烧技术(见图8)通常利用蜂窝状的陶瓷体作为蓄热体,将催化反应过程所产生的热能通过蓄热体储存并用以加热待处理废气,充分利用有机物燃烧所产生的热能。和常规催化燃烧技术相比,蓄热式催化燃烧技术可以大大降低设备能耗,主要应用于较低浓度(一般在500~3000mg/m3之间)有机废气的净化。
2.2.3 生物技术
废气生物净化技术具有处理成本低、无二次污染的特点,在国内外得到了迅速发展,尤其适合于低浓度、大气量且宜生物降解的气体。
废气生物净化技术实质上就是通过附着在反应器内填料上的微生物,在新陈代谢过程中将废气中的污染物转化为简单的无机物(CO2、H2O和SO42-
等)和微生物细胞质的过程。其中,废气中 的VOCs分解为二氧化碳、水等无机物;含硫恶臭污染物中的硫转化为硫化氢并进一步转化为环境中稳定的硫酸盐;含氮污染物中的氮转化为环境中稳定的硝酸盐或氮气。
2.2.4 冷凝技术 冷凝法是利用物质在不同温度下具有不同饱和蒸汽压的性质,降低系统温度或提高系统压力,使处于蒸汽状态的污染物从废气中冷凝分离出来的方法。
冷凝法适用于高浓度有机溶剂蒸汽的净化,经过冷凝后尾气仍然含有一定浓度的有机物,需进行二次低浓度尾气治理。在有机废气治理中,通常采用常温水或低温水对高浓度的废气首先进行冷凝回收,冷凝后的尾气再进行吸附或催化燃烧处理。对于低浓度的有机废气,当需要进行回收时,可以首先采用吸附浓缩的方法,吸附浓缩后高浓度废气再采用冷凝技术处理。
2.2.5 吸收技术
吸收法是采用低挥发或不挥发液体为吸收剂,利用废气中各种组分在吸收剂中溶解度或化学反应特性的差异,使废气中的有害组分被吸收剂吸收,从而达到净化废气的目的。在VOCs的处理中,利用废气中的有机化合物能与大部分油类物质互溶的特点,常用高沸点、低蒸气压的油类等有机溶剂作为吸收剂。
吸收过程按其机理可分为物理吸收和化学吸收。VOCs的吸收通常为物理吸收,根据有机物相似相溶原理,常采用沸点较高、蒸汽压较低的柴油、煤油作为溶剂,使VOCs从气相转移到液相中,然后对吸收液进行解吸处理,回收其中的有机化合物,同时使溶剂得以再生。对一些水溶性较高的化合物,也可以使用水作为吸收剂,吸收液进行精馏以回收有机溶剂。
2.2.6 等离子体技术
低温等离子体净化技术(见图9)是近年来发展起来的废气治理新技术。低温等离子体破坏技术属低浓度VOCs治理的前沿技术。研究表明,C-S和S-H键比较容易被打开,因此低温等离子体技术对于臭味的净化具有良好的效果,如橡胶废气、食品加工废气等的除臭。
低温等离子体用于废气的净化具有很多的优势。(1)由于等离子体反应器几乎没有阻力,系统的动力消耗非常低;(2)装置简单,反应器为模块式结构,容易进行易地搬迁和安装;(3)不需要预热时间,可以即时开启与关闭;(4)所占空间较小;(5)抗颗粒物干扰能力强,对于油烟、油雾等无需进行过滤预处理。
2.2.7 光催化技术
光催化氧化法主要是利用光催化剂(如TiO2)的光催化性,氧化吸附在催化剂表面的VOCs。利用特定波长的光(通常为紫外光)照射光催化剂,激发出“电子-空穴”(一种高能粒子)对,这种“电子-空穴”对与水、氧发生化学反应,产生具有极强氧化能力的自由基活性物质,将吸附在催化剂表面上的有机物氧化为二氧化碳和水等无毒无害物质。光催化氧化与电化学、O3、超声和微波等技术耦合可以显著提高对有机物的净化能力。
目前光催化氧化技术存在反应速率慢、光子效率低、催化剂失活和难以固定等缺点。该法目前在工业VOCs的净化中还未大规模应用。
2.2.8 膜分离技术
膜分离是利用天然或人工合成的膜材料分离污染物的过程。该法是一种新型的高效分离方法,适合处理高浓度的有机废气。其基本的工艺如图10所示。有机废气首先进入压缩机压缩后冷凝,冷凝下来的有机物进行回收,余下的进入膜分离单元后分为两股,一股返回压缩机重新进行处理,一股处理后排出。
2.3 国内外VOCs污染防治相关政策法规与标准 2.3.1 国外VOCs污染防治相关政策法规与标准
欧美等发达国家在20世纪90年代初就建立了相关的VOCs人为源排放清单数据库,并保持逐年更新。在VOCs控制管理方面,欧美等发达国家也走在前面,在90年代便出台了相关法律法规,如美国的《大气清洁法》,欧盟的《欧洲清洁空气计划》指令1999/13/EC和2004/42/EC 以及1994/63/EC、1996/61/EC等行业指令,对VOCs的排放标准和排放源进行限制,并且多次修改和补充,日趋严格,有效控制了VOCs的排放。美国早在1963年就制定了大气清洁法(CAA),1990年又进行了修改,在原来限制VOCs上强化增加了对有害大气污染物质的限制,在该法中,为适应各区的环境基准又规定了相应的基准值RACT(合理可行控制技术)、BACT(最佳可行控制技术)、LAER(最低可达排放速率),并对污染源(包括原有和新增源)排放VOCs提出了明确限制。
欧盟在1996年公布了关于完整的防治和控制污染的指令1996/61/EC,对包括石油冶炼、有机化学品、精细化工、储存、涂装、皮革加工等6大类33个行业制定了VOCs的排放标准,对有机溶剂行业则详细制定了关于VOCs排出限制的指令1999/13/EC,随后的2004/42/EC指令对建筑和汽车等特定用途的涂料设定了VOCs排放的限制。此外,欧盟还根据VOCs毒害作用大小,提出了分级控制要求,其中高毒害VOCs排放不得超过5 mg/m3,中等毒害不超过20 mg/m3,低毒害不超过100 mg/m3。
日本为控制VOCs排放,于2006年4月正式实施了《大气污染防治法》,2007年3月实施了《生活环境保护条例》,明确提出2010年VOCs的排放量要比2000年减少30%。
2.3.2 我国VOCs污染防治相关政策法规与标准 2.3.2.1 政策法规
《中华人民共和国大气污染防治法》(2000年,中华人民共和国主席令32号)是大气环境管理的根本依据,目前未明确VOCs的控制要求,仅有诸如有机烃类尾气、恶臭气体、有毒有害气体、油烟等类似概念。
为解决日益严重的灰霾和光化学烟雾等区域性大气污染问题,减少对群众健康的影响,国务院办公厅于2010年5月转发了《关于推进大气污染联防联控工作改善区域空气质量的指导意见》(国办发〔2010〕33号)。意见强调,解决区域大气污染问题,必须尽早采取区域联防联控措施;联防联控的重点污染物是二氧化硫、氮氧化物、颗粒物、挥发性有机物等。其中,挥发性有机物污染防治方面,首先要按照有关技术规范对从事喷漆、石化、制鞋、印刷、电子、服装干洗等排放挥发性有机污染物的生产作业进行污染治理;其次要推进加油站油气污染治理,按期完成重点区域内现有油库、加油站和油罐车的油气回收改造工作,并确保达标运行,新增油库、加油站和油罐车应在安装油气回收系统后才能投入使用;此外,还要严格控制城市餐饮服务业油烟排放。
根据《指导意见》要求,环境保护部正在制定《重点区域大气污染防治规划(2011-2015年)》。规划指出将在“十二五”期间在重点区域全面展开挥发性有机物污染防治工作。
2.3.2.2 排放标准
原有的《大气污染物综合排放标准》(GB 16297-1996),仅对苯、甲苯、二甲苯以及酚类和甲醛的排放浓度进行限制,后又颁布的《炼焦炉大气污染物排放标准》(GB 16171-1996),《饮食业油烟排放标准》(GB 18483-2001),《储油库大气污染物排放标准》(GB 20950-2007),《汽油运输大气污染物排放标准》(GB 20951-2007),《加油站大气污染物排放标准》(GB 20952-2007),《合成革与人造革工业污染物排放标准》(GB 21902-2008)及《橡胶制品工业污染物排放标准》(GB 27632-2011)增加了对苯并芘、油烟VOCs、油气VOCs、合成革与人造革工业VOCs排放的限值。
针对恶臭污染物出台了《恶臭污染物排放标准》(GB 14554-1993),对硫醇、硫醚、胺类等散发恶臭气味的污染物(大部分是挥发性有机物)作出了规定。表5是上述各标准中关于VOCs的不同表述。
地方控制标准方面,北京市、上海、广东省等走在前列,正在制定严格的VOCs排放控制标准。标准中需要控制的特定项目有所扩展(表6),但是与国外相比,仍然控制得比较粗放。
①北京市:《炼油与石油化学工业大气污染物排放标准》(DB 11/447-2007),《大气污染综合排放标准》(DB 11/501-2007)。
②上海市:《半导体行业挥发性有机化合物排放标准》(DB 31/374-2006)
③广东省:《家具制造行业挥发性有机化合物排放标准》(DB 44/814-2010),《包装印刷行业挥发性有机化合物排放标准》(DB 44/815-2010),《表面涂装(汽车制造业)挥发性有机化合物排放标准》(DB 44/816-2010),《制鞋行业挥发性有机化合物排放标准》(DB 44 /817-2010)等。
目前其它的一些行业和地方VOCs的排放控制标准正在制定当中。总体来讲,和国外发达国家相比排放标准体系很不完善。2.3.2.3 清洁生产标准
国家清洁生产标准中共分三级,一级指国际清洁生产先进水平,二级指国内清洁生产先进水平,三级指国内清洁生产基本水平。
目前国家清洁生产标准共58个,涉及到VOCs排放行业的清洁生产标准有: ①清洁生产标准 汽车制造业(涂装)(HJ/T 293-2006)
②清洁生产标准 化纤行业(涤纶)(HJ/T 429-2008)、化纤行业(氨纶)(HJ/T 359-2007)③清洁生产标准 石油炼制业(HJ/T 125-2003)、石油炼制业(沥青)(HJ/T 443-2008)④清洁生产标准 人造板行业(中密度纤维板)(HJ/T 315-2006)⑤清洁生产标准 炼焦行业(HJ/T 126-2003)
⑥清洁生产标准 基本化学原料制造业(环氧乙烷、乙二醇)(HJ/T 190-2006)标准中规定了有机废气(VOCs)及特定项目的产生量见表7。
2.3.2.4 环境标志产品技术要求
目前涉及降低VOCs排放,提出环境保护标志产品技术要求的有印刷行业-平版印刷、胶印油墨、凹印油墨和油印油墨,溶剂型木器涂料,人造板及其制品,水性涂料,防水涂料,皮革和合成革,胶粘剂等,其中明确提出产品中不得添加的物质和产品中VOCs含量限值,见表8~12。
