航空发动机复合材料的应用与研究

时间:2019-05-13 03:40:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《航空发动机复合材料的应用与研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《航空发动机复合材料的应用与研究》。

第一篇:航空发动机复合材料的应用与研究

航空发动机复合材料的应用与研究

[摘要]:由于航空工业的迅猛发展,航空发动机复合材料应运而生,本文简单介绍了航空发动机复合材料的发展状况,以及主要的发展趋势,分析了发动机材料的各自独特的特性,并突显了复合材料在航空发动机发展中重要地位,为未来航空发动机的相关研究和研发奠定基础,使航空发动机相关制造工艺上再上一个新台阶。

[关键词]:发动机 C/C CMC 陶瓷基复合材料

中图分类号:V250.1 文献标识码:A 文章编号

1.引言

科学技术迅速发展,特别是尖端科学技术的突飞猛进,对材料性能提出了越来越高、越来越严和越来越多的要求,传统的单一材料已不能满足实际需要。这些都促进了人们对材料的研究逐步摆脱过去单纯靠经验的探索方法,而向着按预定材料的研究方向发展。此时,复合材料就应运而生。

2.发动机复合材料

飞机、发动机结构材料家族中,复合材料是新成员。它是现代科学技术不断进步的结果,也是材料设计方面的一个突破。它综合了各种材料如纤维、树脂、橡胶、金属、陶瓷等的优点,按需要设计、复合成为综合性能优异的新型材料,复合材料已成为21世纪航空结构的支柱性材料。

2.1 碳/碳复合材料

1958年美国Chance-Vought航空公司科研人员在测定碳纤维增强酚醛树脂基复合材料中的碳纤维含量时,由于实验过程中的操作失误,聚合物基体没有被氧化,反而被热解,意外地得到了C/C复合材料,从而诞生了C/C复合材料。

80年代初,美国就开始研制碳/碳涡轮盘和涡轮叶片,以后又先后进行了F100飞机发动机的燃烧室和喷管试验,JTD试验机低压整体涡轮盘及叶片试验(运行温度为1649,比高温合金涡轮盘高出555),还进行了1760 地面超速试验。德国、俄罗斯和日本已相继成功研制涡轮外环和整体涡轮。此外,90年代初期,美国已在实施将碳/碳用于超高飞行器的飞机结构材料的计划,以实现飞行器全碳/碳株结构的设计和制造。

面对当今航空发动机对材料的要求的不断提高,C/C复合材料的发展方向为:(1)发展C/C的低成本快速致密化工艺。C/C复合材料的生产周期过长和致密化不均匀是影响其成本的主要因素,应该重视发展高效、高性能的致密化工艺;(2)加强涂层C/C在发动机工作环境下的试验考核研究。

2.2 树脂基复合材料

树脂基复合材料是由以有机聚合物为基体的纤维增强材料,通常用玻璃纤维、碳纤维或芳纶纤维增强体,经过特殊工艺加工而成的一种先进的复合材料。随着材料技术不断发展,各种先进树脂基复合材料在航空工业用量持续增加。它具有重量轻、强度高、耐介质、耐高温性能好、耐冲击性能强等一系列突出的特点,在日益发展的航空工业上广泛应用。

为适应新一代飞机对高性能材料的需要,各发达国家对先进树脂基复合材料的研究和开发都投入了大量的人力和物力,近几年来,在材料性能提高、工艺改进、成本降低等方面取得了重大的突破和发展。

近年来先进树脂基复合材料的发展主要围绕提高工作温度、改善湿/热性能、增大断裂韧性、降低制造成本等几个关键技术进行,航空发动机复合材料用高温树脂以聚酰亚胺(PI)为基础。其现状及发展趋势主要是:(1)提高耐热性,(2)提高冲击韧性,(3)低成本复合材料制造技术。

2.3 陶瓷基复合材料

陶瓷基复合材料在航空工业领域是一种非常有发展前途的新型结构材料。特别是在航空发动机制造应用中,越来越显示出它的独到之处。陶瓷基复合材料除了具有重量轻、硬度高的优点以外,还具有优异的耐高温和高温抗腐蚀性能。目前陶瓷基复合材料在承受高温方面已经超过了金属耐热材料,并具在很好的力学性能和化学稳定性,是高性能涡轮发动机高温区理想的极好材料。

20世纪初期,主要的陶瓷基复合材料产品是以 或 纤维增强的 和 基复合材料,用于制造静止零件,如加力筒体、燃烧室瓦片、喷嘴、火焰稳定器等以代替高温合金。

陶瓷基复合材料(CMC)的密度仅为高温合金的1/3~1/4,最高使用温度为1650。其“耐高温和低密度”特性是金属和金属间化合物无法比拟的,因此美、英、法、日等发达国家一直把CMC列为新一代航空发动机材料的发展重点,并投入巨资进行研究。

目前世界各国针对下一代先进发动机对材料的要求,正集中研究氮化硅和碳化硅增强陶瓷材料。并取得了较大进展,有的已开始应用在现代航空发动机中。例如美国验证机的F120型发动机,它的高压涡轮密封装置,燃烧室的部分高温零件,均采用了陶瓷材料。法国的M88-2型发动机的燃烧室和喷管等也都采用了陶瓷基复合材料。

3.结束语

本文通过对复合材料发展的介绍,并列举出碳/碳复合材料、树脂基复合材料和陶瓷复合材料的应用情况,以及技术工艺等情况,在航空发动机的发展道路上展现了复合材料的光芒。对今后航空发动机新型复合材料的研制、改进有一定的意义。

参考文献

[1] 兰天.俄第六代航空发动机新材料和新工艺[M].上海:科技大世界学出版社,2000.[2] 刘伯操.航空材料选用目录[M].北京:中国航空工业公司出版社,1995.[3] IRWIN STAMBLER.Europe has own technology base to compete with ATS program in us[J].Gas Turbine Wrold,1995,25(6):26-29.The research and application of aeroengine

composite materials

Zhu Li Luo Yanchun Chen Yu Wang Xin

(Air Force Aviation University,Changchun 130022,China)

ABSTRACT: With the rapid development of aviation industry,the aviation engine composite emerge as the times require,this paper simply introduces the development status of aeroengine composite materials,as well as the main trend of development,analysis the characteristics of engine materials are unique,and highlights the composite materials in aircraft engine development in an important position,to lay the foundation for the future research and development of aero engine,the engine manufacturing process to the last new step.Key words: engine; C/C; CMC; Ceramic matrix composite materials

第二篇:复合大豆磷脂粉生产与应用

复合大豆磷脂粉生产与应用

大豆磷脂是从生产大豆油的油脚中提取出来的产物,在大豆中的含量为1.2%~3.2%.它是由甘油、脂肪酸、胆碱或胆胺所组成的酯,能溶于油脂及非极性溶剂中。大豆磷脂的组成成分复杂,主要含有卵磷脂(约含34.2%)、脑磷脂(约含19.7%)、肌醇磷脂(约含16.0%)、磷酯酸丝氨

大豆磷脂是从生产大豆油的油脚中提取出来的产物,在大豆中的含量为1.2%~3.2%.它是由甘油、脂肪酸、胆碱或胆胺所组成的酯,能溶于油脂及非极性溶剂中。大豆磷脂的组成成分复杂,主要含有卵磷脂(约含34.2%)、脑磷脂(约含19.7%)、肌醇磷脂(约含16.0%)、磷酯酸丝氨酸(约含15.8%)、磷脂酸(约含3.6%)及其他磷脂(约含10.7%).其中最主要的3种磷脂为:卵磷脂,是由甘油、脂肪酸、磷酸和胆碱组成;脑磷脂,与卵磷脂的结构相似,它含的氨基醇是乙醇胺而不是胆碱;肌醇磷脂,是由甘油、脂肪酸、磷酸和肌醇构成。大豆磷脂在畜禽体内脂肪代谢、肌肉生长、神经系统发育和体内抗氧化损伤等方面发挥很重要的作用。近年来,大豆磷脂作为饲料添加剂代替部分脂肪已初步应用于饲料工业。

1大豆磷脂的理化性质

纯净的大豆磷脂在高温下是一种白色固体物质,由于精制处理和空气接触等原因而变成淡黄色或棕色。大豆磷脂溶于油脂、脂肪酸和苯、乙醚等有机溶剂,部分溶于乙醇,极难溶于丙酮和乙酸甲酯,不溶于水。磷脂具有亲水胶体的性质,遇水时能吸水膨胀,从而使其在油脂中溶解度大大降低,从油中析出。在磷脂分子中,有磷酸根和氨基醇亲水基团及碳氢键疏水基团,故磷脂能起表面活性剂作用,能使水、油两个不相溶的相形成稳定的乳胶体,这是因为磷脂在水、油两相之间形成一个界面层而降低油与水之间的表面张力,成为很好的乳化剂和分散剂。磷脂在空气中或阳光中不稳定,易氧化酸败而变黑,但在油脂中却比较稳定。磷脂的耐热性能较好,但温度超过150℃会逐渐分解。磷脂在酸碱条件下易水解,其产物为脂肪酸、甘油、磷酸、氨基醇及肌醇等。

