高考数学复习 概率统计典型例题

时间:2019-05-13 03:12:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学复习 概率统计典型例题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学复习 概率统计典型例题》。

第一篇:高考数学复习 概率统计典型例题

高考数学复习概率统计典型例题

例1 下列命题:

(1)3,3,4,4,5,5,5的众数是5;

(2)3,3,4,4,5,5,5的中位数是4.5;

(3)频率分布直方图中每一个小长方形的面积等于该组的频率;

(4)频率分布表中各小组的频数之和等于1

以上各题中正确命题的个数是 [ ].

A.1个 B.2个 C.3个 D.4个

分析:回忆统计初步中众数、中位数、频数、频率等概念,认真分析每个命题的真假.

解:(1)数据3,3,4,4,5,5,5中5出现次数最多3次,5是众数,是真命题.

(2)数据3,3,4,4,5,5,5有七个数据,中间数据是4不是4.5,是假命题.

(3)由频率分布直方图中的结构知,是真命题.

(4)频率分布表中各小组的频数之和是这组数据的个数而不是1,是假命题.

所以正确命题的个数是2个,应选B.

例2 选择题:

(1)甲、乙两个样本,甲的样本方差是0.4,乙的样本方差是0.2,那么 [ ]

A.甲的波动比乙的波动大;

B.乙的波动比甲的波动大;

C.甲、乙的波动大小一样;

D.甲、乙的波动大小关系不能确定.

(2)在频率直方图中,每个小长方形的面积等于 [ ]

A.组距 B.组数

C.每小组的频数 D.每小组的频率

分析:用样本方差来衡量一个样本波动大小,样本方差越大说明样本的波动越大.

用心 爱心 专心

122号编辑

解:(1)∵0.4>0.2,∴甲的波动比乙的波动大,选A.

例3 为了了解中年人在科技队伍中的比例,对某科研单位全体科技人员的年龄进行登记,结果如下(单位:岁)

44,40,31,38,43,45,56,45,46,42,55,41,44,46,52,39,46,47,36,50,47,54,50,39,30,48,48,52,39,46,44,41,49,53,64,49,49,61,48,47,59,55,51,67,60,56,65,59,45,28.

列出样本的频率分布表,绘出频率分布直方图.

解:按五个步骤进行:

(1)求数据最大值和最小值:

已知数据的最大值是67,最小值是28

∴最大值与最小值之差为67-28=39

(2)求组距与组数:

组距为5(岁),分为8组.

(3)决定分点

(4)列频分布表

用心 爱心 专心

122号编辑

(5)绘频率分布直方图:

例4 某校抽检64名学生的体重如下(单位:千克).

列出样本的频率分布表,绘出频率分布直方图.

分析:对这组数据进行适当整理,一步步按规定步骤进行.

解:(1)计算最大值与最小值的差:48-29=19(千克)

(2)决定组距与组数

样本容量是64,最大值与最小值的差是19千克,如果取组距为2千克,19÷2=9.5,分10组比较合适.

(3)决定分点,使分点比数据多取一位小数,第一组起点数定为28.5,其它分点见下表.

(4)列频率分布表.

用心 爱心 专心

122号编辑

(5)画频率分布直方图(见图3-1)

说明:

长方形的高与频数成正比,如果设频数为1的小长方形的高为h,频数为4时,相应的小长方形的高就应该是4h.

例5 有一个容量为60的样本,(60名学生的数学考试成绩),分组情况如下表:

(1)填出表中所剩的空格;

(2)画出频率分布直方图.

分析:

用心 爱心 专心

122号编辑

各组频数之和为60

各组频率之和为1

解:

因为各小组频率之和=1

所以第4小组频率=1-0.05-0.1-0.2-0.3=0.35

所以第4小组频数=0.35×60=第5小组频数=0.3×60=18

(2)

例6 某班学生一次数学考试成绩的频率分布直方图,其中纵轴表示学生数,观察图形,回答:

(1)全班有多少学生?

用心 爱心 专心

122号编辑

(2)此次考试平均成绩大概是多少?

(3)不及格的人数有多少?占全班多大比例?

(4)如果80分以上的成绩算优良,那么这个班的优良率是多少?