技术政策编制必要性
“十二五”大气污染防治规划将大气污染防治工作扩展至涵盖NOx、O3、PM2.5、VOCs、有毒有害物质等污染因子,实现多污染同时控制。2010年5月11日,国务院办公厅转发《环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量指导意见的通知》(国办发[2010] 33号),正式地从国家层面上提出了加强挥发性有机物污染防治工作的要求,将VOCs和SO2、NOx、颗粒物一起列为改善大气环境质量的防控重点污染物,把开展VOCs防治工作作为大气污染联防联控工作的重要部分。本技术政策的制定是完成“十二五”大气污染防治规划中规定目标的需要。
挥发性有机物(VOCs)具有光化学活性,排放到大气中是形成细粒子(PM2.5)和臭氧的重要前体物质,增强温室效应,在环境中的具有累积性和持久性等特点。研究表明,不同地区的大气中半挥发或不挥发的有机物在PM2.5细粒子中的比重占到20%~40%左右,还有部分的大气细粒子由VOCs转化而来。近年来尽管北京市大气污染中的二氧化硫、氮氧化物呈下降趋势,但夏季臭氧浓度却在增加,VOCs被认为是臭氧生成和其它细粒子生成的共同前体物,VOCs对大气环境质量的影响已引起国内大气化学科学家们的共同重视。随着经济的发展,由工业、居民生活等人为源排放的VOCs总量正逐年增加,导致光化学烟雾、城市灰霾等复合大气污染问题日益严重。
除了环境毒性以外,工业排放常见的VOCs如三苯类、卤代烃类、硝基苯类、苯胺类等都对人体具有较大的危害作用,长期接触会严重影响人们的身体健康。此外,很大一部分的挥发性化合物具有异味,会严重影响人们的生活质量。所以制定相关技术政策控制VOCs污染,是改善大气环境质量和维护人们健康和生活质量的需要。
VOCs排放源的范围很广泛,治理技术也更复杂,而治理技术的总体水平不高,在治理技术选择、治理设施运行监管等方面还存在突出问题。本技术政策的制定可以从国家层面上对VOCs减排途径及污染防治技术进行规范和引导,是提高国家环境技术管理水平的需要。源头控制与典型行业清洁生产技术
降低VOCs排放应从污染源头即溶剂产生、运输、使用等各个环节做起,尽量采用清洁生产工艺,减少生产工艺中VOCs的排放量。
4.1 石油炼制和石油化工行业
石油炼制和石油化工行业是指以石油和(或)天然气为原料,采用物理操作和化学反应相结合的方法,生产各种石油产品和石化产品的加工行业。石油炼制是以石油为原料,加工生产燃料油、润滑油等产品的全过程。石油化工生产指对炼油过程提供的原料油气进行裂解及后续化学加工,生产以三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯)为代表的石化基本原料、各种有机化学品、合成树脂、合成橡胶、合成纤维等的过程。
石油炼制工业是我国重要能源与基础原材料工业之一,其产品用于国民生活和各个工业部门。石油炼制工业的加工能力常被用作衡量一个国家工业发展水平的标志。2011年全国石油产量2.01亿吨,累计加工原油4.48亿吨,成品油生产总量合计达到2.66亿吨(比上年增长6.7%),其中生产柴油1.67亿吨,生产汽油8141万吨(约占28),生产煤油1879万吨。2011生产溶剂230万吨,比上年增长约97%。石油炼制工业除生产汽油、煤油、柴油和润滑油等四大类油品外,还生产沥青、溶剂油、石油化工原料、石油蜡、液化石油气等几十类产品。
石化生产中使用的原材料(含半成品、成品)大多为挥发性有机物,易燃易爆,石油化工行业在挥发性有机物排放中的比例是比较高的。石化生产具有高温、高压、深冷的特点,要求石化生产密闭化、连续化,自动化程度高。石化生产设备类型繁多,有贮罐、计量槽、气瓶及精馏、吸收、萃取塔和反应釜(塔、器)、裂解炉等静态设备,也有压缩机、风机、输送液体的泵等动态设备,管道纵横交错,加之介质具有腐蚀性,若设备老化、长久失修,则极易发生跑、冒、滴、漏。因此,应定期对生产装置、设备进行检查维修,改善工艺装置和生产操作条件,减少有机物的暴露,减少溶剂的跑冒滴漏现象,降低有机物的无组织逸散。
4.2储运销过程
储存过程排放:炼油厂、大型化工厂的罐区和生产装置中间罐的大、小呼吸过程中,有浓度高、小风量的VOCs排放。大呼吸时的最高浓度可达环境温度下饱和蒸气压的对应浓度,排气量一般小于100m3/h。中国各油井、中转站、炼油厂的原油和汽油储存器基本上实现了浮顶罐,由于柴油的挥发性较原油和汽油低很多,其储存容器仍为固定顶罐。浮顶罐可比固定顶罐减少损耗80%以上,其中内浮顶罐可比固定罐减少85%~96%的损耗。
装车船过程排放:炼油厂和大型化工厂的原油和成品油的铁路装车和汽车装车过程,基本采用小鹤管液下装车,排气量小但浓度高。最高浓度可达环境温度下饱和蒸气压的对应浓度,一般气体量小于500m3/h。运输方式包括公路、铁路、轮船和管道运输。从开采到炼厂为管道输出,然后50%通过装船运输,50%通过铁路运输。从炼厂到油库一般为铁路和油轮,从油库到加油站主要为公路运输。其中装/卸船采用了平衡装船,带回气系统,因此排放较小,原油损耗为0.01%(装车),0.003%(卸车),汽油损耗为0.022%(装车),0.003%(卸车),铁道部为了安全起见,油轮运输一般要求上装上卸。装车为装船的排放损耗的2~5倍。装车方式主要分为顶部装油和底部装油。顶部装油的气液比(v/v)为1:1.1~1.4,油气产生量大、浓度高。底部装油的气液比(v/v)基本上为1:1,油气产生量少、浓度也较低。顶部装油的优点是不易发生漏油现象,缺点是油气产生量大;底部装油的优点是所需设备较顶部装油简单,将活动装臂或软管从地面和油槽车下部配接即可,产生的油气量少,目前国内已有使用。加油过程排放:加油站向车用油箱付油时,先通过泵将埋地罐中的汽油送至加油机计量系统进行计量,再通过加油枪送入车用油箱中。若不进行油气回收,加油时产生的油气在车用油箱的加油口处排放。向车用油箱付油时,应使用可收集油气的加油枪,收集的油气可通过同步运行的真空辅助泵返回到地下罐。由于气液比一般在1:1~1:1.1之间,真空辅助平衡油气回收法回收的油气量约为产生量的90%,尚有10%的油气通过加油站的平衡呼吸阀排放。
4.3 含VOCs产品的生产 4.3.1涂料行业
2011年中国涂料总产量1079.5万吨,同比增长16.44%。从各省市的产量来看,广东省涂料 的产量达246万吨,同比增长11.26%,占全国总产量的22.79%。紧随其后的是上海、江苏和山东,分别占总产量的13.57%、10.26%和9.01%。
涂料按形态分为固态涂料(即粉末涂料)和液态涂料(溶剂型涂料、水溶性涂料、水乳型涂料)。粉末涂料按照成膜物质的性质分为两大类:热塑性和热固性粉末涂料。热塑性粉末涂料包括聚氯乙烯、聚乙烯、尼龙、氟树脂、氯化聚醚、乳胶等粉末涂料;热固性粉末涂料包括环氧、聚酯、丙烯酸酯等粉末涂料。粉末涂料不含溶剂,使用过程中基本不会释放出VOCs,是环保涂料的重要的发展方向之一。液态涂料应用最广泛,其中溶剂型涂料溶剂含量可以超过75%,水性涂料主要含丙烯酸酯和聚氨酯成分,不含或较少含机溶剂成为目前环保涂料的重要发展方向之一。
2011年工信部针对涂料行业提出了清洁生产技术推行方案(见工信部节[2011]381号),该方案的总体目标:(1)重点示范和推广以水性木器涂料、水性桥梁涂料、水性汽车涂料、水性集装箱涂料、光固化涂料为代表的环境友好型涂料生产技术,以及以自动化安全环保和节能减排为目标的溶剂型涂料全密闭式一体化生产工艺技术与涂料用氨基树脂清洁生产技术。预计到2013年,水性木器涂料在木器涂料中所占比重达到15%,溶剂型涂料全密闭式一体化生产工艺技术在溶剂型涂料生产中的普及率将达到10%,水性桥梁涂料在桥梁涂料中所占比重达到10%,水性汽车涂料在汽车涂料中所占比重达到75%,水性集装箱涂料在集装箱涂料中所占比重达到5%,涂料用氨基树脂清洁化生产普及率达到60%,光固化涂料在涂料市场的占有率可达到1.5%。(2)通过以上环境友好型涂料生产技术和清洁生产技术的示范和推广,预计到2013年,可减少有机溶剂使用量14万吨/年,削减化学需氧量产生量2.7万吨/年。目前推行方案中提出的具备应用可行性的清洁生产技术见表13。
4.3.2油墨行业:
随着中国近十年包装行业的迅猛发展,中国的油墨产业得到了较大的拓展。十年前各印刷厂主要以胶印油墨为主,而现在已形成了溶剂油墨,水性油墨,UV油墨,丝印油墨,胶印油墨并存的格局。尤其是近几年中国包装业在追求印刷精美的同时,还突出了环保的概念,因此相对环保的水性油墨与UV油墨系列,得到了前所未有的提升。
从中国油墨发展的现状看,溶剂油墨的使用量正在逐步减少,胶印油墨产量基本上保持稳定,UV系列产品和水性油墨则呈上升趋势,而上升最为明显的则是UV油墨系列。这主要体现在UV油墨印刷档次较高,且对设备的选择余地较大;而水性油墨只能在柔版或凹版上印刷,且水性产品需进口高档设备才能印出精细效果,目前水性油墨的市场还基本停留在中低档纸箱上面。
从油墨未来的发展方向来看,溶剂油墨正在向醇溶性及低溶剂过渡;UV油墨目前正在致力于UV双重固化的研发;胶印油墨的发展仍是以无水胶印为发展方向;水性油墨目前已开始向塑料等食品行业倾斜。今后油墨的发展目标是积极开发各种环保水性和UV油墨。
4.3.3 胶粘剂行业
到2011年中国已跨入了世界胶粘剂生产和消费大国,产量及销售额高速增长,30年来平均增长率达l9.8%,远高于我国GDP的增长。2009年,我国胶粘剂和密封剂(不含脲醛胶、酚醛胶和三聚氰胺甲醛胶)的总产量达到376.3万吨,其中水基型241.8万吨,溶剂型35.6万吨、,热熔型29.3万吨,反应型48.5万吨,其他类型21万吨。2010年胶粘剂产量增至500万吨。根据中国胶粘剂工业协会预测,2011~2015年胶粘剂密封剂产量平均增长速度为10%,到2015年胶粘剂密封剂产量将达到717万吨,销售额达到1,038亿元左右。