2大豆磷脂的种类

根据大豆磷脂加工工艺的不同,可将其分为以下几个类型:

2.1天然粗制磷脂

由大豆精炼油的副产品(油脚)真空脱水而制得,亦称为浓缩大豆磷脂。产品的丙酮不溶物(磷脂和糖脂)含量为60%~64%,大豆油含量为36%~40%.2.2改性大豆磷脂

由浓缩大豆磷脂经化学改性而制成,具有较好的亲水性和水包油(O/W)乳化功能。改性方法主要有3种:物理法、化学法和酶法。其丙酮不溶物含量与天然粗磷脂含量相同,但其乳化性和亲水性能较浓缩大豆磷脂有显着提高,因此在饲料添加性能、液体饲料制备和能量的消化吸收方面有更大的优势,在饲料中应用广泛。

2.3粉末大豆磷脂

浓缩大豆磷脂经丙酮脱除油脂后的高纯度磷脂产品,也称脱油磷脂粉。色泽为米黄色或浅棕黄色,呈粉粒状,丙酮不溶物含量为95%~98%.2.4精制大豆磷脂

经丙酮沉淀制得的粉末大豆磷脂可经乙醇油提进行纯化,乙醇处理后分为醇溶部分和醇不溶部分。醇溶部分磷脂酷胆碱含量高,增强了其亲水性,是O/W型乳化剂;醇不溶部分分为磷脂酸乙醇胺和磷脂酷肌醇,是W/O型乳化剂。

2.5磷脂油

植物油和脂肪酸稀释的磷脂产品,粘度低,易于泵送或喷涂。磷脂含量一般为30%~52%.2.6粉状大豆磷脂

液态磷脂加载体而形成的固体粉状产品。磷脂含量为10%~50%.2.7漂白大豆磷脂

粗磷脂经过过氧化氢漂白后进一步脱水所得的产品,含水量小于1%.3大豆磷脂的生理营养作用

大豆磷脂产品的主要成分有油脂、磷脂、胆碱、不饱和脂肪酸和维生素E等。磷脂是生物膜的重要组成部分,是动物脑、神经组织、骨髓和内脏中不可缺少的组成部分,对幼龄动物的生长发育非常重要。大部分磷脂以脂蛋白复合体的形式存在于细胞壁基质、细胞膜、髓鞘、线粒体和微粒体中,其作用是使非极性物质具有很高的通透性。磷脂还参与脂类的代谢,促进饲料中脂类的消化。吸收、转运和合成,防止脂肪肝的产生。磷脂不仅参与脂肪酸的代谢,而且改善维生素 A的吸收。磷脂还参与钠离子与钾离子的活动,激活一些神经组织。磷脂与不饱和脂肪酸中的必需脂肪酸作为组织细胞不可缺少的成分,还可增强组织器官功能,提高动物机体免疫系统活力,增强抗应激能力和抗病力。胆碱可节约动物体内部分蛋氨酸。油脂中的亚油酸、亚麻酸是动物体不能合成的,是细胞结构和机体代谢不可缺少的,必须从饲料中摄取。维生素E具有抗氧化作用,保护饲料中的其他维生素和不饱和脂肪酸。

4大豆磷脂在动物生产中的应用

4.1预防脂肪肝

鱼类营养性脂肪肝严重影响鱼的生长、肉质和抗病力;鸡的脂肪肝可导致产蛋率下降、死亡率升

高。脂肪肝综合症的生理原因主要是缺少磷脂,因为磷脂对脂肪代谢是非常重要的。磷脂分子具有乳化特性,所含的不饱和脂肪酸能酯化胆固醇,在血液中调节脂肪、胆固醇的运输和沉积。动物在肝中合成磷脂,并可通过形成脂蛋白不断把这些脂肪转运到肝外。脂蛋白是磷脂、胆固醇、甘油三酯和阿扑蛋白的复合物,如无足够的磷脂,脂蛋白便不能形成,肝内则会充盈脂肪。由于肝壁薄组织被脂肪浸润,其他重要的化学过程和合成就不能顺利进行,这样机体的其他有关功能将受到影响。因此,在饲料中补充一定量的磷脂,使脂蛋白的合成顺利进行,肝内的脂肪便可输运出,预防脂肪肝的发生。曹俊明等(1997)对草鱼的研究表明,当饲料中添加一定量的大豆磷脂时,草鱼肝脏脂肪脂质含量大幅度降低。

4.2改善动物的体脂构成

在饲料中添加适量的大豆磷脂可提高屠宰率、降低腹脂和改善肉质。由于大豆磷脂产品含有一定量的不饱和脂肪酸,如二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),动物采食含大豆磷脂的饲料,其体脂中这些不饱和脂肪酸的含量会相应提高,从而达到改善体脂的目的。邵邻相等(1996)在高脂日粮中添加大豆磷脂饲喂大鼠,结果大鼠血清中胆固醇、甘油三酯及极低密度脂蛋白含量明显降低,这说明大豆磷脂有降低血脂的作用。曹俊明等(1997)的试验表明,用含5%磷脂的饲料饲喂草鱼,52d后肝、胰脏的脂肪酸组成发生了变化,EPA和DHA含量显着升高,说明大豆磷脂可改善草鱼体脂构成。王若军等(1997)的试验表明,大豆磷脂可完全替代肉鸡日粮中的豆油,可提高屠宰率,降低腹脂和改善肉质。

4.3提高生长效率和饲料转化率

4.3.1猪

国内外的研究表明,在仔猪断奶后14d内由于胆汁分泌不足,仔猪对脂肪的乳化能力较弱。在仔猪饲料中添加磷脂可提高日粮粗蛋白质和能量的消化率,减少因消化不良导致的腹泻,促进代谢,改善增重和饲料转化率。Gunther(1994)研究表明,在断奶仔猪日粮中添加0.2%脱油大豆磷脂,仔猪的日增重比对照组提高9.5%,料重比降低7.5%;添加0.6%日增重提高17.1%,料重比降低12%.甘溢凌(2000)进行的大豆磷脂对断奶仔猪的试验表明,添加大豆磷脂组仔猪日增重提高6.8%,节约饲料约5.4%.在生长猪日粮中添加大豆磷脂也有同样的效果。李立(1999)的试验表明,生长猪日粮中添加5%大豆磷脂,日增重可提高7%.4.3.2牛

有研究证实,添加磷脂可显着改善小牛对人造奶中非乳脂的消化率。在小牛饲料中添加大豆磷脂40~50g/d,5个月中试验组平均日增重为870~880g,比对照组提高53%~64%.同时在饲料中添加磷脂和脂肪,可解决给小牛喂酪蛋白、乳糖、矿物质和维生素的合成日粮时出现的代谢紊乱和生长迟缓问题。

4.3.3家禽

有研究报道,在肉仔鸡料中添加磷脂可改善仔鸡的生长状况,并可增加肝中维生素A的贮存,促进骨的生长。耿庆辉(1996)的试验表明,在肉鸡日粮中添加2%改性磷脂,可提高增重7%~10%,饲料报酬提高5%~8%;给产蛋鸡饲喂含1.5%大豆磷脂的饲料,产蛋率提高9.9呢,饲料报酬提高9.2%.常开成(1998)用浓缩大豆磷 脂全部替代蛋鸡日粮中3%的油脂,添加磷脂组蛋鸡多产蛋7.l%,蛋白质消耗减少7.2%.4.3.4水产动物

鱼类在孵化后的快速生长中,需要丰富的磷脂来构成细胞的成分,当磷脂的生物合成不能充分满足仔鱼的需求时,需要在饲料中添加磷脂。另外,饲料中的磷脂还能促进甲壳动物对胆固醇的利用,提高甲壳动物的生长和成活率。虾在不同生长时期对磷脂的需要量不同,幼虾因不能合成足够的磷脂供生长和代谢的需要,因而幼虾对磷脂的需要量高。Abramo等(1981)的研究证明,龙虾需要卵磷脂以确保它在脱壳期间的生存。日本科学家指出,日粮中含0.5%~l%的磷脂对幼虾的生长和成活是必需的。薛永瑞等(1989)的试验表明,在鲤鱼饲料中添加2%的改性大豆磷脂,比对照组增产30.7%,饲料系数降低0.21,饲料成本降低了9.63%.Poston(1990)在饲料中添加4%或8%的大豆磷脂,明显降低了大西洋鲑的饵料系数。Kanagana等(1985)报道,在虾料中添加1%大豆磷脂可提高虾的生长速度和成活率。

5影响大豆磷脂应用的因素

随着畜牧业和饲料工业的飞速发展,饲料在市场上的竞争日趋激烈。大豆磷脂产品作为一种替代植物油,降低饲料成本的能量原料,被越来越多的厂家、养殖业户所重视和使用。但是,由于这种产品在国内处于刚刚开发阶段,技术尚不十分成熟,产品质量良莠不一,国内饲料行业又没有制定相应的质量标准,再加上有的使用单位对其性能与质量不清楚,所以该产品也给一些饲料加工企业及养殖户带来了很大的损失。近年来,东北地区的很多饲料加工企业应用磷脂后的质量事故;如饲料发霉、变质、肉鸡发生脑组织软化、白肌病、免疫力下降、腹泻、采食量下降,甚至拒食等。很多事故是由磷脂导致的或与磷脂有直接关系。

其次,由于粉末磷脂加工成本及使用成本较高,饲料工业中使用的基本上是粗制大豆磷脂,常温下为半固态,粘度非常大,用于饲料添加不能混合均匀,即便是高温流动状态下加入也难于混合。为解决磷脂在饲料中的混合问题,复合磷脂粉(粉状大豆磷脂)在近些年得到了很好的发展。

6复合磷脂粉的生产

复合磷脂粉的生产工艺很简单,就是将玉米膨化后与磷脂油混合即可。

目前,东北地区有众多厂家生产复合磷脂粉,我公司的膨化机用户也有很多从事该产品的生产。需要注意的是,复合磷脂粉中的膨化玉米比普通膨化饲料玉米膨化度高,要求较高的吸附性能,以生产出含脂肪及磷脂较高的产品。我们的用户一般采用45~50%的膨化玉米粉吸附50~55%的磷脂油,终产品为浅黄色至棕黄色粉状,具有大豆磷脂及膨化玉米固有香味,含磷脂、豆油、蛋白质、碳水化合物、胆碱(0.8%-1.1%)、必需脂肪酸(16-20%)VE等,主成分:粗脂肪≥50%、粗蛋白4-7%、磷脂≥30%、水分≤6%、酸 价≤20%、粒度(目)20-30、能量(大卡/千克)≥6000.7复合大豆磷脂粉的应用

复合大豆磷脂粉可提高饲料的能量和营养价值;提高饲料转化率,降低饲料系数;改善饲料的适口性,具有诱食作用;提高制粒的物理质量和产量,减少饲料在挤压成形时的粉料损失和能量消耗;防止粉尘飞扬和饲料自动分级;减少水产饲料中水溶性营养素的溶失;改善水产饲料在水中的漂离和沉降;减少饲料浪费和水质污染;促进脂质消化吸收,预防脂肪肝;促进幼龄动物生长发育,提高成活率;提高动物生长速度和生产性能;提高动物繁殖能力,增强动物机体抗病能力;便于饲料加工,可替代部分油脂和合成氯化胆碱。

7.1 肉禽用

改善适口性,缓解应激,缩短出栏时间。

提高免疫系统,增强抗病力,有效预防脂肪肝、腹水综合症及猝死症。提高屠宰率,降低腹脂,改善肉质风味,有效增加肝重。全增重率提高5%,成活率提高1.5%,料肉比降低2%,代谢能≥5.69MCal/kg直接添加 ,前期1.5~3%,中期2.5~4%,后期3.5~5%.7.2 蛋禽用

提高蛋壳质量,减少破蛋、白班蛋及肉班蛋,改善蛋黄质量,增大蛋卵个头。提高受精率、孵化率。增强免疫系统活力,缓解应激。

产蛋率提高越5%,枚蛋增重2.5克左右。产蛋高峰期延长半月之久。直接添加,蛋禽2~5%.7.3乳猪、仔猪、育肥猪用

有效降低粉料的粉尘量。

改善适口性,促进生长,提高成活率,缩短出栏时间,缓解应激。增强抗病力和仔猪的御寒能力。成猪皮薄细腻,皮毛光亮,瘦肉率提高。提高增重:仔猪5%,生成猪3%,降低料肉比,仔猪:2%,生长猪:1%左右。消化能5.19MCal/kg.7.4水产用(鲤、鲫、鳗、虹鳟、鲑鱼、罗非鱼及虾、蟹、甲鱼等)

提高饲料颗粒质量,减少水溶性维生素在水中的散失,具有诱食作用改善适口性。提高成活率,特别是甲壳类在幼苗和脱壳期的成活率。增强免疫系统活力,缓解应激;有效预防脂肪肝,肾脏和肠内出血、贫血等疾病,磁降低体侧弯及大腹腔发生率,保持自然条形。提高越冬和运输成活率。

有利色素沉积,保持天然体色,并提高机体组织磷脂含量,改善肉质风味鲤鱼增重越15%,成活率提高2%,饲料系数降低15%.消化能直接添加,3~5%.

第三篇:航空发动机的新材应用-参考(推荐)

毕业论文

名称:作者:学号:(共10页)

航空发动机新材料应用

张梁

03

摘 要

航空发动机发展水平是一个国家国防科技水平的象征,而航空发动机的发展是受材料发展的制约。航空发动机工作环境苛刻,基本处于高温、腐蚀的工作状态,现如今大多采用高温合金,而航空发动机本身设计理念要求其自身“轻质量、高强度”,造成航空发动机在设计时出现结构与选材的相互制约。随着新材料的不断出现与发展,越来越多的新材料已逐渐应用到新型航空发动机上。未来高性能航空发动机在很大程度依赖于先进复合材料等新材料的发展,本文根据航空发动机材料的应用及发展前景进行论述。

关键词:航空发动机 材料发展 耐高温腐蚀 新材料

目录

绪 论

第一章 高温合金

1.1 1.2

绪论

航空发动机的发展不仅能增强国防实力,还能促进国民经济的广泛发展。高推重比、低油耗和高可靠性是航空发动机发展的主要指标。航空发达的国家正在实施推重比为15的综合化高性能涡轮发动机技术计划(IHPTET),可降低耗油率40%、降低成本60%,为了不断提高航空发动机的推力和效率,要求尽可能提高航空发动机上涡轮进口温度。目前推重比为10的发动机涡轮进口温度已达1580-1650℃。为进一步改善航空发动机的性能,有效地提高发动机推重比,将采用耐高温材料取代金属材料应用在航空发动机上。轻量化是飞机发展的主导,航空工业提出一句口号“为减轻每一克而奋斗”。耐高温材料具有良好的高温强度和高温抗氧化性等综合性能,使得它们能够作为极端环境下使用的候选材料,目前使用的耐高温材料有高温合金、钛合金、金属间化合物、难熔金属、金属陶瓷材料和复合材料、铝锂材料等。

第一章 高温合金

1.1高温合金概述

高温合金是以Fe、Ni、Co为基并能在600℃以上高温能够抗氧化和抗腐蚀并能在一定应力作用力下长期工作的一类金属材料,也称为耐热合金。

高温合金具有优异的高温强度、良好的抗氧化和抗热腐蚀性能、良好的疲劳性能和断裂韧性等综合性能,已成为航空发动机涡轮叶片、导向叶片、涡轮盘等高温部件的关键材料,高温合金材料的用量占总用量的40%-60%。尤其当今航空发动机中,高温合金被誉为燃气涡轮的心脏。航空发动机用高温合金中,镍基高温合金比重达到55%-65%高温合金使用温度已达合金熔点的85%-90%,密度已达9.0g/cm3,似乎已达到极限,但实际上合金的改进工作仍然在不断进行着。航空发动机用镍基高温合金发展的重点是粉末涡轮盘高温合金和单晶高温合金及相应的高温隔热涂层。1.2 高温合金分类

高温合金材料按制造工艺,可分为变形高温合金、铸造高温合金、粉末冶金高温合金和发散冷却高温合金。按合金基体元素,可分为铁基(含镍量达25%~60%,又称为铁镍基合金)、镍基和钴基高温合金,使用最广的是镍基高温合金,其高温持久强度最高,钴基高温合金次之,铁基高温合金最低。按强化方式,可分为固溶强化高温合金、时效强化高温合金和氧化物弥散强化高温合金。按主要用途又可分为板材合金、棒材合金和盘材合金。此外,按使用特性,高温合金又可分为高强度合金、抗松弛合金、低膨胀合金、抗热腐蚀合金等。1.3 粉末高温合金

粉末高温合金由于具有组织均匀、晶粒细小、屈服强度高、疲劳性能好和偏析少等优点,成为制备推重比达8以上的高性能发动机涡轮盘等关键部件的优选材料,可以满足应力水平较高的发动机的使用要求。我国在20世纪80年代初开始研制粉末高温合金,钢研总院成功研制出发动机规格的粉末涡轮盘材料FGH4095,性能也达到了标准的要求。FGH4095合金650℃时拉伸强度达1500MPa,1034MPa应力下持久寿命大于50h,是当前在650℃工作条件下强度水平最高的一种盘件粉末冶金高温合金。1.4 单晶高温合金

单晶高温合金在,950-1100℃温度范围内具有优良的抗氧化、抗热腐蚀等综合性能,成为高性能先进航空发动机高温涡轮叶片的主要材料。我国研制了DD402,DD406等单晶合金,其中第一代单晶合金DD402在1100℃、130MPa应力下持久寿命大于100h,适合制作工作温度在以1050℃以下的涡轮叶片,是国内使用温度最高的涡轮叶片材料。第二代单晶合金DD406含2%Re,使用温度可达800-1100℃,目前正在先进航空发动机上进行使用考核。1.5 镍基超合金