胶粘剂的种类繁多,可以分为环氧树脂胶粘剂、酚醛树脂胶粘剂、脲醛树脂胶粘剂、聚氨酯胶粘剂、α-氰基丙烯酸酯胶粘剂、厌氧胶粘剂、改性丙烯酸酯快固结构胶粘剂、不饱和聚酯胶粘剂、氯丁橡胶胶粘剂、4115建筑胶、107胶、溶剂型压敏胶、溶剂型纸塑复合胶、PVC塑溶胶等。不同胶粘剂中存在的挥发性有机化合物差异很大,如溶剂型胶粘剂中的有机溶剂;三醛胶(酚醛、脲醛、三聚氰胺甲醛)中的游离甲醛;不饱和聚酯胶粘剂中的苯乙烯;丙烯酸酯乳液胶粘剂中的未反应单体;改性丙烯酸酯快固结构胶粘剂中的甲基丙烯酸甲酯;聚氨酯胶粘剂中的多异氰酸酯;4115建筑胶中的甲醇等。胶粘剂中的挥发性有机物主要是苯、甲苯、甲醛、甲醇、苯乙烯、三氯甲烷、四氯化碳、1,2-二氯乙烷、甲苯二异氰酸酯、间苯二胺、磷酸三甲酚酯、乙二胺、二甲基苯胺等。
4.4 含VOCs产品使用过程的清洁生产工艺 4.4.1 涂装行业(1)汽车涂装
近几年,我国新建的大型汽车涂装线大都已经考虑了使用环保型涂料的可能性。汽车行业中采用水性漆、固体粉状漆代替部分溶剂型漆,选用更环保的溶剂型漆等。在欧洲,从20世纪90年代开始新建的涂装生产线上均已采用水性涂料,涂装VOCs排放量已低于法规要求(<35g/m2)。在欧美及日本大部分汽车厂底漆已全部采用了低VOCs挥发量(0.4%~0.8%)型阴极电泳底漆或粉末涂料,我国部分汽车厂也已经开始应用。中涂采用水性涂料或高固体份材料,面漆采用水性底色加高固体份清漆,粉末清漆也已经用于轿车车身涂装,欧美的环保型涂料及涂装技术已经十分成熟,车身涂装用环保型中涂及面漆在我国尚未普及应用。
随着涂装材料的进步,车身喷涂工艺也有了革命性的进展,在满足环保法规的同时,也提高了生产效率,降低了涂装成本。主要的清洁喷涂工艺包括:
①逆过程工艺:根据粉末涂料一次成膜厚的特点,在车身外表面先喷涂粉末涂料,热熔融后,再进行电泳涂装,随后粉末、电泳涂膜一起烘干。其优点是约可减少60%的电泳涂料用量,用粉末涂层替代车身外表面的电泳底漆和中涂层,取消中涂及烘干工序。②二次电泳工艺:采用两涂层电泳材料,用第二层电泳替代中涂,电泳工艺自动化施工稳定可靠且一次合格率高,材料利用率高,设备投资少,不需空调系统,减少传统中涂的漆渣。③一体化涂装工艺:采用与面漆同色的功能层替代中涂,功能层与面漆底色间不需烘干、取消中涂线。④敷膜技术替代涂装:将预制好的复合涂膜在塑料件浇注成型的同时完成成型并与塑料件熔为一体,得到无缺陷涂装覆盖件。车身骨架采用传统冲压焊装工艺制造,涂装车间只对车身骨架进行涂装,工艺为前处理、阴极电泳、密封、面漆,面漆采用粉末喷涂技术,车身涂装的VOCs排放达到7g/m2左右,远低于欧洲排放法规要求。⑤“零排放”油漆车间:“零排放”是在满足苛刻的环保要求和用户质量要求的前提下,尽量减少三废处理成本、油漆车间操作成本和简化油漆工艺。车身钢板的防腐底漆保护层在制成零件前的涂覆可在钢厂进行。进入油漆车间的车身不需再涂底漆,只喷涂一道粉末底色和一道粉末罩光。目前除车身制造技术未成熟外,其他技术都已过关。(2)其他工业涂装
造船、桥梁、集装箱、家具等行业的喷涂用涂料因其应用方向不同,涂料中含的VOCs成分各异。使用符合环境标志产品技术要求的水性涂料,是涂装行业降低VOCs排放的根本性方向。此外,涂装工艺的改进也可以减少VOCs的排放。采用的涂装工艺类型众多,既有涂装效率较高的静电喷涂、淋涂、辊涂、浸涂,也有涂装效率较低的空气喷涂、滚刷涂和手工涂装。其中采用普通空气喷涂和手工涂装的数量最多。鼓励采用涂装效率较高的涂装工艺进行密闭涂装。
4.4.2 包装印刷行业
包装印刷行业包括了包装材料的制造(复合)和各类印刷过程(印纸、印塑、印铁等),印刷工艺包括凸版印刷、平板印刷、凹版印刷、柔版印刷、孔印刷(丝网印刷)等。其中,VOCs排放最多的主要是干复工艺、凹印工艺及印制铁罐领域。
软包装的复合工艺目前国内还是以干复工艺为主,在国外无溶剂复合工艺达60%,已经成为主流工艺,而国内无溶剂复合工艺不到5%,如果达到国外水平,VOCs的减排量可以达到25万吨左右。
凹版印刷工艺VOCs的排放量所占比例最大。凹印油墨要保持较好的印刷性,必须加入较大比例(通常为30%~70%)的有机溶剂,主要是甲苯、醋酸乙酯、丁酮、异丙醇等。目前的清洁生产工艺主要为醇性(无苯、无酮)油墨和水性油墨的使用。在印刷工艺上推荐通过采用环保型油墨的印刷工艺代替污染严重的印刷工艺,如采用醇溶性油墨的柔版印刷代替传统的凹版印刷工艺,会大大降低VOCs的排放。
印铁产品主要应用在三片罐(罐头食品、奶粉罐、化工杂罐、气雾罐)和金属盖(皇冠盖、铝防盗盖、易开盖、旋开盖)。传统印铁涂料固体份为40%~60%,而UV涂料固体份为97.5%±2.5%,远高于传统印铁涂料,降低了VOCs的产生水平,应该在实际生产中大力推广使用。
典型行业排污与适用的末端治理技术 5.1 油气回收
石油化工行业的VOCs排放主要集中在过程的跑冒滴漏、过程中间储罐排放、装车船过程排放、加油过程排放等,首先考虑通过对设备升级改造、对VOCs排量大的汽油储罐通过采用浮顶罐代替固定顶罐、密闭装车、加油枪带回气系统等方式外,还需对油气进行回收。
通用的油气治理方法很多,主要包括吸收、蓄热氧化、吸附、冷凝和膜分离方法。耦合的油气回收技术,大体包括吸附-吸收法、冷凝-吸附法、吸收-膜分离法、冷凝-膜分离法、冷凝-膜分离法-吸附法等技术。
需要鼓励研发的设备与技术包括,适用于高浓度小气量气体的技术设备:沸点小于80℃的低沸物,采用深冷的冷凝-吸附技术;对于沸点在80℃以上的相对高沸物,采用浅冷的冷凝-吸附技术。适于低浓度大气量气体的技术设备:主要针对化工厂生产过程排放的工艺废气,采用吸附-不同冷凝温度的回收处理技术,包括废气中含有粉尘等的前处理技术。适于槽车清洗过程的技术设备:高压水清洗过程产生废气和高压蒸汽或蒸汽射流过程产生含有水汽废气处理技术。
5.2包装印刷 5.2.1产污环节与现状
包装印刷过程中VOCs的产生情况如表14所示,其中VOCs排放量大且需要末端治理措施的为复合膜干复工艺和凹印工艺。
5.2.2末端治理技术
在复合膜的干复工艺中,一般一条生产线的废气排放量约为10000m3/h,溶剂量使用量约为500~600kg/天,排气中有机物浓度约为2000~2400mg/m3,采用活性炭纤维吸附回收装置对废气中的乙酸乙酯进行回收。按回收效率80%计算,一条生产线一天可以回收乙酸乙酯400~500kg,一年可以回收乙酸乙酯144~180吨(按360天计)。
对于印刷废气,国内多采用颗粒活性炭吸附回收和蜂窝活性炭吸附浓缩-催化燃烧技术进行治理。采用颗粒活性炭吸附回收,回收的混合物中含有醇类等水溶性有机化合物,需要进行精馏提纯,废气的治理成本较高,这成为制约印刷废气吸附回收的瓶颈。在印刷企业相对集中的地区建立统一的溶剂回收中心,对回收的溶剂集中处理,可以大大降低治理的费用。蜂窝活性炭吸附浓缩-催化燃烧技术设备运行费用较高,大量的有机溶剂被焚烧,另外由于大量酮类混合物的存在,活性炭床层在采用热风再生时存在安全隐患,目前在印刷行业中所建的蜂窝活性炭吸附浓缩-催化燃烧治理装置实际上运行率较低。
5.3 汽车制造 5.3.1产污环节与现状
汽车制造过程中最大的产VOC环节是涂装工艺。汽车车身涂层工艺主要包括底漆、中涂和面漆以及最后的烘干工艺,工艺流程见图11。有机气态污染物主要产生于电泳底漆、中涂和面漆的喷涂及烘干过程和塑料件加工的涂漆工序。在中涂和面漆喷漆过程中,大约80%~90%的VOCs是在喷漆室和流平室排放,10%~20%的VOCs随车身涂膜在烘干室中排放。废气成分按排放量大小依次为苯类、醇类、脂类和酮类。由于所使用油漆的种类不同,不同车辆和不同厂家生产工艺也有区别,所产生的废气中VOCs的成分也有所差别。
汽车喷涂工艺废气排放特征:①排风量大。通常都在几十万到上百万m3/h之间,可分为多个排放口排放。②废气浓度低。有机物浓度一般在100~200mg/ m3之间,但总的排放量大。按照100万m3/h、150 mg/ m3计算,每小时的排放量可达150Kg/h或3.6吨/天。③含有漆雾。喷涂工艺废气中漆雾含量一般在一百到几百毫克每立方米,通常采用水幕过滤去除漆雾(产生大量的含有有机物的漆渣),但去除效率不高。在进行吸附治理之前,通常需要进一步的机械过滤处理。④温度为常温。⑤湿度大。经过水幕过滤以后所排出的废气中会夹杂部分水雾,相对湿度提高,不利于下一步的吸附净化。
5.3.2末端治理技术
末端治理工艺路线为水幕过滤后进行除湿,再经过吸附浓缩-催化燃烧处理。
水幕过滤:喷漆房的水幕过滤技术成熟,已有相关设计规范。水幕过滤所产生的漆渣由于含有大量的有机物,需要定期清理后作为固体废弃物进行专门处理。
过滤除湿:一般采用粗滤器和中效滤器两步进行过滤,可以采用两个滤器,也可以两步合为一个滤器。粗滤器采用纤维毡过滤材料,中效滤器采用袋式过滤。如果前段的水幕过滤效果较差,有时在粗滤器之前加装一个金属丝网过滤器,进一步去除漆雾。经过后端的中效滤器过滤后废气中的颗粒物含量降低到0.1mg/m3以下。对于喷涂废气,无论采用何种技术进行治理,关键在于漆雾的过滤效果。
吸附浓缩-催化燃烧技术:对于汽车喷涂废气,由于低浓度、大风量的特点,同时不含引起催化剂中毒的物质,最为常用和有效的方法是采用吸附浓缩+催化燃烧治理技术。根据吸附材料和吸附方式的不同,可以分为沸石转轮(或转筒)吸附浓缩+蓄热催化燃烧(RCO)技术和蜂窝状活性炭固定床吸附浓缩+催化燃烧技术两种方式。国外多采用沸石转轮(或转筒)吸附浓缩+蓄热催化燃烧(RCO)技术,净化效率高(90%以上),运行稳定,安全性好,但设备费用较高。国内多采用蜂窝状活性炭固定床吸附浓缩+催化燃烧技术,净化效率高(90%以上),投资费用较低,但安全性较差,在活性炭再生过程中存在着火等隐患,需要对再生过程严格控制。
5.4 光电产品制造 5.4.1产污环节与现状
在光电产品制造行业中,产生废气污染的主要有五类产品的生产过程:半导体集成电路、TFT-LCD、LED、印制电路板(PCB)、电子终端产品。(1)半导体集成电路