镍基超合金具有良好的高温蠕变特性!高温疲劳特性以及抗氧化、抗高温腐蚀等综合性能,满足了高推重比先进发动机的使用要求,为了使涡轮机叶片能够承受远超过Ni熔点的温度,除了升高Ni基超合金的使用温度外,还在基体表面涂敷绝热层(TBC),以及采取冷却措施等降低基体温度。CMSX-

10、Rene N6等含Re为5-6%的第三代单晶体Ni基超合金,其使用温度达到1050℃。近年来美国通用电气公司(GE),法国史奈克马公司(SENCMA)和日本国家材料科学研究所(NIMS)开发了第4代单晶体Ni基超合金,该合金不仅添加了Re,还添加了2-3%的Ru以提高合金组织的稳定性。NIMS研制了第5代单晶体Ni基超合金,在第4代合金的基础上增加了Ru含量,使合金的耐用温度达到1100℃。

第二章 钛合金

2.1 钛合金概述

钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛

钛合金因具有强度高、耐蚀性好、耐热性高等优点而被用于制作飞机发动机压气机、风扇的盘件和叶片等零件,可以较明显地减轻发动机零部件的质量,从而提高发动机的推重比。在先进发动机上钛合金的用量仅次于高温合金,占发动机总质量的25-40%。近几年国外采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料等方法研制钛合金,使钛合金的使用温度提高到650℃以上,以此作为高温钛合金的发展方向。

当航空发动机的推重比从4~6提高到8~10,压气机出口温度相应地从200~300°C增加到500~600°C时,原来用铝制造的低压压气机盘和叶片就必须改用钛合金,或用钛合金代替不锈钢制造高压压气机盘和叶片,以减轻结构重量。70年代,钛合金在航空发动机中的用量一般占结构总重量的20%~30%,主要用于制造压气机部件,如锻造钛风扇、压气机盘和叶片、铸钛压气机机匣、中介机匣、轴承壳体等。2.2 钛合金的发展

钛合金是航空航天工业中使用的一种新的重要结构材料,我国一直都在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领域,同时完全满足国家武器装备的生产需要。

钛及钛合金主要限制是在高温与其它材料的化学反应性差。此性质迫使钛合金与一般传统的精炼、熔融和铸造技术不同,甚至经常造成模具的损坏;结果,使的钛合金的价格变的十分昂贵,大大限制了钛合金的推广发展,未来钛合金的发展会逐步多元化,衍生多种新型钛合金材料,具备低成本、高性能、易加工焊接等的优越性能。

因此,在未来的航空发动机上钛合金将逐渐取代高温合金,钛合金在广泛应用到发动机后,将大大减少航空发动机的质量,使发动机的性能能够得到质的飞跃。随着新型钛合金不断的研发,钛合金在我国民生活也将得到深度的推广使用,大大有利于汽车、医疗等行业的发展。

第三章 耐高温材料

3.1 金属间化合物

金属间化合物是近几十年来研究的一类前景广阔、低密度的高温材料。目前,金属间化合物中熔点超过1500℃的就有300多种,其中Mo3Se、Re3Nb、W2Hf等金属间化合物的熔点都超过了2000℃。近年来Ti-Al和Ni-Al系材料的力学性能及应用研究取得了令人瞩目的成就。

在Ti-Al系金属间化合物中,主要研究的是Ti3Al基合金(TAC-1)、TiAl基合金(TAC-2)以及Ti2AlNb基合金,它们具有低密度(3.8-5.9g/cm3)、高温高强度、高钢度以及优异的抗氧化、抗蠕变等综合性能,成为使用温度在600℃以上非常有潜力的候选材料。Ti3Al和Ti2AlNb合金长期工作温度可达650-750℃,而TiAl基合金工作温度则可达760-800℃。Ti3Al用作航空发动机导向板和涡轮结合环等部件通过了使用考核。

在Ni-Al系金属间化合物中,主要研究Ni3Al基和NiAl基合金。Ni3Al基合金具有良好的耐腐蚀、耐磨损和耐气蚀性能,展示出极好的应用前景。NiAl合金抗氧化性极好,也是一种很有潜力的新型高温结构材料,熔点高达1640℃。3.2 难熔金属材料

难熔金属(W、Re、Mo、Nb等)及其合金具有高熔点、耐高温和强抗腐蚀能力等优点,应用于固液火箭发动机和航天发动机等场合。其中研究和应用最多的主要是W、Re、Mo和Nb等金属。

钨(W)熔点最高,具有较好的抗氧化性和抗热震性,以及很好的抗烧损和抗冲刷能力,常用作发动机喉衬。为了提高钨的性能,在W中渗Cu,可以起到发汗剂的作用;在钨中添加碳化物颗粒(如ZrC或TiC颗粒),可减轻纯钨高温结构材料的质量,并能显著提高其力学性能和抗烧蚀性能;在钨中加入Re提高其塑性和强度,可增强材料的抗热疲劳性能和抗热振动能力。

铼(Re)具有高温强度大、耐磨、抗蚀等优异的综合性能,是高温环境中极有前途的候选材料。成本高、密度大(21g/cm3)、机械加工性能差及在升温时较低的抗氧化性是铼的主要缺点。可通过加铱(Ir)保护层来提高铼的抗氧化性。Ir-Re层状材料已在火箭发动机环境中进行测试,其使用温度超过2200℃,测试结果良好。

钼(Mo)的成本和密度都较低,而且Mo的硅化物(如MoSi2)具有优异的抗氧化性能,使用温度可达1700℃。但是Mo的延展性很差,在高温下易氧化。Mo和Si、B形成的三元化合物具有极高的高温强度,在1773K时屈服强度仍在1GPa以上,与其他高温结构使用的难熔金属基或陶瓷基材料相比,其性能非常优异。

铌(Nb)具有密度低和抗蚀性良好等优点,但Nb易氧化,使用时需进行表面涂覆处理。Rosenstein采用快速凝固工艺研制了含B或N的过饱和Nb基难熔合金。在温度达到2200℃时,Nb基合金仍保持良好的力学性能。Nb基难熔合金已用于小型液体火箭发动机。3.3 金属陶瓷材料

金属陶瓷是介于高温合金和陶瓷之间的一种高温材料,它兼顾了金属的高韧性、可塑性和陶瓷的高熔点、耐腐蚀和耐磨损等特性,在航空航天等领域中拥有广阔的应用前景。

按照陶瓷相的不同,金属陶瓷可分4类:

1、氧化物基金属陶瓷;

2、碳化物基金属陶瓷;

3、硼化物基金属陶瓷;

4、含石墨和金刚石状态的金属陶瓷。

金属陶瓷具有良好的耐磨性与高温强度,可用于制造航空或航天发动机的阀、静止的环件等。硼化铬晶体和铬-钼合金粘结的硼化铬金属陶瓷具有良好的断裂强度和足够高的抗热震性,可用于制备燃气涡轮叶片、喷气发动机的喷管和内燃机阀座等。

碳硅化钛(Ti3SiC2)是其中研究最多的一种材料,具有耐高温、抗氧化能力强、强度高、热稳定性高的特点,又具有金属材料的导电、导热、可加工性、塑性等优异性能,是一种综合陶瓷材料。碳硅化钛在1200-1400℃高温下,强度比目前最好的耐热合金还高,又易加工,故完全可作高温结构材料用,其高温强度与抗氧化、抗热震等性能优于Si3N4,有可能用于片或涡轮叶片。

第四章 复合材料

4.1 金属基复合材料

金属基复合材料与传统金属材料相比,具有更高的比强度、比刚度、耐高温和结构稳定性等优异性能。钛基、钛铝化合物基和高温合金基复合材料耐温能力较强,是航空发动机中温(650-1000℃)部件的候选材料。连续纤维增强钛基复合材料具有高比强度、高比刚度、良好的耐高温及抗蠕变、抗疲劳等优异性能,是适用于700-900℃的航空发动机用轻质耐高温的理想结构材料。在新一代高推重比航空发动机上,利用SiCf/Ti复合材料制造整体叶环代替压气机盘和叶片,可大大减轻发动机部件的质量,从而大幅度提高发动机的推重比。SiCf/Ti复合材料在航空发动机上的典型应用是叶环类和轴类零件,美、英等国均研制出了多个零部件,并进行了发动机考核试验。罗罗公司制备的SiCf/Ti叶环质量减少37%,使用温度提高10%,转速提高15%。

近年来,由于硅化物熔点高(高于2000℃),在1600℃具有良好的热稳定性、抗氧化性和良好的力学性能,被广泛应用于航空航天等领域。硅化物中Nb5Si3熔点最高,Ti5Si3密度最低。MoSi2的熔点虽低于上述两种材料,但是其高温抗氧化性能却位居所有金属硅化物之首。难熔金属硅化物基复合材料逐渐成为高温材料研究的新热点之一。

4.2 陶瓷基复合材料

陶瓷基复合材料具有密度低、耐高温、高热导率、高弹性模量等优异的物理性能,并能在高温下保持很高的强度、良好的抗热震性和适中的热膨胀率,对减轻发动机涡轮叶片质量和降低涡轮叶片冷气量意义重大,是高温领域最有前途的材料。在2000℃以上氧化气氛中可用的候选材料主要是碳化物和硼化物。4.2.1碳化物陶瓷基复合材料