半导体制造工艺中VOCs主要来源于光刻、显影工序,在这些工序中要用有机溶液(如异丙醇)对晶片表面进行清洗,其挥发产生的废气是有机废气的来源之一。同时,在光刻过程中使用的光阻剂(光刻胶)中含有易挥发的有机溶剂,如乙酸丁酯等,在晶片处理过程中产生的有机废气也要挥发到大气中,是VOCs产生的又一来源。(2)TFT-LCD 包括检查和测试在内,TFT-LCD的制造生产工艺可达到100多道工序,生产过程中使用多种化学有机溶剂和特殊气体,产生的VOCs量大,组分复杂。TFT液晶面板生产排放VOCs污染物的工序主要集中在阵列工程和彩膜工程两大部分。阵列工程中的光刻(涂胶、曝光和显影),以及彩膜工程中的黑色矩阵BM膜制造、彩色矩阵膜形成(红、绿、蓝,RGB)、保护膜生成、MVA膜、PS(PHoto Spacer)膜生成是产生VOCs的主要工艺。同时,在成盒工程中清洗工序使用的有机溶剂挥发也会产生少量的VOCs。TFT-LCD的制造过程中产生的VOCs主要是以异丙醇为主,其次依序是丙酮、单甲基醚丙二醇、单甲基醚丙二醇乙酸酯,这四种成分占了全部VOCs量的90%以上。(3)LED
LED电子组件生产产生的VOCs污染物主要来源于基片处理和光刻,LED生产过程中产生VOCs的种类主要有三氯乙烯、丙二醇醚酯、异丙醇、丙酮、丁酮等,具体见表15。
表15 LED生产中废气污染源与主要污染物分析表
(4)印制电路板(PCB)
在单面、双面和多面印制电路板制作工艺中,产生的VOCs工艺环节相对较集中,主要来源于贴膜、烘干、沉铜、印刷等工序,VOCs排放种类主要有甲醛、醇类(乙醇、异丙醇、丁醇、丙醇)、酮类(丁酮)、酯类(乙酸乙酯、乙酸丁酯)、甲苯、二甲苯等。同时,在有机溶剂的贮存过程中也会有部分VOCs产生和排放。
(5)电子终端产品
在电子终端产品制造中,VOCs的主要来源包括电路板清洗剂有机废气(使用有机溶剂型清洗剂)、电路板三防喷漆废气、机壳(机箱)喷漆废气、机壳注塑废气。这些废气均来自工位上的局部排风系统,特点是排风量大、浓度低。
电子终端产品制造业可能产生的污染源、产生污染物的工序和主要污染物分析见表16。表16 电子终端产品生产中废气污染源与主要污染物分析表
5.4.2 末端治理技术
(1)半导体集成电路、TFT-LCD和LED废气治理技术
半导体集成电路、TFT-LCD和LED三类产品的生产中所产生的废气的情况大致相同,除了VOCs以外,还含有酸性气体、碱性气体和一些有毒气体,风量大、浓度低。一般采用水吸收+沸石转轮吸附浓缩-高温焚烧的组合技术进行治理。
第一步通过水吸收(吸收塔)可以去除废气中的酸性气体、碱性气体和有毒气体。在有些情况下,酸性气体、碱性气体和有毒气体集中单独排放,不含有机物或有机物的浓度很低,只通过水吸收工艺即可,无需加装吸附设备。如TFT-LCD的刻蚀工艺废气治理。
第二步沸石转轮(转筒)吸附浓缩+高温焚烧,对去除了酸性气体、碱性气体和有毒气体的低浓度有机废气通过沸石转轮(转筒)吸附浓缩后进行高温焚烧净化。该技术目前在国外已经被普遍采用,特别是在台湾地区大量的液晶显示器(TFT-LCD)的生产企业中均采用的是该技术。该技术净化效率高(可达95%以上)、运行稳定、安全性好,目前在电子生产行业废气治理中尚无更好的技术能够取代。
(2)印制电路板废气治理技术
印制电路板(PCB)生产过程中所产生的废气除VOCs外,还包括酸性和碱性无机气体、挥发性有机物(VOCs)和粉尘废气。由于生产工艺复杂,使用原辅材料繁多,排放的VOCs种类多而复杂,不同的厂家也有所差别,但总体来看产生的废气浓度均较低,国外一般采用水吸收+沸石转轮吸附浓缩+高温焚烧的组合技术进行治理,但需要增加高效的粉尘过滤装置,一般采用袋式过滤装置。
国内企业目前大多数均采用填充塔以清水洗涤处理,吸收液进入企业生产废水处理系统。主要设备为洗涤塔。由于采用清水洗涤VOCs去除效率较低,仅为30%~40%,一般情况下VOCs难以达标排放,在吸收液中加入一定量的乳化添加剂后可使吸收效率提高至85%以上,对于吸收了有机物的吸收液进入企业的废水处理系统处理至达标排放,实际上是将气相污染转移到水相污染后再进行治理。该技术近期已经开始在电子工业应用,和沸石转轮吸附浓缩+高温焚烧技术相比,该技术投资费用低(处理气量10万m3的设备投资约为300万元),运行费用相当,虽然净化效率低一些,但由于废气中有机物的浓度本身较低,亦可以达到排放要求。(3)电子终端产品废气治理技术
电子终端产品生产废气中VOCs的治理主要是对电路板清洗工艺废气和产品喷涂工艺废气的治理。①电路板清洗工艺废气治理技术
电路板清洗工艺废气中主要含三氯乙烯、二氯甲烷、丙酮、乙醇、异丙醇等成分,一般浓度较高,由于含有三氯乙烯、二氯甲烷等含氯化合物,不宜进行焚烧处理。目前一般采用活性炭纤维吸附回收装置或颗粒活性炭吸附回收装置进行治理。
②喷涂工艺废气治理技术
电子终端产品的喷涂多数使用UV漆。UV漆的成分复杂,通常含有二三十种有机化合物,且含有一些高沸点的化合物。废气的风量大(一个生产车间的排风量一般10万m3/h以上)、浓度低(一般低于350mg/ m3),成分极其复杂,不能进行回收利用,目前国内外一般采用吸附浓缩+燃烧技术进行治理。
5.5 家具制造 5.5.1产污环节与现状
家具制造业生产的产品种类繁多,生产工艺也不尽相同。其中以木制家具、金属家具和软体家具的产量最大(占家具总产量的95%左右)。涂装工艺是家具制造中产生VOCs的主要工序,包括干燥过程。木质家具涂装技术包括喷涂、刷涂、辊涂、淋涂及浸涂等;金属家具常见涂装工艺有刷涂、喷涂。软体家具制造过程中排放的VOCs主要来源于胶粘剂的使用,VOCs产生量较少。
VOCs排放与使用的涂料类型有关,涂装相同面积时,使用油性涂料产生的VOCs最多,水性涂料次之,粉末涂料最少。此外,VOCs排放还与涂装技术有关。涂装相同面积时,空气喷涂技术产生的VOCs最多,静电喷涂和刷涂等工艺产生的VOCs较少。多数家具制造企业采用的涂装工艺仍是较为落后的空气喷涂、滚刷涂和手工涂装,采用涂装效率较高的静电喷涂、淋涂、辊涂、浸涂的企业相对较少,采用粉末涂装工艺的企业数量有限。
目前,我国木器家具制造中油性涂料占涂料总量的90%左右,其它种类的涂料所占比重约为10%。油性涂料一般包括三个组分:油漆、固化剂和稀释剂。其中,涂料中有机溶剂和稀释剂是涂装工艺中VOCs的主要贡献者,家具制造工业排放的VOCs绝大部分也来自涂料中有机溶剂和稀释剂的挥发。
不同种类的涂料在使用过程中所排放的VOCs种类和含量不同。一般家具生产的喷涂过程和汽车生产类似,由于车间需要强排风,所产生的废气风量大、浓度低,一般低于200mg/m3,但对于一些大型的自动喷涂线,由于喷涂的强度大,排放浓度也可以达到200mg/m3以上。木制家具的烘干和金属家具的烤漆工艺产生部分高温废气,浓度也相对较高。
5.5.2末端治理技术
目前在我国家具行业的VOCs废气治理工作基本还局限于漆雾的治理,只有少数企业对去除漆雾以后的废气中的VOCs进行了吸附治理。
对于家具喷涂工艺产生的漆雾颗粒物和木质粉尘主要是采用水帘柜过滤进行治理,其中VOC总去除效率仅为10%~15%。在水帘柜之后采用水吸收塔,加入部分絮凝剂后可进一步提高漆雾净化效率,同时可以去除部分VOCs,但VOCs的净化效率不超过30%。吸收塔产生的废液进入企业的废水处理系统处理。
对VOCs采用活性炭吸附回收装置,利用水蒸气对活性炭再生,以回收废气中的有机溶剂;或采用活性炭吸附浓缩-催化燃烧治理装置,利用热风对活性炭进行再生。在目前家具行业的一些治理案例中,活性炭吸附装置的运行情况很差,运行率很低,主要原因是漆雾预处理不彻底,从而造成活性炭吸附器失效。
低温等离子体技术治理家具行业的喷涂废气,设备简单,管理方便,投资和运行费用都较低,虽然净化效率不高,但经过多级净化后也可以达标排放。
5.6 装备涂装
除汽车制造业和家具制造业外,金属制品业、通用设备制造业、专用设备制造业、电气机械及器材制造业、通信设备、计算机及其电子设备制造业等装备制造业企业在生产过程中,部分企业也存在表面涂装工序,从而造成VOCs的排放。装备制造业企业采用的涂装工艺类型众多,既有涂装效率较高的静电喷涂、淋涂、辊涂、浸涂,也有涂装效率较低的空气喷涂、滚刷涂和手工涂装。其中采用普通空气喷涂和手工涂装的数量最多。
5.6.1产污环节与现状
装备制造业表面涂装工序所使用的涂料是由成膜物质(树脂或纤维素)、颜料、有机溶剂以及各类添加剂所组成,加上涂装前的清洗脱脂、稀释剂的调配、涂装后设备的清洁、换色清洗等步骤等都需要使用有机溶剂,因此在涂装的过程中各个环节都会存在有机溶剂挥发逸散,形成VOCs排放。大多数装备制造业采用溶剂型涂料进行涂装作业,而涂布技术包括各种型式,如淋涂、浸涂、喷涂、静电喷涂等,不同的涂布技术将依其涂料特性、溶剂含量、涂装效率等因素,产生不同程度VOCs排放,典型装备制造业VOCs排放环节及主要VOCs组分见表17。
表17 典型装备制造业VOCs排放环节及主要VOCs组分
我国是制造业大国,喷涂废气对目前我国工业VOCs排放贡献最大。由于喷涂工艺废气中伴随产生大量的漆雾,而且漆的种类多,成分复杂,因此治理难度大,治理成本高,治理效果差,是目前我国工业VOCs排放治理的一个难题。具体治理工艺应根据不同行业所产生的喷涂废气特征来选择,一般包括以下几种组合治理工艺:
(1)水帘除雾+水吸收塔吸收+吸附浓缩-焚烧治理技术;其中吸附浓缩包括蜂窝活性炭和沸石转轮吸附浓缩装置,焚烧技术包括催化燃烧和高温焚烧装置。
(2)水帘除雾+多级过滤+颗粒活性炭吸附回收技术。(3)水帘除雾+水吸收塔吸收+低温等离子体净化技术。6 本技术政策的制定原则、依据和技术路线 6.1 制定原则
本技术政策制定的原则是:坚持“预防为主、防治结合、过程控制、末端治理和综合利用”的技术原则,注重技术的科学性和实用性,重点突出VOCs污染防治技术政策对各行业的分类指导作用,并具有一定的前瞻性,满足相关环保标准和环保管理工作要求。
6.2 编制依据
(1)国家现有的环境保护法律、法规文件,废气综合排放标准、各省市的地方排放标准和各行业标准等,如下: ①《中华人民共和国环境保护法》;
②《中华人民共和国大气污染防治法》; ③《中华人民共和国水污染防治法》; ④《中华人民共和国清洁生产促进法》; ⑤《中华人民共和国循环经济促进法》; ⑥《清洁生产标准》系列标准;
⑦《环境保护标志产品技术要求》系列标准; ⑧《大气污染物综合排放标准》等国家和地方系列综合标准和行业标准; ⑨《污染防治技术政策》系列政策; ⑩ 相关产业政策、行业发展规划等。
(2)有机废气的排放和污染现状,各行业的排放特点及其污染治理情况;(3)各类生产、使用VOCs过程的工艺发展水平;
(4)各类治理技术的发展水平、成熟程度、应用范围和覆盖度; 6.3 技术路线
本技术政策研究路线见图12。
图12 本技术政策研究技术路线 主要技术内容的说明 7.1 总则
总则中主要包括技术政策制定的依据、技术政策适用的范围、控制目标和规划要求、有针对性的提出VOCs污染防治的技术路线和遵循的原则等总体性界定。
(一)为贯彻《中华人民共和国环境保护法》等法律法规,防治环境污染,保障生态安全和人体健康,促进挥发性有机物(VOCs)污染防治技术进步,制定本技术政策。
(二)本技术政策为指导性文件,供各有关单位在建设项目和现有企业的管理、设计、建设、生产、科研等工作中参照采用。
(三)本技术政策适用于工业源和生活源产生的VOCs污染防治。工业源包括炼油与石化行业,油品(溶剂)储存、运输和销售过程,有机精细化工行业,涂装、印刷、粘合、工业清洗等使用含VOCs产品的行业;生活源包括建筑装饰、餐饮服务和服装干洗。
VOCs排放源包括自然源和人为源,自然源主要为植被排放、森林火灾、野生动物排放和湿地厌氧过程等,目前仍属于非人为可控范围。因此,在本技术政策中无法对自然源排放的VOCs进行规定。
人为源又包括移动源和固定源两大类。移动源是指机动车、轮船、飞机等各种交通运输工具的尾气排放,主要是从油品的升级和尾气治理两个方面进行尾气中VOCs的控制。目前已有针对机动车的《机动车污染防治技术政策》等专门的技术政策,轮船和飞机只能从油品的升级方面对VOCs的排放进行控制,因此在本技术政策中不再考虑移动源的排放。
生活源对象复杂,包括建筑装饰、油烟排放、垃圾焚烧、秸秆焚烧、燃煤(工业锅炉、家庭燃煤等)、服装干洗等等。其中,垃圾焚烧、秸秆焚烧和燃煤过程中主要产生的是烟雾,粉尘的产生量大,实际上燃烧产物中VOCs的含量极低,但就全国范围来看,化石燃料和生物质的燃烧量非常大,燃烧过程中VOCs的排放量也占有很大的比例。但由于燃烧源的分散性,在控制上只能从行政法规的角度进行管理,将来可以从控制PM2.5的角度对其进行规定,本技术政策为VOCs控制技术政策,因此对于燃烧不作规定。在生活源中,建筑装饰过程中由于涂料的使用量非常大,即使是水性涂料中也含有一定比例(小于5%)挥发性有机物;餐饮油烟的排放在我国量大、面广,也是异味扰民、居民投诉的热点问题;服装干洗虽然总的VOCs排放量并不大,但由于目前使用的四氯乙烯和石油系干洗剂的毒性高,对城市中局部空气质量的影响较大,也是各国城市中VOCs排放控制的重点之一。因此,在本技术政策中对生活源VOCs的控制主要考虑建筑装饰、餐饮油烟和服装干洗三个方面。工业源VOCs排放所涉及的行业众多,为重点控制源。工业源VOCs的排放主要包括四个环节:(1)炼油与石化行业;(2)油品(溶剂)储存、运输和销售过程;(3)有机精细化工行业,主要包括涂料、油墨、胶粘剂、医药、农药等含VOCs产品的生产;(4)涂装、包装印刷、粘合、工业清洗等含VOCs产品的使用行业。
(四)在工业生产中鼓励采用清洁生产技术,实施源头控制和末端治理相结合的综合防治措施;根据技术经济可行性,严格生产过程中VOCs排放的污染控制要求,鼓励对资源和能源的回收利用。
我国作为制造业大国,工业生产的基数庞大,但生产过程粗放,清洁生产技术落后,在涉及到VOCs排放的大多数生产行业的清洁生产技术都有很大的提高余地,通过技术进步和生产工艺的改进可以从源头上大幅度地减少生产过程中VOCs的排放量。因此在该技术政策中首先考虑的是采用清洁生产技术和源头控制措施,再通过末端治理对VOCs的排放进行综合防治。在很多行业中,有机溶剂的使用量大,排气中VOCs的浓度高,需要进行回收再利用;在燃烧法治理中排放的高温烟气,需要进行热量回收利用。
(五)应采取针对措施,限制生产在使用和消费过程中释放VOCs的产品;鼓励在生产和生活中使用低VOCs含量的产品,减少VOCs的无控制排放。在生产中,对于涂料等涉及VOCs排放的行业,生产过程中的VOCs污染与涂料使用中的VOCs相比,占比要小得多,仅仅强化对涂料行业生产中的VOCs的控制是不够的,还应控制溶剂涂料等高VOCs产品的使用。在日常生活中,建筑装饰过程中VOCs的排放量较大,主要是使用低VOCs含量的涂料来降低VOCs的排放。对餐饮油烟和服装干洗过程中VOCs的排放,既要考虑末端治理,也要加强日常监督管理工作。
7.2 源头控制
我国涉及到VOCs排放的工业行业众多,既包括石油化工等VOCs产品的生产、油品(溶剂)储运过程、有机精细化工行业中以VOCs为原料的生产过程,又包括众多的含VOCs产品的使用过程等。涉及的企业工艺生产水平也千差万别,既存在具备国际先进水平的生产工艺,也存在粗放式、人工作坊式的生产工艺。本技术政策希望能引导各类涉及VOCs排放的企业改进工艺技术,提高清洁生产水平,在生活源的排放中,首要的还是减少含VOCs产品的使用,从源头上减少VOCs的排放。
(一)在炼油与石化行业中,对于设备与管线组件、工艺排气、废气燃烧塔(火炬)、废水挥发、油品储运等过程中VOCs的防治,应满足以下规定:
1、对泵、压缩机、阀门、法兰等易发生泄漏的设备与管线组件,应制定泄漏检测与修复(LDAR)计划,定期检测、及时修复,防止或减少跑、冒、滴、漏。
2、对空气氧化、蒸馏等工艺排放的尾气应密闭收集,并通过净化处理后排放。应急情况下的泄放气应导入燃烧塔(火炬),经过充分燃烧后排放。
3、废水收集系统和处理设施的初级处理单元产生的废气应密闭收集并集中处理后排放。在炼油与石化行业中,VOCs的排放环节主要有设备与管线组件的泄露、空气氧化和蒸馏等工艺过程排气、废气燃烧塔(火炬)尾气排放、废水挥发和油品储运过程等。对泵、压缩机、阀门、法兰等设备与管线组件的泄漏,主要是通过优化生产工艺,提升设备水平,加强管理,制定泄露检测与修复(LDAR)计划,通过定期检测及时对泄漏点进行修复,以防止或减少跑、冒、滴、漏;对空气氧化、蒸馏等工艺排放的高浓度含VOCs的尾气必须通过密闭收集进行资源回收,不能进行回收的再进行净化治理。目前在石油炼制和石油化工行业,燃烧塔(火炬)只是在应急情况下对生产装置中的泄放气进行燃烧处理,瞬时排放浓度高,燃烧后要能够达标排放;由于石化废水中有机物的含量高,易挥发,废水收集系统应采用管线密闭收集,废水处理设施初级处理单元如鼓风曝气池、气浮池等因通入大量空气,原先溶入的VOCs会再度蒸发至大气,总量很大,必须通过加盖等密闭收集后处理。
实际上,在炼油与石化行业中,还有一些过程会产生含VOCs的废气,如催化剂的再生过程等,可以参照空气氧化和蒸馏等工艺过程排气进行处理,不再单独提出。
油品(溶剂)的储运过程中VOCs的排放控制可参照下节执行。
(二)在油品(溶剂)的储存、运输和销售过程,应满足以下规定:
炼油厂所生产的各类油品(汽油、柴油、煤油)和溶剂发送到各地的油库和储存设施中,然后通过油罐车分发到各个加油站等。在对储油库中油品储槽(罐)的注油、油罐车的装载和卸载、机动车的加油等过程中,VOCs的挥发量很大,也是目前控制的重点。在该条中对储存、运输和销售三个环节的VOCs控制进行了规定。
1、储油库、加油站和油罐车应配备相应的油气回收系统。
在油品的储存、运输和销售环节中所产生的都是高浓度的油气,如果不回收会对局部环境产生较大的影响,同时也造成资源浪费。目前控制措施和回收技术已经比较成熟,因此从总体上要求对各个环节中所产生的油气应配备回收系统进行回收。
2、油品(溶剂)储罐宜采用高效密封的内(外)浮顶罐,当采用固定顶罐时,应采用密闭排气系统将VOCs蒸气输送至回收设备。
油品(溶剂)储罐(槽)由固定顶式改为浮顶式,可以防止注油过程中高浓度的油气由其上方的呼吸口排出,同时也无需加装回收装置。但是,浮顶罐的制造和使用都比较复杂,浮动顶的密封方式有多种,可根据具体情况选择,在此笼统地提出采用高效密封方式的浮顶罐。
3、油品(溶剂)运载工具(油罐汽车、火车和轮船)在装载过程中排放的VOCs应密闭收集输送至回收设备,或通过蒸气连通系统返回储罐。
油罐汽车、火车和轮船在装载过程中,液体油品注入,气态油气排出。可以通过蒸气平衡连通系统直接返回储罐,在未设置蒸气连通系统的情况下,则需要密闭收集后进行回收,通常采用活性炭吸附回收,并具有很好的经济效益。
(三)涂料、油墨、胶粘剂、医药、农药生产等有机精细化工行业应满足以下规定:
1、鼓励扩大符合环境标志产品技术要求的低有机溶剂含量、低毒、低挥发性涂料、油墨、胶粘剂等的生产规模。
2、鼓励采用密闭一体化生产技术,并对生产过程中产生的废气集中收集后处理。有机精细化工行业所涉及的产品非常之多,其中涂料、油墨、胶粘剂、医药、农药等都是产量最大的一些产品,也是生产过程中VOCs排放量大的一些行业。分散式、间歇式的生产方式造成VOCs点源多,收集和处理困难。密闭一体化的清洁生产技术可以方便废气的收集和治理,减少VOCs排放。
目前对于一些主要的有机精细化工产品都制订了《环境标志产品技术要求》。鼓励使用满足《环境标志产品技术要求》的产品,可以显著减少这些产品在制造和使用过程中的VOCs排放。
(四)在涂装、印刷、粘合、清洗等含VOCs的产品的使用过程中,应满足以下规定: 工业生产过程中VOCs的排放主要划分为四个方面,即石油化工等VOCs产品的生产过程,油品(溶剂)储存、运输和销售过程,以VOCs为原料的生产过程和含VOCs产品的使用过程。其中就VOCs的排放量来讲,含VOCs产品的使用过程的排放量最大,占到整个工业源排放量的60%以上。在含VOCs产品的使用过程中,涂装、印刷、粘合和清洗(脱脂)又是四个主要的VOCs排放工艺,其中涉及到众多的行业。在涂装、印刷、粘合和清洗(脱脂)生产工艺中均使用大量的有机溶剂,最终大部分挥发到空气中,因此在该部分中以涂装、印刷、粘合和清洗(脱脂)四个重点生产工艺进行规定。