连续纤维增强的SiC陶瓷基复合材料目前主要有SiCf/SiC(SiC纤维增强)和Cf/SiC(C纤维增强)两大类,具有高韧性、低密度、良好的热稳定性和化学稳定性等优点。Cf/SiC在惰性环境中超过2000℃仍能保持强度、模量等力学性能不降低,但在高于400℃的氧化性气氛中易氧化,导致材料性能降低。SiC纤维具有较高的抗氧化能力,与SiC陶瓷基体有极好的相容性,氧化气氛中长期使用温度可达1400℃,使得SiC纤维强化的复合材料在性能上进一步提高。SiCf/SiC的主要应用领域包括推重比达10以上的航空发动机热端及测温保护部件。

HfC陶瓷的熔点高达3928℃,具有线膨胀系数相对较低、硬度较高等优点,能较好满足高温环境下的使用要求,但是抗氧化性能较差。在HfC内添加Ta和Pr可以改善其抗氧化性。ZrC陶瓷的性质与HfC相似,ZrC一般与其他材料复合使用,如使用SHS工艺制备的ZrB2和ZrC粉,在1800℃进行SPS烧结,可以研制出高致密度的ZrB2-ZrC复合材料,其硬度可达17.8GPa,断裂韧性为3.8MPa·m1/2。通过添加镧烧结助剂,在无压烧结的条件下可以得到ZrB2-ZrC复相陶瓷。此外,ZrC还可以与C、SiC等材料制备成ZrC/C和ZrC-SiC复合材料。4.2.2硼化物陶瓷基复合材料

ZrB2和HfB2等硼化物具有高熔点、高硬度、高热导率和良好的抗热震等优点。单相ZrB2和HfB2在1200℃以下具有良好的抗氧化性,高温环境加入SiC可以显著提高它们的抗氧化性能。

ZrB2-SiC材料具有很高的强度(超过1000MPa)、抗氧化性和良好的抗热震性。ZrB2-SiC复合材料在1800-24--℃范围内在最外层形成SiO2层,在最内层形成ZrO2,SiC与ZrO2在内部氧化区内共存。通过添加高强度、高硬度的SiC纤维来制备ZrB2-SiC复合材料,可以明显提高抗弯强度和抗氧化性。

HfB2-SiC体系中,SiC可以显著提高抗氧化性能,在高温时形成玻璃相的硅酸盐覆盖在材料的表层,该玻璃相在1600℃以下具有良好的保护作用。

美国宇航局在研究ZrB2-SiC和HfB2-SiC材料的基础上,又系统研究HfB2/HfC/SiC三元复合陶瓷。结果表明:三元陶瓷的综合性能要比ZrB2/SiC或HfB2/SiC性能更优异,是发动机热端等关键部件最有前途的超高温候选材料。4.3 树脂基复合材料

树脂基复合材料凭借比强度高、比模量高、耐疲劳与耐腐蚀性好和阻噪能力强等优点,在航空发动机冷端部件(风扇机匣、压气机叶片、进气机匣等)和发动机短舱、反推力装置等部件上得到了广泛应用。树脂基复合材料已经发展到了耐温450℃的第四代聚酰亚胺复合材料,形成了从280-450℃涵盖四代的耐高温树脂基复合材料体系。

聚酰亚胺树脂是耐高温树脂的代表,具有良好的耐热性、力学性能和工艺性能等优点,主要有BMI型、PMR型和乙炔基封端的聚酰亚胺树脂。其中,PMR型聚酰亚胺树脂基复合材料耐温最高且应用技术最成熟,在航空(尤其是航空发动机)、航天等领域得到了广泛的应用。PMR-15聚酰亚胺树脂是第一个广泛使用的PMR聚酰亚胺高温复合材料树脂,具有优异的力学性能及良好的热氧化稳定性,可在288-316℃使用1000-10000h;AFR-700B和RP-46树脂基复合材料具有优异的力学性能、较高的耐热性和良好的工艺性能;PMR-II-50复合材料已应用于发动机导向叶片衬套;北京航空制造工程研究所采用HT3/KH-304复合材料制造出了发动机外涵道;北京航空材料研究院采用LP-15/G827复合材料制备的航空发动机分流环已装机试用。4.4 C/C复合材料

C/C复合材料具有质量轻,比强度高,比刚度高,模量高,烧蚀性能、抗蠕变能力及抗热震性能良好等优点。惰性气氛中温度从室温升至2200℃,C/C复合材料的强度不断增加;大气中温度超过350℃时C/C复合材料易氧化,引起性能降低,造成应用极为有限。为了发挥C/C复合材料的全部潜能,研究氧化保护措施非常关键。抗氧化处理分为三类。

一、CVI工艺,比如使用有机硅烷气体热解,形成C/__(C/SiC)混杂基体复合材料,提高其抗氧化性;

二、料浆浸渍-热解工艺,即在浆料中加入添加剂(如SiC、ZrB2、Al2O3等),碳化后使用浸渍剂反复循环浸渍碳化;

三、改变表面涂层工艺,较成功的涂层包括HfC、TiC和Ir-Re等。杨艳波等采用等离子喷涂方法在碳/碳复合材料上制备了钨/碳化钛复合涂层并进行了涂层抗烧蚀性能研究,碳化钛涂层具有较好的热化学稳定性,烧蚀后没有明显的氧化现象。美、俄、法等国家近年来提出用SiC、HfC、TaC、NbC等难熔碳化物涂层来提高碳/碳复合材料的抗氧化能力,从而降低烧蚀率,承受更高的燃气温度,保证工作的可靠性。通过减少碳来源材料中的杂质、增加石墨化的程度、采用内部氧化抑制剂以及采用氧化保护涂层可抑制氧化。基于金属碳化物和金属氧化物的涂层与内部抑制剂相结合用于氧化保护,使用温度可达1600℃。最近,美国X-43A的尖锐前缘采用了C/C复合材料,其能够承受高达2200℃高温。

第五章 涂层材料

5.1 涂层材料简介

在合金表面施加防护涂层,既能提高合金抗高温氧化与热腐蚀性能,又可保持合金的力学性能,这方面取得了较好的进展,已广泛应用于航空航天、石油化工等领域。这里主要介绍镍基高温合金的防护涂层,包括扩散涂层、包覆涂层、热障涂层及新型高温涂层。扩散涂层是在高温下利用元素的渗透技术,将一些具有保护性的元素(如Al或Cr)扩散到基体中,利用其在高温下与空气中的氧所形成的氧化物来保护基体金属。在扩散涂层的形成过程中,基体参与涂层的形成,基体中的元素进入到涂层中,涂层下面的基体中形成扩散层。扩散涂层包括渗铝涂层、改性铝化物涂层。包覆涂层是利用各种物理的或化学的沉积手段在合金表面直接制备一层保护性薄膜。包覆涂层沉积时基材不参与涂层的形成,只提高与基材的结合力,故涂层成分的选择范围更广。包覆涂层按材料属性可分成金属涂层和陶瓷涂层两类。金属涂层最典型的是MCrAlY涂层。其中M为Fe、Co、Ni或它们的组合,Al用来形成保护性的Al2O3膜,Cr用来促进氧化膜的形成,并提高抗热腐蚀能力,Y用来提高氧化膜的附着力。陶瓷涂层中Al2O3涂层最具代表性。由于Al2O3具有良好的抗氧化性,故在合金表面制备一层Al2O3涂层,可以起到隔离气体介质,阻碍元素在高温下的迁移,直接对基体提供保护,降低合金氧化速度的作用。热障涂层(TBCs)由隔热性能良好的陶瓷氧化物面层和金属粘结底层组成,其作用为降低热端部件的工作温度,防止部件的高温腐蚀,改善材料的抗冷热疲劳性能,从而延长工件的使用寿命。新型耐蚀涂层包括多层涂层、梯度涂层、复合陶瓷、纳米晶涂层、智能涂层和玻璃基涂层等。

第六章 结论

发动机的温度范围和寿命要求是选择材料的最重要的准则。航空发动机要求高速、高温、高压大功率,因此材料必须具有高熔点、高强度、高硬度、高韧性、耐腐蚀等特性。现代发动机主体仍然是高温合金、钛合金等金属材料,未来会大量使用复合材料,防护涂层等新型材料,不断以减轻航空发动机质量为理念,将更多的新型材料应用到航空发动机上,使我国的航空发动机水平不断提高,实现中华民族的伟大复兴!