1、鼓励使用通过中国环境标志产品认证的环保型涂料、油墨、胶粘剂和清洗剂。作为三大类有机精细化工产品,环保型的涂料、油墨和胶粘剂的研发和使用主要是为了降低在使用过程中VOCs的排放。涂料、油墨和胶粘剂做不到完全避免有机溶剂的使用,需要从政策上鼓励生产和使用低有机溶剂含量和使用低毒性有机溶剂的相关产品。目前,已有380余家企业生产的14600多规格型号的涂料产品通过了中国环境标志产品认证,1000多家企业生产的30000多规格型号的相关产品通过了中国环境标志产品认证。截止目前,环境保护部也制定发布了97项环境标志产品标准。
2、根据涂装工艺的不同,鼓励使用水性涂料、高固份涂料、粉末涂料、紫外光固化(UV)涂料等环保型涂料,限制使用溶剂型涂料;推广采用静电喷涂、淋涂、辊涂、浸涂等涂装效率较高的涂装工艺。除工艺有特殊要求外,应取消露天喷涂作业。
涂料的种类很多,环保型涂料的开发速度也非常快。其中,水性涂料、高固分涂料、粉末涂料、紫外光固化(UV)涂料等均属于环保型涂料,和普通的溶剂型涂料相比在使用过程中会大大降低VOCs的排放量,属于鼓励使用的涂料类型。采用高效的涂装工艺也是降低喷涂过程中VOCs排放的途径,其中静电喷涂、淋涂、辊涂、浸涂等涂装工艺具有涂装效率高的优点,是目前涂装行业重点推广的环保工艺。
在机械加工、汽车维修、道路桥梁施工、造船等很多生产和生活过程中,进行露天喷涂作业,喷涂废气难以收集和治理。有些情况下是由于工艺特殊需要而无法进行收集,如桥梁施工、造船的组装过程等,但目前大量存在的小型机械加工、家具生产、汽车维修等的喷涂作业应该进行规范,规定在喷漆房中进行作业,杜绝露天喷涂。
3、在印刷工艺中推广使用醇性油墨和水性油墨,印铁制罐行业鼓励使用紫外光固化(UV)油墨。
在目前印刷工艺中,VOCs排放量最大的是凹版印刷工艺,所使用的溶剂型油墨使用过程中排放大量的甲苯、甲乙酮、异丙醇和乙酸乙酯。目前在国外已经普遍使用水性油墨和无苯无酮的醇性油墨代替溶剂型油墨,国内也在推广使用醇性油墨,但由于使用水性油墨对印刷品的质量影响较大,同时需要对生产工艺进行调整和改造,在国内推广起来还存在一定的难度。
在印铁制罐行业中,传统印铁涂料固体份:40%~60%,瓶盖用粘合剂固体份:25%~35%,油墨固体份:60%左右,而UV涂料固体份:97.5±2.5%。常用溶剂、稀释剂为酮类、醇类、醚类、芳香烃(对二甲苯、间二甲苯)等。UV油墨技术上已经非常成熟,和传统印铁技术相比,可以大大降低VOCs的使用量和排放量,是目前国内印铁技术的重点发展方向。
4、工业清洗过程产生的废溶剂应密闭收集,有回收价值的废溶剂应经处理后回用,其他废溶剂应妥善处置。
工业清洗过程中成生的一般都是高浓度的有机废气,应进行收集后处理。对清洗后产生的废溶剂的管理和回收往往比较困难,在此笼统地提出清洗后的废溶剂应进行密闭回收。
5、鼓励在人造板、制鞋、皮革和人造革、包装材料等粘合过程中使用水性等环保型胶粘剂,在复合膜的生产中推广无溶剂复合技术。
胶粘剂的种类多,不同行业对胶粘剂的要求也不同。目前水性胶粘剂、低溶剂含量或低毒性的胶粘剂只在部分行业中使用。溶剂型干式复合和无溶剂复合是复合包装行业两大主要工艺技术。溶剂型干式复合是一种已经普遍采用但存在VOCs污染的传统工艺;无溶剂复合技术绿色环保,在一些发达国家和地区使用比例高达70%~80%,在我国这一比例低于5%,推广使用该技术后,可以大大降低复合包装行业中VOCs排放量。
6、应采取废气收集措施,提高废气的收集效率,减少废气的无组织排放与逸散,并对收集后的废气进行回收或处理后排放。
在涂装、印刷、粘合、清洗等含VOCs产品的使用过程中,存在涂料、油墨、胶黏剂、清洗剂、稀释剂等含大量有机溶剂产品的使用,通过采取有效集气措施,降低无组织排放与逸散;集中进行回收或处理,减少VOCs排放。
(五)对建筑装饰、服装干洗、餐饮油烟等生活源,应满足以下规定:
1、推广使用符合环境标志产品技术要求的建筑涂料,逐步淘汰溶剂型涂料。
目前我们所使用的建筑涂料,包括外墙涂料和内墙涂料,基本上都是乳胶漆。乳胶漆的制作成分中基本上由水、颜料、乳液、填充剂和各种助剂组成,这些原材料本身不含毒性,可能含毒的主要是成膜剂中的乙二醇和防霉剂中的有机汞。
2、在服装干洗行业应逐步淘汰开启式干洗机的生产和使用,推广使用配备溶剂回收系统的封闭式干洗机。
服装干洗行业具有规模小而分散的特点,所使用的干洗机包括开启式、半开启式和封闭式,目前都有大量使用。由于干洗剂(四氯乙烯和石油系干洗剂)的毒性高,目前各国对于干洗作业都有严格的规定,规定使用带有溶剂回收系统的封闭式干洗机,同时规定干洗剂的消耗量和回收量。
3、餐饮服务行业应推广使用具有油雾回收功能的抽油烟机和高效油烟净化设施。在我国,早在2002年就已经颁布了餐饮油烟中颗粒物的排放标准,就目前来看执行的并不理想。单独强调末端治理,在管理上存在困难,油烟净化的效果无法保证。目前,国内已经开发了具有油雾回收功能的抽油烟机,可以从源头上将大部分的油雾截留下来,作为废油进行回收。因此,要减少餐饮油烟的排放,首先应该对抽油烟机进行规范和改造,从源头上控制餐饮油烟的排放。7.3 末端治理与综合利用
(一)鼓励VOCs的回收利用,并优先鼓励在生产系统内回用。
在进行VOCs的治理时,首先需要考虑是否能够进行资源回收利用。实际上,在很多情况下对生产废气中的溶剂进行回收后回用于生产,可以显著降低生产成本。如化纤生产过程中CS2的冷凝回收,双氧水生产过程中重芳烃的吸附回收;在锂离子电池、复合膜、凹版印刷等生产过程均可以回收大量的有机溶剂,经过提纯后亦可以回用于生产。除了采用物理方法将有机溶剂回收利用外,还可以采用燃烧的方法处理废气,同时将废气燃烧后所产生的热量回用于生产,如汽车生产中的烤漆废气,彩钢板和涂布行业的干燥废气等。如果回收的有机溶剂无法回用于生产过程,但具有回收价值,则回收后溶剂亦可以实现系统外的综合利用。
(二)应根据废气的产生量、污染物的组分和性质、温度、压力等因素进行综合分析后选择废气治理工艺路线。VOCs治理的难度在于有机物的种类繁多,性质复杂,排放条件多样,实用的治理技术也多种多样。采用何种治理技术,根据废气的产生量、污染物的组分和性质、温度、压力等因素进行综合分析后选择确定。
(三)对于高浓度VOCs废气,宜首先采用冷凝回收、变压吸附回收等技术对废气中的VOCs回收利用,辅助以其他治理技术实现达标排放。
(四)对于中等浓度VOCs废气,宜采用吸附技术对有机溶剂进行回收,或采用催化燃烧和热力焚烧技术净化后达标排放。当采用催化燃烧和热力焚烧技术净化时,应对燃烧后的热量回收利用。
(五)对于低浓度VOCs废气,有回收价值时,宜采用吸附技术对有机溶剂回收后达标排放;无回收价值时,宜采用吸附浓缩燃烧技术、生物技术或等离子体技术等净化后达标排放。
通常在选择治理技术时,首先要考虑废气中有机物浓度的高低。在此我们以有机物的浓度高低和废气中的有机物是否具有回收价值作为依据来指导选择治理技术,是一种较合理的划分方法,也符合实际情况。一般来讲,低、中、高浓度的划分为低于1000ppm、数千ppm和10,000ppm以上。
对于高浓度含VOCs的废气,宜首先采用冷凝回收、变压吸附回收等设施对废气中的VOCs进行回收利用。但经过冷凝和变压吸附以后的尾气在大多数情况下仍达不到排放要求,需要辅助以其他治理技术实现达标排放。
对于中等浓度含VOCs的废气,大部分具有很高的回收价值,通常采用吸附技术对有机溶剂进行回收,在烤漆等工艺通常采用催化燃烧和热力焚烧技术进行净化后回收热量。
对于低浓度含VOCs废气的治理最为复杂。当具有回收价值时,宜采用吸附技术对废气中的VOCs进行吸附回收;当回收价值低或无回收价值时,为了降低治理成本,通常的做法是采用吸附浓缩技术将废气中的有机物进行浓缩,再采用燃烧技术(催化燃烧和高温焚烧)进行净化,在该浓度范围内废气燃烧后所产生的热量可以维持反应系统的自持燃烧,是目前低浓度、大风量有机废气治理的主流技术。在很多情况下,用于废气的成分复杂,吸附剂不能再生,低浓度废气不能采用吸附技术进行净化,如废水处理厂产生的臭气,橡胶生产尾气等,则可以采用生物技术或等离子体技术等进行净化。
(六)恶臭气体宜采用生物技术、等离子体技术、吸附技术等净化后达标排放。
恶臭气体通常浓度较低,在多数情况下成分也较为复杂,采用吸附技术进行治理时吸附剂难以再生,治理成本高。近年来,生物技术和低温等离子体技术获得了快速的发展,日渐成熟,对于低浓度废气的治理,特别是臭气的治理具有成本低、使用方便等优点,得到了越来越多的应用。但在有些特殊的情况下,尤其对一些高毒性、无法采用生物技术和低温等离子体技术进行治理的废气,虽然治理成本高,吸附法还是一种最为方便和保险的治理技术。
(七)餐饮油烟宜采用等离子体和湿法油烟净化装置净化后达标排放。从2002年颁布餐饮油烟的排放标准以来,等离子体、湿法洗涤、活性炭吸附、机械过滤等多种治理技术均获得了应用。但经过多年来的运行实践来看,等离子体技术和湿法洗涤技术的效果好,易于操作和管理。活性炭吸附法和机械过滤法均存在堵塞清理的难题,需频繁更换吸附材料和过滤材料,成本高,目前已经很少使用。
(八)对于催化燃烧和高温焚烧过程中产生的含硫、氮、氯等的无机废气,以及吸附、吸收、冷凝、生物等治理工艺过程中所产生的含有机物的废水,应处理后达标排放。
VOCs治理设施所产生的二次污染包括废气、废水和固体废弃物。有时风机也会产生噪声污染,但通常并不突出,在此未进行规定。对于含硫、氮、卤素等的有机废气,在进行燃烧处理时,会产生SO2、NOX和含卤素的无机废气,需要进行吸收等处理后达标排放。在吸附剂再生、吸收、冷凝、生物等治理工艺过程中,会产生含有机物的废水,均应进行治理后达标排放。
(九)对于不能再生的过滤材料、吸附剂及催化剂等净化材料,应按照国家固体废物管理的相关规定进行处理处置。过滤材料、吸附剂及催化剂等净化材料在使用过程中性能会逐渐衰减,使用一段时间以后需要进行更换。更换下来的材料应按照国家固体废物管理的相关规定进行处理处置。7.4 鼓励研发的新技术新材料
(一)低浓度有机废气旋转式沸石吸附浓缩技术和高效蓄热式燃烧技术。
低浓度有机废气治理技术是目前的研发重点。目前旋转式沸石吸附浓缩技术和高效蓄热式燃烧技术,在国外是主流的低浓度有机废气治理技术。近年来我国在该两类技术的研发方面有较大发展,但和国外相比还存在不小的差距。因此,需要进一步鼓励开发。
(二)针对特定有机污染物的生物净化技术和低温等离子体净化技术。
生物净化技术和低温等离子体净化技术的特点是普适性差,对于某一类污染物的处理效果很好,但对于某些污染物的处理效果较差。对于生物技术来讲,主要是针对污染物来筛选菌种,对于等离子体技术来讲,主要是研究不同污染物特征化学键破坏时所需要的能量。要拓展生物技术和等离子体技术的应用范围,需要加强针对特定有机污染物消除技术的研究开发。
(三)高效吸附材料(如活性炭、活性炭纤维和沸石分子筛)、催化材料(如广谱性VOCs氧化催化剂)和生物填料等。
有机废气净化材料主要是吸附材料、催化材料和过滤材料。在吸附材料方面,和国外的差距主要有三个方面:一是用于溶剂回收的专用活性炭,特别是汽油回收专用活性炭的性能差,二是疏水型的蜂窝沸石成型材料的生产技术尚未完全突破,三是用于溶剂回收的活性炭纤维的强度较差,使用寿命短,和国外相比均存在较大的差距。在氧化催化剂的开发方面,近年来获得了很大的发展,但在广谱性方面还存在差距。过滤材料主要用于含颗粒物废气的预处理,主要在于选型,该技术政策中没有提及。生物填料的研发是生物技术开发中的一项重点内容。
四)可测定总烃含量和针对不同特征污染物含量的工业有机废气在线监测装置。由于有机物的种类繁多,排放情况复杂,污染源的检测装置成为目前VOCs治理中的一大瓶颈。要对污染治理设施实行有效的监管,必须安装能够远程监控、经济实用的在线监测装置。检测装置除了能够对TVOCs进行检测以外,还要能够对必要工艺废气的特征污染物进行检测。目前该类装置的成本太高,难以推广使用,低端装置质量上不过关,使用性能很差。因此,需要采取措施鼓励针对总烃含量和针对不同特征污染物含量的在线监测装置的开发应用。
第四篇:《2016年国家先进污染防治技术目录(VOCs防治领域)》(公示稿)
《2016年国家先进污染防治技术目录(VOCs防治领域)》(公示稿)1.印刷行业氮气保护全UV干燥技术:
工艺路线及参数:凹印工艺中使用UV油墨的承印材料在进入干燥区前,先采用不含氧的气体对承印材料表面进行吹扫处理,使其在充有保护气体N2的紫外线干燥箱中进行干燥,防止干燥过程中油墨与空气接触反应,避免添加抗氧剂,从源头减少VOCs的使用与排放。
主要技术指标:氮气保护全UV九色凹印机工作过程中,在不抽风情况下,车间内VOCs浓度最高为0.15mg/m3。
技术特点:采用紫外干燥技术解决了UV油墨在凹印机上无法完全干燥的难题;不仅可以减少VOCs排放,还可以降低干燥过程的能耗。
适用范围:烟草、食品、药品等包装材料的印刷。
应用案例:中山和运印务有限公司无溶剂凹版印刷工艺改造工程
技术类别:示范
2.包装印刷无溶剂复合技术
工艺路线及参数:
该技术使用聚氨酯胶粘剂通过反应固化实现不同基材的粘结。全部工艺在低温或常温(35~45℃)状态下完成;使用多辊涂布,胶层薄,涂胶量只有溶剂型干式复合的1/3~1/2。
主要技术指标:相比溶剂型干式复合工艺VOCs减排率可达99%以上。
技术特点:采用无溶剂胶粘剂代替溶剂型胶粘剂,从源头上避免了VOCs的使用与排放。
适用范围:软包装印刷及装饰、织物、皮革复合等领域。
应用案例:广州市溢洋塑料制品有限公司包装印刷无溶剂复合项目
技术类别:推广
3.木器涂料水性化技术
工艺路线及参数:通过应用丙烯酸聚氨酯共聚物乳液(PUA)制备技术、多重交联制备聚氨酯水分散体(PUD)制备技术及高性能聚丙烯酸酯乳液(PA)的制备技术,形成系列高性能聚合物乳液的制备技术,实现木器涂料的水性化。
主要技术指标:高性能聚合物乳液的VOCs含量≤50g/L;水性涂料的VOCs含量≤70g/L。
技术特点:解决了高性能聚合物乳液的制备和溶剂型涂料的水性化替代技术。
适用范围:木器涂料生产企业及木质家具制造行业。
应用案例:中山市美果家具厂年产2万套办公家具涂装水性化工程
技术类别:推广
4.活性炭吸附-氮气脱附冷凝溶剂回收技术
工艺路线及参数:利用颗粒活性炭吸附有机废气,活性炭吸附饱和后采用高温氮气脱附再生,脱附产生的溶剂经冷凝分离后回收。
主要技术指标:VOCs净化效率≥96%(一级吸附若不能达标则需采用两级)。
技术特点:采用惰性气体氮气作为脱附载气,有效解决了传统回收工艺安全性问题;与水蒸气再生相比,回收溶剂含水率低,易于提纯。
适用范围:包装印刷、石油化工、涂布、制药等行业。应用案例:佛山美林数码影像材料有限公司涂布废气治理项目
安徽集友纸业包装有限公司有机废气治理项目
河北永新包装有限公司40000m3/h干复机废气治理项目
上海紫江彩印包装有限公司80000m3/h复合机废气治理项目
技术类别:推广
5.油品储运过程油气活性炭吸附回收技术
工艺路线及参数:采用活性炭吸附油气,吸附饱和后利用减压解吸,解吸出的油气通过喷淋吸收或进入低温冷凝器直接冷凝。
主要技术指标:入口油气浓度范围300~700g/m³,出口油气浓度<10g/m³,油气回收率>97%。
技术特点:采用油气回收专用活性炭,吸脱附速率快;采用干式螺杆真空泵减压脱附,安全性好。
适用范围:成品油装载的油气回收、成品油存储过程中储罐大小呼吸气的油气回收。
应用案例:中石化北京燕山石化分公司储运一厂油气回收工程
技术类别:推广
6.油品储运过程油气膜分离-吸附回收技术
工艺路线及参数:收集石化行业储运过程中间歇性排放的油气后,经缓冲气柜,通过增压进入吸收塔回收60~80%的油气。吸收塔出口的油气经膜组件富集后返回压缩机入口,膜处理后的低浓度油气(约5~15g/m3)进入变压吸附装置(VPSA),出口的非甲烷总烃浓度<120mg/m3。
主要技术指标:VOCs回收率>99.9%。
技术特点:采用吸收-膜分离-吸附组合工艺提高了油气回收效率。
适用范围:石化行业油气回收。
应用案例:中石油四川石化有限公司4600m3/h装车及洗槽油气的膜-吸附组合回收工程
技术类别:推广
7.防水卷材行业沥青废气吸收法处理技术
工艺路线及参数:先利用油性吸收剂吸收沥青废气中的VOCs组分,吸收富集后返回生产工艺,作为生产辅助材料。吸收净化后的低浓度VOCs废气再通过高压静电除雾和活性炭吸附组合技术处理。
主要技术指标:当入口沥青烟浓度<500mg/m3、苯并芘浓度<1×10-2mg/m3、非甲烷总烃浓度<100mg/m3,净化后总排口沥青烟浓度<10mg/m3、苯并芘浓度<1×10-4mg/m3、非甲烷总烃浓度<10mg/m3。
技术特点:选用闪点高于66℃的卷材生产配料作吸收剂,吸收液经适当处理后可直接回用。
适用范围:防水卷材生产过程中沥青废气的处理。
应用案例:上海东方雨虹防水技术有限责任公司30000m3/h防水卷材车间沥青废气处理工程
技术类别:推广
8.固定式有机废气蓄热燃烧技术
工艺路线及参数:采用多床固定式蓄热室,经预热后的有机废气进入燃烧室高温氧化分解,净化后的高温尾气经蓄热体降温后达标排放,蓄热体预热进口废气,节省能源。设备运行温度800℃左右,阻力≤5000Pa。主要技术指标:当采用两床时,VOCs净化效率≥90%;当采用三床及以上时,VOCs净化效率≥97%,热回用率≥90%。
技术特点:在蓄热体支撑结构上配设气体回流装置,减少阀门切换时废气滞留量;蜂窝陶瓷作为蓄热体,设备阻力小。
适用范围:石化、有机化工、表面涂装、包装、印刷等行业中高浓度VOCs废气净化。
应用案例:厦门文仪电脑材料有限公司15000m3/hVOCs废气治理工程
德之馨(上海)有限公司80000m3/hVOCs治理工程
浙江驰怀烫印科技有限公司2室RTO工程
技术类别:推广
9.旋转式蓄热燃烧净化技术
工艺路线及参数:旋转式蓄热燃烧系统主体结构设有多个蜂窝陶瓷蓄热室和燃烧室,每个蓄热室依次经历蓄热、放热、清扫程序。控制系统控制驱动马达使回转阀按一定速度旋转,实现蓄热体吸附-放热的循环切换。
主要技术指标:VOCs净化效率≥97%,热回用率≥90%。
技术特点:蓄热体与被净化废气进行直接接触换热,换热效率高,运行费用低;采用旋转式多床结构设计,占地面积小。
适用范围:石化、有机化工、表面涂装、包装、印刷等行业中高浓度VOCs废气净化。
应用案例:东风柳州汽车有限公司15000m3/hVOCs治理工程
山东奥福环保科技股份有限公司25000m3/h工业窑炉废气处理工程
技术类别:推广
10.蓄热催化燃烧(RCO)技术
工艺路线及参数:有机废气经蓄热体加热后,在催化剂的作用下燃烧,使有机废气氧化分解为CO2和H2O。反应后的高温气体经过蓄热体储存热量用于预热后续的有机废气后直接排放,或者直接返回生产环节进一步利用热能。每个蓄热室依次经历蓄热-放热-清扫等程序,连续工作。设备运行温度300℃左右,阻力≤5000Pa,空速10000h-1-40000h-1。
主要技术指标:VOCs净化效率≥97%,热回用率≥90%,催化剂使用寿命>24000h。
技术特点:催化剂降低燃烧温度,蓄热体提高热回用率,节约能源消耗。
适用范围:中高浓度VOCs废气治理。
应用案例:开普洛克(苏州)材料科技有限公司15000m3/h蓄热式有机废气催化净化工程
东莞黄江成元鞋材制品厂干式机烘干废气处理工程
技术类别:推广
11.含氮VOCs废气催化氧化+选择性催化还原净化技术
工艺路线及参数:用贵金属催化剂催化氧化含氮VOCs,再用选择性催化还原工艺(SCR)净化催化氧化阶段产生的NOx。
主要技术指标:VOCs净化效率可达95%以上,NOx净化效率可达80%以上。
技术特点:采用催化氧化+SCR组合工艺,在高效处理含氮VOCs的同时,防止NOx二次污染。
适用范围:工业生产过程中产生的丙烯腈等含氮VOCs的处理。
应用案例:中国石油抚顺石化公司腈纶化工厂丙烯腈装置50000m3/h尾气治理项目
技术类别:推广
12.吸附浓缩+燃烧组合净化技术
工艺路线及参数:含VOCs废气进入沸石转轮吸附净化,脱附后的高浓度废气再通过燃烧装置(如RTO、RCO、TNV等)进行燃烧净化。VOCs吸附浓缩倍数10倍以上。
主要技术指标:沸石转轮吸附净化效率≥90%,燃烧净化效率≥97%。
技术特点:将中低浓度、大风量的VOCs废气通过吸附浓缩转为高浓度、低风量的有机废气,然后再进行燃烧处理,降低了废气燃烧净化的运行费用。
适用范围:涂装、包装印刷等行业中低浓度废气净化。