第四篇:航空发动机的最新发展以及复合材料的应用

航空发动机的最新发展以及复合材料的应用

北京航空航天大学

摘要:本文介绍航空发动机最新发展,以及关键的复合材料在其中应用 关键词:航空发动机、发展、复合材料

引语:美国“战略之页”网站5月21日文章,两年前,中国宣布用国产引擎WS-10A,替换歼-10战机上装配的俄制AL-31FN。但去年,中国又悄悄订购几百台俄制AL-31FN,没人提大规模使用WS-10A的事了。

中国航空工业在过去的十年里取得了突飞猛进,但作为核心技术的航空发动机仍然不能摆脱对外依赖,完全自主的水平

一、严苛的材料要求

配备在战术战机和攻击机之上的喷气发动机,必须能够在严峻的条件下运行。例如,在飞行过程中,喷气发动机的压缩机叶片要能承受高达自身重量20000倍的离心力。人们常常用“冰质调羹勺搅热汤”来形容涡轮叶片在这种环境下面临的挑战。

航空发动机以其复杂性、深奥的技术以及苛刻的性能参数,堪称航空发展中的顶峰。据约翰逊称,在战机发展过程中,发动机核心就相当于“撑开帐篷的长杆”,是一个项目之所以会拖延的最大原因。航空发动机的材料通常无法按照工业分类指导方法“加工”,因为以工业规模这样做是不经济实惠的。必须全部掌握合金、粉末冶金、单晶叶片技术。

有一个值得注意的例子是,在五家前苏联大型研究机构中,就有一家致力于材料研究,苏联冶金研究非常活跃。在俄罗斯的发动机项目中,掌握热障涂层技术是关键一步。然而,尽管做出了这些努力,但在发动机性能方面,俄罗斯仍然没有可媲美发动机“三巨头”——即罗尔斯·罗伊斯、GE和普惠——的企业。俄制发动机仍然相对较重,而且利用的也并非最顶级材料,燃油消耗率

也相对较高;与美制和欧制顶级喷气发动机

相比,俄制发动机加速度较差,推力重量比较低,寿命较短,可维护性较差。另外,俄罗斯仍然无法利用最新管理技术获得最佳优势。例如,虽然如“土星”公司的AL-31发动机等新型俄制发动机已经配备了全权数控系统,而且全权数控系统的质量较非俄制产品相差不大,但软件质量仍然是一个关键的区别。即便是首批苏-27战机也加装了不同的发动机,因为AL-31发动机当时尚未到位。

作为航空发动机三大巨头之一的罗罗公司,于1971年开始研制特有的三转子RB211型发动机。正是由于复合材料风扇技术没有过关,着急上马的RB211发动机项目研制周期拖延过长,最终导致罗罗的财力无法支持,不得不由英国政府出面收归国有。

二、航空发动机的设计—“材料先行”

英国Rolls一Royce公司认为,传统的航空发动机材料已几乎达到了它的使用极限,需要发展新型的涡轮发动机材料,据该公司预测,在未来的航空发动机上使用的金属基复合材料将有大幅度上升的趋势(见图)。

从图可以看出,作为高温结构材料的超合金是具有耐高温、高强韧、抗氧化、可加工性和良好导热性的材料,具有较全面的综合性能。但随发动机涡轮进口温度的不断提高,超合金由于熔点的限制,最高使用温度已不能满足需要。与超合金相比,金属间化合物与陶瓷可以在更高的温度下工作。图还显示,金属间化合物虽然最高耐温性低于陶瓷,但其韧性、可加工性与导热性远优于陶瓷材料,总体来看,有可能比陶瓷更早地用于发动机承动载荷的关健部件。各类陶瓷材料及各类金属间化合物及其复合材料之间的对比。各类陶瓷材料六个基本性能的比较亦显示各具特色。硅基材料虽然韧性与导热性较低,其Tmax与抗氧化能力都是上佳的,是值得关注的材料系统。各类金属及金属间化合物基系统的相互对比,显示了各自的长处及不足.此图虽仅粗略地描述了各材料系的性能特征,其方向性的参考价值还是值得重视的。

三、中国发展现状

近年来随着冶金和制造技术的发展,中国在航空领域已经取得了一些进步,系统设计、集成和管理已经成为制约发动机生产的最大薄弱环节。在地面测试和高离心和G力飞行中,中国发动机面临着叶片弯曲、破坏及其他问题。为了攻克这个难关,中国的军用喷气发动机制造商需要实现一些生产和流程管理突破,而这些突破与前几年中国在机身与航空电子领域获得的突破一般无二。为了推动这种努力,中国航空工业集团公司旗下发动机公司聘请了经验丰富的发动机设计人员。鉴于在该领域其他方面的进展,而且中国还在继续通过研发和工业间谍活动,获得技术和流程管理知识,中国有可能在未来几年内研制出一款可规模化的可靠型WS-10发动机。

WS-10发动机有潜力提供堪比惠普公司F100涡扇发动机的性能——F100发动机为

F-15和部分F-16战机提供动力。因此,这种发动机或许能够为与F-15战机尺寸相似的歼-11B、歼-15和歼-16战机提供动力。中国至少会在2至5年时间内系列化生产足以为歼-20提供真正五代机性能的强大发动机。

《简氏防务周刊》12月5日报道称,“辽宁”号航母上完成起飞降落的两架歼-15配备俄制AL-31F涡轮风扇发动机。配备了国产WS-10A涡轮风扇发动机的歼-15战机还无法完成舰载起飞降落任务。

在参加本届珠海航展时,俄罗斯战略与技术分析中心专家瓦西里·卡申也表示,虽然中国在机身设计和航空生产技术领域有了巨大提升,但中国军事航空工业仍依赖俄罗斯和乌克兰发动机。高性能航空发动机正是中国航空工业制造商必须要攻克的最后一道难关。

四、美国代表的世界最高水平

据美国《航宇日报》11月2日报道,美国通用电气和普惠公司获得了价值超过6.8

亿美元的演示验证变循环战斗机发动机合同。美国空军希望这两家公司继续完善“自适应发动机技术开发”项目,通过大幅度提高发动机的燃烧效率、大幅度增加发动机推力和飞机航程,生产出第六代作战飞机所需的发动机。

正当人们惊叹第四代、第五代飞机及其发动机的卓越性能时,美国第六代发动机即将面世。,2020后可升级洛克希德-马丁公司的F-35和用于未来的第6代作战飞机。ADVENT是要证实高压比核心机和自适应风扇、可变涵道、低压系统技术能减少作战飞机发动机的单位耗油率(SFC)达25%,为了2020年后发动机尽早进入到工程和制造发展(EMD)阶段,AETD将使发动机充分成熟,ADVENT和AETD正在为发动机发展和成熟的技术是一个“3气流”结构。除常规涡轮风扇发动机的高压核心机和低压涵道气流外还有一个第3气流,外部流路能够打开和关闭。起飞时,第3气流关闭减少涵道比和转移更多的空气流进入到核心机增加推力。巡航时,第3气流打开,增加涵道比减少燃料消耗。

第3气流能够冷却用于发动机热端部件热管理的冷却空气、用作飞机系统热沉的燃料、加力燃烧室和喷口的壁板。这种构造还能够减少飞机的阻力。进气道是按起飞时最大空气流量状态设计,但在巡航时捕获的气流大于发动机的需要,便会造成溢流。第3气流便能够旁路额外的空气,减少溢流阻力,并且增加的流量能够用来填充飞机尾锥部,减少底部阻力。

AFRL计算出自适应技术将会比F-35所用的F135发动机改善发动机的燃料效率25%,增加飞机的作战半径25-30%,留空时间增加30-40%。AFRL表示,发动机还能够有助于应对与像中国这样量级对手的潜在冲突引发的反介入和区域拒止挑战。通过增加超声速巡航半径50%和减少30-74%的空中加油机负担能够实现这一点。

第六代发动机中,新材料的贡献率将达到50%以上。“材料先行”已成为航空发动机研制的客观规律,第六代发动机将采取新材料技术,综合运用单晶材料、热强钛合金、热强镍合金、耐火合金材料、特种合金材料、抗腐蚀保护层等大量新材料,使发动机的重量大大减轻,其推重比可达到15~20,而目前最先进飞机的推重比仅为10。

五,先进复合材料—航空发动机的突破口

传统材料的渐进提高,已不能满足发动机发展,它要求材料与工艺有革命性的变革,要求开辟新的材料体系。作为在更高温度下服役的结构材料。材料科学的发展为航空发动机提供的最有前途材料是复合材料。

1.树脂基复合材料

以减轻重量为主要目的时可选用树脂基复合材料。早在25年以前英国就在RB16

2型助推喷气发动机上应用了树脂基复合材料。用玻璃纤维增强的树脂基复合材料,其强度比铝合金大2倍,而密度比铝合金低25%。他们选用了这种复合材料制造发动机非高温部件以减轻重量,增大推重比,从而改善了IB型三叉戟的起飞性能。以增加刚度为主要目的时,可采用碳纤维增强树脂基复合材料。因为玻璃纤维增强树脂基复合材料的刚度(弹性模量E)低于铝合金‘RB211发动机就采用了碳纤维增强树脂基复合材料制造发动机机罩。这种材料还可用于发动机舱盖及罩等零件。据使用统计,用这种材料代替铝合金,可以减轻重量达25%。

树脂基复合材料具有较高的强度和刚度,低的密度和良好的缺陷容限。可考虑在发动机压气机部分以及排气热回收系统的零件上采用。这种材料的缺点是在大气中易吸潮变形,不能抗高温,使用温度一般不超过280℃。