应用案例:北汽(广州)汽车有限公司涂装车间罩光清漆湿式喷漆涂装生产线废气净化项目
恩欧凯(无锡)防振橡胶有限公司涂装车间25000m3/h有机废气治理工程
技术类别:推广
13.低浓度有机废气生物净化技术
工艺路线及参数:低浓度有机废气导入生物过滤器后,经由采用生物复育技术研制的高效生物膜将废气中挥发性有机物降解成CO2和H2O。生物过滤器设一层或多层生物膜填料;废气停留时间>10s;适宜运行温度15~35℃。
主要技术指标:非甲烷总烃去除率>90%。
技术特点:采用高效生物膜填料,接触面积大,净化效率高;运行费用低。
适用范围:低浓度有机废气处理。
应用案例:深圳雅昌文化(集团)有限公司65000m3/h+ 50000m3/h印刷厂废气生物净化工程
广州长润汽车销售有限公司汽车维修喷漆废气治理项目
技术类别:推广
14.高级氧化-生物净化耦合处理技术
工艺路线及参数:VOCs在高级氧化单元中发生氧化反应,转化为水溶性和可生化性较好的小分子VOCs,进一步在生物净化单元处理。废气湿度50~60%,废气停留时间30~50s,液气比<3:1,温度15~35℃。
主要技术指标:对卤代烃、硫化氢、甲苯、四氢呋喃等的处理效率均达到90%以上。
技术特点:生物滤塔采用“真菌-细菌”复合菌剂进行接种挂膜,启动时间短,并耦合了高级氧化技术,提高了VOCs的可生化性。
适用范围:石油炼化、医药化工等行业生产过程和污水处理厂(站)排放的低浓度VOCs及恶臭气体的净化。
应用案例:浙江燎原药业股份有限公司生产废气及污水场(站)恶臭废气治理工程
技术类别:推广
15.污水污泥处理处置过程恶臭异味生物处理技术
工艺路线及参数:针对污水污泥处理过程中产生的恶臭异味,采用生物净化技术,利用附着于填料或洗涤液中的微生物吸收、降解恶臭气体组分。
主要技术指标:恶臭去除率>90%。
技术特点:采用优选复合菌、复合生物填料,菌种驯化时间短,耐负荷冲击能力较强。适用范围:污水污泥处理处置场所散发的低浓度恶臭气体。应用中需充分考虑环境温度影响。
应用案例:青岛泰东制药有限公司4500m³/h制药废水处理站废气生物法收集处理工程
广州市猎德污水处理厂4000m3/h污泥脱水干化废气的生物过滤除臭工程
技术类别:推广
16.乳化植物液洗涤除臭技术
工艺路线及参数:以天然植物乳液为溶剂,对异味气体进行洗涤和吸收。洗涤过程中通过形成微小气泡,增大气液接触比表面积,提高传质效率。
主要技术指标:恶臭去除率>90%。
技术特点:天然植物液可生物降解、无毒、无污染;采用植物液洗涤塔,工艺简单。
适用范围:污水处理、污泥干化、垃圾储存与转运等场合所产生的低浓度VOCs及恶臭异味治理。
应用案例:上海市奉贤区南桥生活垃圾中转站35000m3/h废气治理工程
技术类别:推广
17.双介质阻挡放电低温等离子恶臭气体治理技术
工艺路线及参数:经降温、除尘、除水等预净化后,恶臭气体在双介质阻挡放电反应单元内与携能电子和氧化性活性基团发生反应,将恶臭物质转化为CO2、H2O等物质。预处理后废气应满足颗粒物含量≤30mg/m3、废气温度≤40℃、相对湿度≤70%。
主要技术指标:恶臭气体在等离子体单元内停留时间<5s,在入口臭气浓度<10000时,恶臭去除率≥90%。
技术特点:采用双介质阻挡放电方式,放电稳定,反应时间短;电极与废气不直接接触,避免了电极腐蚀问题。
适用范围:生活垃圾处理处置、餐厨垃圾处理、污水处理、污泥处置、动物尸体无害化处理等行业的恶臭异味治理。
应用案例:北京国中生物科技有限公司阿苏卫生活垃圾综合处理场80000m3/h废气处理工程
技术类别:推广
18.餐厨油烟全动态离心分离技术
工艺路线及参数:利用高速旋转网盘高效捕集烹饪油烟,油雾颗粒被高速旋转的合金丝切割拦截,并且在离心力的作用下,沿着合金丝径向甩向四周,被旋转网盘外围的集油槽收集,完成油烟拦截和回收。单元模块进口风速2.0~3.5m/s,商用净化网盘转速1800~2200r/min,家用净化网盘转速1500~1800r/min。
主要技术指标:出口油烟浓度可达到0.7mg/m3以下。
技术特点:采用全动态离心分离技术,实现了餐厨烟气中油烟的分离净化;设备运行时烟气压降小、运行维护简单。
适用范围:家庭厨房油烟净化和商业餐厨油烟治理。
应用案例:武汉欧亚会展国际酒店有限公司餐厨油烟净化项目
技术类别:推广
第五篇:石油天然气开采业污染防治技术政策2012.3.7实施
石油天然气开采业污染防治技术政策
(公告 2012年 第18号 2012-03-07实施)
一、总则
(一)为贯彻《中华人民共和国环境保护法》等法律法规,合理开发石油天然气资源,防止环境污染和生态破坏,加强环境风险防范,促进石油天然气开采业技术进步,制定本技术政策。
(二)本技术政策为指导性文件,供各有关单位在管理、设计、建设、生产、科研等工作中参照采用;本技术政策适用于陆域石油天然气开采行业。
(三)到2015年末,行业新、改、扩建项目均采用清洁生产工艺和技术,工业废水回用率达到90%以上,工业固体废物资源化及无害化处理处置率达到100%。要遏制重大、杜绝特别重大环境污染和生态破坏事故的发生。要逐步实现对行业排放的石油类污染物进行总量控制。
(四)石油天然气开采要坚持油气开发与环境保护并举,油气田整体开发与优化布局相结合,污染防治与生态保护并重。大力推行清洁生产,发展循环经济,强化末端治理,注重环境风险防范,因地制宜进行生态恢复与建设,实现绿色发展。
(五)在环境敏感区进行石油天然气勘探、开采的,要在开发前对生态、环境影响进行充分论证,并严格执行环境影响评价文件的要求,积极采取缓解生态、环境破坏的措施。
二、清洁生产
(一)油气田建设应总体规划,优化布局,整体开发,减少占地和油气损失,实现油气和废物的集中收集、处理处置。
(二)油气田开发不得使用含有国际公约禁用化学物质的油气田化学剂,逐步淘汰微毒及以上油气田化学剂,鼓励使用无毒油气田化学剂。
(三)在勘探开发过程中,应防止产生落地原油。其中井下作业过程中应配备泄油器、刮油器等。落地原油应及时回收,落地原油回收率应达到100%。
(四)在油气勘探过程中,宜使用环保型炸药和可控震源,应采取防渗等措施预防燃料泄漏对环境的污染。
(五)在钻井过程中,鼓励采用环境友好的钻井液体系;配备完善的固控设备,钻井液循环率达到95%以上;钻井过程产生的废水应回用。
(六)在井下作业过程中,酸化液和压裂液宜集中配制,酸化残液、压裂残液和返排液应回收利用或进行无害化处置,压裂放喷返排入罐率应达到100%。
酸化、压裂作业和试油(气)过程应采取防喷、地面管线防刺、防漏、防溢等措施。
(七)在开发过程中,适宜注水开采的油气田,应将采出水处理满足标准后回注;对于稠油注汽开采,鼓励采出水处理后回用于注汽锅炉。
(八)在油气集输过程中,应采用密闭流程,减少烃类气体排放。新建3000m3及以上原油储罐应采用浮顶型式,新、改、扩建油气储罐应安装泄漏报警系统。
新、改、扩建油气田油气集输损耗率不高于0.5%,2010年12月31日前建设的油气田油气集输损耗率不高于0.8%。
(九)在天然气净化过程中,应采用两级及以上克劳斯或其他实用高效的硫回收技术,在回收硫资源的同时,控制二氧化硫排放。
三、生态保护
(一)油气田建设宜布置丛式井组,采用多分支井、水平井、小孔钻井、空气钻井等钻井技术,以减少废物产生和占地。
(二)在油气勘探过程中,应根据工区测线布设,合理规划行车线路和爆炸点,避让环境敏感区和环境敏感时间。对爆点地表应立即进行恢复。
(三)在测井过程中,鼓励应用核磁共振测井技术,减少生态破坏;运输测井放射源车辆应加装定位系统。
(四)在开发过程中,伴生气应回收利用,减少温室气体排放,不具备回收利用条件的,应充分燃烧,伴生气回收利用率应达到80%以上;站场放空天然气应充分燃烧。燃烧放空设施应避开鸟类迁徙通道。
(五)在油气开发过程中,应采取措施减轻生态影响并及时用适地植物进行植被恢复。井场周围应设置围堤或井界沟。应设立地下水水质监测井,加强对油气田地下水水质的监控,防止回注过程对地下水造成污染。
(六)位于湿地自然保护区和鸟类迁徙通道上的油田、油井,若有较大的生态影响,应将电线、采油管线地下敷设。在油田作业区,应采取措施,保护零散自然湿地。
(七)油气田退役前应进行环境影响后评价,油气田企业应按照后评价要求进行生态恢复。
四、污染治理
(一)在钻井和井下作业过程中,鼓励污油、污水进入生产流程循环利用,未进入生产流程的污油、污水应采用固液分离、废水处理一体化装置等处理后达标外排。
在油气开发过程中,未回注的油气田采出水宜采用混凝气浮和生化处理相结合的方式。
(二)在天然气净化过程中,鼓励采用二氧化硫尾气处理技术,提高去除效率。
(三)固体废物收集、贮存、处理处置设施应按照标准要求采取防渗措施。
试油(气)后应立即封闭废弃钻井液贮池。
(四)应回收落地原油,以及原油处理、废水处理产生的油泥(砂)等中的油类物质,含油污泥资源化利用率应达到90%以上,残余固体废物应按照《国家危险废物名录》和危险废物鉴别标准识别,根据识别结果资源化利用或无害化处置。
(五)对受到油污染的土壤宜采取生物或物化方法进行修复。
五、鼓励研发的新技术
鼓励研究、开发、推广以下技术:
(一)环境友好的油田化学剂、酸化液、压裂液、钻井液,酸化、压裂替代技术,钻井废物的随钻处理技术,提高天然气净化厂硫回收率技术。
(二)二氧化碳驱采油技术,低渗透地层的注水处理技术。
(三)废弃钻井液、井下作业废液及含油污泥资源化利用和无害化处置技术,石油污染物的快速降解技术,受污染土壤、地下水的修复技术。
六、运行管理与风险防范
(一)油气田企业应制定环境保护管理规定,建立并运行健康、安全与环境管理体系。
(二)加强油气田建设、勘探开发过程的环境监督管理。油气田建设过程应开展工程环境监理。
(三)在开发过程中,企业应加强油气井套管的检测和维护,防止油气泄漏污染地下水。
(四)油气田企业应建立环境保护人员培训制度,环境监测人员、统计人员、污染治理设施操作人员应经培训合格后上岗。
(五)油气田企业应对勘探开发过程进行环境风险因素识别,制定突发环境事件应急预案并定期进行演练。应开展特征污染物监测工作,采取环境风险防范和应急措施,防止发生由突发性油气泄漏产生的环境事故。