2.金属基复合材料

和树脂基复合材料相比,金属基复合材料具有良好的韧性,不吸潮,能够耐比较高的温度。金属基复合材料的增强纤维有金属纤维,如不锈钢、钨、被、妮、镍铝金属间化合物等;陶瓷纤维,如氧化铝、氧化硅、碳、硼、碳化硅、硼化钦等。

金属基复合材料的基体材料有铝、铝合金、镁、钦及钦合金、耐热合金、钻合金等。其中以铝铿合金、钦及铁合金为基的复合材料是目前主要选择对象。如以碳化硅纤维增强钦合金基体复合材料可用来制造压气机叶片。碳纤维或氧化铝纤维增强镁或镁合金基体复合材料可用来制造涡轮风扇叶片。又如镍铬铝铱纤维增强镍基合金基体复合材料可用来制造涡轮及压气机用的密封元件。

其他如风扇机匣、转子、压气机盘等零件,国外都有采用金属基复合材料制造的实例。但是这种复合材料存在的最大问题之一是增强纤维和基体金属之间容易发生反应而产生脆性相,使材料性能变坏。尤其是在较高温度下长时使用,界面的反应更为突出。目前解决的办法是根据不同纤维、不同基体,在纤维表面加适当涂层,以及对基体金属进行合金化,以减缓界面的反应,保持复合材料性能的可靠性。

3.陶瓷基复合材料

陶瓷基复合材料具有高的比强度、比模量,高的热稳定性,低的热膨胀系数,抗腐蚀,不吸潮等优点。

瓷基复合材料用的增强剂有碳、硼、氧化铝、碳化硅、尼克龙纤维,或碳化硅晶须或颗粒等。陶瓷基体有氧化镁、氧化铝、碳化硅、氮化硅、莫来石等。这种材料可以用来制造燃烧室、涡轮叶片、导向叶片、排气喷管等零件。使用温度可达160。℃。高于此温,材料的强度及模量便显著下降。这种材料的缺点之一为缺少良好的增强纤维。目前,现有的增强纤维和基体间的相容性欠佳,很难达到既增强又增韧的最佳配合。缺点中最令人担心的是脆性,这种材料的缺陷容限低于其他复合材料。这使人们对这种材

料使用的可靠性产生凝虑。

4.碳/碳复合材料

碳/碳复合材料(C/C)的最显著的优点是耐高温(大于2 200℃)和低密度(约2 g/cm3),可使发动机大幅度减重,以提高推重比,是本世纪最有前途的航空发动机材料之一。因此,成为陶瓷基复合材料当今研究热点之一。如能解决碳/碳复合材料表面以及界面间在中温时的氧化问题,[1,7]并能在制备时提高致密化速度,降低成本,则该材料有望在不远的将来在航空领域进入实用阶段。

五、结束语

在被称为“现代工业技术上的皇冠”的航空发动机上,我国在近些年来取得了令世界瞩目的成就。但作为一门极其复杂的系统工程,要达到国际先进水平,仍然有很多罗要走,仍需要不断地学习积累。复合材料作为其中亟待攻克的一门关键技术,它的发展也将与航空发动机的发展紧密相连。

参考文献:

[1] 隆小庆·燃气涡轮发动机高温部件热腐蚀反应机理的探讨·中国民航学院学报 1994 [2] 张良栋、隆小庆·航空发动机高温氧化腐蚀与保护·全面腐蚀控制 2002年6月 [3] 吴大观·探讨我国航空发动机发展中出现的问题 2000年9月 [4] 张恩和·对我国军用航空发动机发展的思考 2003年8月 [5] 陈炳贻·航空发动机材料的发展·航空科学技术 1998年2月

[6] 金培鹏·潜在的航空发动机材料—碳/碳复合材料·青海大学学报(自然科学版)2004 年6月

[7] 杨峥乔、生儒·航空发动机材料的一现状几和发展·西北工业大学

[8] 傅恒志·未来航空发动机材料面临的挑战与发展趋向·航空材料学报 1998年12月

第五篇:我国复合材料力学研究与教学的先驱之一

我国复合材料力学研究与教学的先驱之一

下一页 1 2 周履(1917—),结构力学和固体力学家。长期从事复合材料结构力学和弹塑性理论的教学与研究工作。在复合材料叠层板的弯曲和屈曲分析的研究工作中作出了贡献。

周履,1917年4月30日出生于浙江省湖州县的一个书香之家。祖父是清朝举人,担任过地方官员和驻奥地利外交官员,做官时重视兴修水利,所筑堤坝被称为“周公堤”。父亲周宗清早年留学德国,攻读医学,是个反帝爱国、进步的无党派知识分子。母亲王宗浈,支持并参与周宗琦的爱国进步活动,曾经亲自给新四军送过药品。受家庭的熏陶,周履青少年时就喜爱读书,养成了勤奋好学、刻苦钻研的习惯。1934年,他以全校第一名的成绩考入上海交通大学土木系。毕业后留校担任助教。1942年上海沦陷,日本侵略军进驻租界,周履不愿过亡国奴的生活,遂只身离家转赴内地,到重庆綦江铁路工程处任帮工程师,在农村工地的艰苦条件下为抗日战争效力。后来,他抱着“科学救国”的幻想,于1944年底赴美国康奈尔大学进修。他选修的课程之多,使他的导师都无法理解地惊问道:“你不要命啦!”1946年,他仅用一年时间获得工学硕士学位。当时正值抗战胜利,他以为国家富强有望,毅然放弃了攻读博士学位的奖学金机会,怀着满腔的爱国热忱,返回祖国,在上海市工务局技术室担任技士。但是当时社会政治腐败,经济崩溃,民不聊生,使周履痛感知识分子仍然报国无门。1947年,他再度赴美国康奈尔大学深造。1950年,他获得工学博士学位,并在麻省波士顿市杰克逊·摩兰德工程咨询公司任工程师。

中华人民共和国成立后,祖国人民生活安定、经济建设突飞猛进的消息使他十分激动,加上父母及其他亲友的宣传动员,重新燃起了周履的报国心、爱国情,他于1951年重返祖国,历任岭南大学和华南理工大学(原华南工学院)教授至今。

回国后,周履亲身体验到祖国建设迫切需要人才,因而将其全部精力都投入到祖国的高等教育事业和科学研究工作中去。1954年,他组建了结构力学教研组,并着力抓教学法建设,编写讲义、指导青年教师、健全试讲制度等,使教学工作日益走上正轨。他十分重视师资队伍的建设,亲自为中、青年教师举办多期学术讲座。1956年,他率先招收副博士研究生,促进了土木系学术水平的提高。在教学工作中,周履以其一丝不苟、诲人不倦的精神赢得了广大学生和中青年教师的爱戴,因此于1956和1958年两度被评选为广东省教育先进工作者。1960年,华南工学院成立数学力学系,周履调任该系结构力学教研组主任,后任系副主任。他根据土木系的成功经验,为应用力学专业师资队伍的建设作出了新的贡献。

周履一贯主张大学教师既要担任教学,也要从事科学研究,并以自己的实际行动作出了表率。50年代,他在担任繁重的教学任务之余,积极研究结构设计,并以其思想活跃、见解独到,深受同行们的赞誉。例如,针对当时结构力学界对“力矩分配法”的过份崇拜,周履正确地评价了该方法在学术上的地位,指出它实质上是数学中的迭代逼近法,而在运算时赋予了直观的物理概念,使工程人员易于掌握。他认为,对古人和洋人的好的东西是应该学习的,但不要盲目崇拜,以至迷信。50年代后期,为适应我国大规模经济建设的需要,寻求更合理的设计理论,周履把科研方向转移到塑性理论方面,是我国最早从事塑性力学研究的学者之一。70年代末,他根据国家科技发展规划,承担了复合材料力学这个新课题。他主持建立研究室,组织培养研究梯队,筹建中国力学学会复合材料专业组,多次参与筹备国际和全国性学术会议,在宣传和推动我国复合材料的研究方面起了带头作用。1963年1月,周履遭歹徒袭击,大脑受重伤,留下后遗症,且体质孱弱,慢性疾病不断。几十年来,他在与病魔的顽强抗争中坚持带病工作,依然为寻求更合理的设计理论和推进我国复合材料力学的研究做了大量工作。

寻求更合理的设计理论

早在美国学习时期,周履对土木工程和结构力学就有很深的造诣。40年代末,随着厚壁结构在工业建筑中的使用增多和大型块件的兴起,作为结构单元之一的深梁引起了工程界巨大的兴趣,正在攻读博士学位的周履也注意到了这一研究动向。

深梁一般可分三类:受周期荷重作用的无限长梁、受非周期荷重作用的无限长梁和有限长深梁。前两类问题可用傅立叶级数和傅立叶积分求解,第三类问题的求解比较困难,当时还甚少研究,原因是不易满足所有边界条件。周履在《深梁的分析》一文中采用了应变能方法,用两个应力函数相叠加求得了有限长深梁的应力公式,画出了曲线,并和有限差分法以及经典梁理论进行了对比,这在当时条件下,是属于首创性的工作,有较大的理论和使用价值。

后来,他又在美国《土木工程》学报上发表了《深梁中的应力》一文,按弹性平面应力问题给出了各类荷载作用下分布的数值解。这对当时结构工程界深入了解深梁的特征和指导设计起了很大的作用。美国土木工程协会于1953年2月对这篇论文进行了讨论,还出版了讨论文选。当时有些著名教授如M.古兹曼(Guzman)和J.路易塞尼(Luisoni)亦参加了讨论,并给予了它很高的评价,认为单跨深梁的分析是一个困难问题,作者的差分解是相当成功的,与光弹性实验比较,当高跨比为1时,跨中截面最大弯曲应力的误差不超过20%。周履在这篇论文中列出的数据和图表,已为后人引为设计依据。

为了适应我国大规模经济建设的需要,寻求更合理的设计理论,从1954年开始,周履把研究的主攻方向移到塑性理论方面。当时,我国全面学习苏联,在钢筋混凝土和钢结构设计等方面都部分采用了按极限状态计算的方法。为了适应工程实际的需要,周履努力学习塑性力学,研究了大量的资料。他通过举办讲座,积极宣传和推行极限设计理论,向中青年教师介绍了这一领域中重要作者的工作。

1956年,周履在校庆报告会上作了“塑性理论中的极限定理及其应用”的报告。这是一篇很有意义的综述报告,引起工程界极大的关注,被国家建委主编的《经验报导》杂志所刊用。后来,他又参加了《土木工程》学报关于《杆件系统中极限荷重的计算》一文的讨论。他在讨论文章中阐明的观点得到作者李立和同行们的好评。

1956年,周履出席了全国第一届力学大会。这一年,他首次招收了副博士研究生。根据高等教育部规划的分工,他与清华大学一道率先研究薄壳理论和推广薄壳结构设计。为了给研究生和年轻教师打基础,他主讲了В.З.符拉索夫(Власов)专著《薄壳理论及其在工程中的应用》一书。他对该书许多公式都认真推导,发现了不少错误或刊误之处。有人评论说:“国内还很少有人像周先生这样仔细地钻研这本巨著。”

率先研究复合材料力学

1978年,周履应教育部科技局的邀请,参加了教育部理论与应用力学规划会议,接着又参加了全国的力学规划会议。国家宏伟的发展规划给周履以巨大的鼓舞。他放弃了原已准备申报的研究项目,承担了新兴学科复合材料力学的研究。当时,我国虽在玻璃钢方面的研究已有相当的基础,但在复合材料力学领域几乎还是未开垦的“生荒地”,既缺乏资料、设备,也缺乏受过这方面训练的人才。周履认识到这一学科的研究对我国四个现代化建设的重要意义,立志组织队伍攻克这一科学难关。在学院领导的关心和支持下,他主持筹建研究室。通过国外亲友,他个人订阅了几种国外期刊和书籍,提供并指导研究室的同志们学习。他不顾自己身体多病,亲自为大家讲授“张量分析”和“复合材料细观力学”,为以后的研究打下了较好的基础。

1980年3月,根据中美文化交流协定,他受教育部委托,聘请美国南方大学R.M.琼斯(Jones)教授来华讲学和交流,组织了我国复合材料力学第一次大规模的学术活动。5月,他又邀请美国复合材料首席科学家、美国复合材料杂志主编蔡伟伦教授访华,进行了更进一步的学术座谈,同时邀集了国内部分单位代表进行商讨,组织与协调我国复合材料力学的研究工作。在王震鸣的建议下,周履与中国科学院力学研究所、上海交通大学、大连工学院等单位磋商并发起筹建中国力学学会固体力学委员会复合材料力学专业组,经批准,周履担任了专业组第一任组长。

周履认识到,复合材料的发展必须与有关学科相互渗透、相互促进,因此,他积极推动各种联合形式的国内、国际学术交流。为了联合活动,他担任了中国航空学会复合材料专业委员会的副主任委员。通过中国航空学会、中国力学学会、中国宇航学会的共同努力,从1980年起,我国定期举行全国复合材料学术会议,迄今已举行了6届全国性的和2次国际大型学术交流会。近年,他又参与筹建了中国复合材料学会,并当选为副理事长。

身为教育工作者的周履,深知培养人才对发展科研事业的重要性。他在研究室内建立并坚持定期进行学术讨论的制度,精心指导和培养研究梯队。他在我国率先招收了复合材料力学方面的硕士研究生。1980年7月,他接受教育部干部局的聘请,委托范赋群为全国力学讲习班首次开设复合材料力学课程,并出版了《复合材料力学通讯》内部交流资料,达到了宣传、普及的效果。为满足本科生和研究生教学需要,他应高等教育出版社之约,与范赋群合作撰著了《复合材料力学》教材。该书较系统地反映了周履等人对复合材料力学中一些基本问题的看法,其中并包含有作者们的研究成果。

鉴于复合材料力学是一门新兴学科,许多基本理论问题有待继续发展。譬如,现有的复合材料细观统计断裂理论,实质上是套用了最弱环统计链式模型。它无法描述真实复合材料的非自相似随机扩展的破坏方式。周履及其同事们创立了随机扩大临界核、亚临界核理论,用统计断裂力学的方法定量地描述了复合材料的多种形式的就位强度。这一工作被同行们认为是突破了现有的理论构架,可望获得更进一步的发展。又如,现有的结构临界力的线性理论,用于求解具有几何和或物理耦合变形的复合材料结构,有时会得出不真实的结果。这一问题已为国内外学者所注意。周履及合作者们在指出问题的同时,提出了“非线性-耦合前屈曲二级线性-一级线性”的临界力理论,将后屈曲理论转移到了前屈曲,并可给出满意的结果。

周履在注重复合材料力学基本理论研究的同时,还十分重视对求解方法的研究。1980年,在全国第一届计算力学学术讨论会上,周履应大会主席钱令希之邀,作了《复合材料力学分析的有限元法及计算机化简介》的综述报告。在这篇报告中,他强调了复合材料的特点,介绍了复合材料细观和叠层分析的有限元方法,以及叠层破坏的宏观分析,他强调指出了计算机在复合材料力学分析与计算中的重要性。这是我国计算力学领域中涉及复合材料最早的一篇综述报告。

在《双模量复合材料十字叠层矩形薄板的弯曲》一文中,作者们首次成功地将加权残数法用于双模量复合材料,表明了该方法用于双模量材料的可行性及该文所用试函数的有效性。该文发表后,有关评论认为“用加权残数法分析层合板弯曲问题已基本上解决了”;该文内容被收入有关加权残数法的专著;其方法后来被引用到厚板问题、热应力问题及叠层扁壳的弯曲问题。下一页 1 2

下载航空发动机复合材料的应用与研究word格式文档
下载航空发动机复合材料的应用与研究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    油棕的研究与应用

    油棕的研究与应用 摘要:棕榈油是世界油脂市场重要的油脂品种.棕榈油以其良好的氧化稳定性、相对低廉的市场价格受到食品行业的青昧.我国是世界第一大棕榈油进口国,并且对棕榈......

    现代教育技术应用与研究范文合集

    现代教育技术应用与研究【摘 要】随着现代信息技术的发展及其在学校教学领域中的广泛应用,中小学“校校通”工程的全面实施,借助信息资源进行教学已经成为教育改革的一个重要......

    工作岗位研究原理与应用

    工作分析理论与应用复习资料 第一章 一、与工作分析相关的概念P1 1、任务 2、职责 3、岗位 4、工作 5、职业 二、工作分析的原则P2 1、系统原则 2、能级原则 3、标准化原则......

    有机硅的应用与研究

    有机硅材料的研究进展 The silicone materials research progress摘要:综述了国内外有机硅材料的制备、应用等方面的研究进展。介绍了有机硅材料在灌封,LED封装方面的用途并展......

    中国古代共振研究与应用

    中国古代共振研究与应用 粟 新 华 (邵阳学院物理系, 湖南邵阳 422000) 摘要:介绍了中国古代共振现象与共振实验,指出共振效应在中国古代的应用. 关键词:《墨子》;张华;沈括;钟;弦;泉......

    松木桩复合地基的应用(最终五篇)

    1 松木桩复合地基的应用 作者:王瑞杰 摘要:本文通过对软土地基以及松木桩复合地基工程特性的分析,建立了松木桩复合地基的力学模型,提出了松木桩复合地基的设计方法。 关键......

    《复合地基理论及工程应用》读后感

    《复合地基理论及工程应用》第二版,为龚晓南著,中国建筑工业出版社出版发行。《复合地基理论及工程应用(第2版)》全面地介绍了复合地基理论和工程实践方面的研究成果,在《复合......

    《分手与复合 II》-PP-整理

    绝对不合适 因为那不是试探 爱有什么用还需要你爱才行啊 别人爱你 。你自己是爱无能别人也必须得走人 因为你会肆无忌惮的浪费别人的生命 并且还会给自己造成伤害 呵呵 他做......