分析:根据直方图的表示意义认真分析求解.

解:(1)29~39分1人,39~49分2人,49~59分3人,59~69分8人,69~79分10人,79~89分14人,89~99分6人.

共计 1+2+3+8+10+14+6=44(人)

(2)取中间值计算

(3)前三个小组中有1+2+3=6人不及格占全班比例为13.6%.

(4)优良的人数为14+6=20,20÷44=45.5%.

即优良率为45.5%.

说明:频率分布表比较确切,但直方图比较直观,这里给出了直方图,从图也可以估计出一些数量的近似值,要学会认识图形.

例7 回答下列问题:

用心 爱心 专心

122号编辑

总是成立吗?

(2)一组数据据的方差一定是正数吗?

总是成立吗?

(4)为什么全部频率的累积等于1?

解:(1)证明恒等式的办法之一,是变形,从较繁的一边变到较简单的一边.这

可见,总是成立.

顺水推舟,我们用类似的方法证明(3);注意

那么有

(2)对任一组数x1,x2,„,xn,方差

这是因为自然数n>0,而若干个实数的平方和为非负,那么S2是有可对等于0的

从而x1=x2=„=xn,就是说,除了由完全相同的数构成的数组以外,任何数组的方差定为正数.

用心 爱心 专心

122号编辑

(4)设一个数组或样本的容量为n,共分为m个组,其频数分别为a1,a2,„,am,按规定,有

a1+a2+„+am=n,而各组的频率分别a1/n,a2/n,„,am/n,因此,有

说明:在同一个问题里,我们处理了同一组数据x1,„,xn有关的两个数组f1,f2,„,fk和a1,a2,„,am,前者是说:在这组数中,不同的只有k个,而每个出现的次数分别为f1,„,fk;后者则说明这组数所占的整个范围被分成了m个等长的区间,出现在各个区间中的xi的个数分别为a1,„,am,可见,a1,„,an是f1,„fk的推广,而前面说过的众数,不过是其fi最大的那个数.

弄清研究数组x1,„,xn的有关数和概念间的联系与区别,是很重要的.

例8 回答下列问题:

(1)什么是总体?个体?样本?有哪些抽样方法?

(2)反映样本(或数据)数量水平的标志值有哪几个?意义是什么?怎样求?

(3)反映样本(或数据)波动(偏差)大小的标志值有哪几个?怎样求?有什么区别?

(4)反映样本(或数据)分布规律的数量指标和几何对象是什么?获得的一般步骤是什么?

解:这是一组概念题,我们简略回答:

(1)在统计学里,把要考查对象的全体叫做总体;其中每个考查对象叫个体;从总体中抽出的一部分个体叫做总体的一个样本;样本中个体的数目,叫做样本的容量.

应指出的是,这里的个体,是指反映某事物性质的数量指标,也就是数据,而不是事物本身,因此,总体的样本,也都是数的集合.

抽样方法通常有三种:随机抽样、系统抽样和分层抽样三种,基本原则是:力求排除主观因素的影响,使样本具有较强的代表性.

(2)反映样本(或数据)数量水平或集中趋势的标志值有三个,即平均数、众数和中位数.

有时写成代换形式;

用心 爱心 专心

122号编辑

有时写成加权平均的形式:

其中,又有总体平均数(总体中所有个体的平均数)和样本平均数(样本中所有个体的平均数)两种,通常,我们是用样本平均数去估计总体平均数.且一般说来,样本容量越大,对总体的估计也就越精确.

(ii)众数,就是在一组数据中,出现次数最多的数.通常采用爬山法或计票画“正”法去寻找.(爬山法是:看第一个数出现次数,再看第二、三、„„有出现次数比它多的,有,则“爬到”这个数,再往后看„„).

(iii)中位数是当把数据按大小顺序排列时,居于中间位置的一个数或两个数的平均,它与数据的排列顺序有关.

此外,还有去尾平均(去掉一个最高和一个最低的,然后平均)、总和等,也能反映总体水平.

(3)反映样本(数据)偏差或波动大小的标志值有两个:

(ii)标准差:一组数据方差的平方根:

标准差有两个优点,一是其度量单位与原数据一致;二是缓解S2过大或过小的现象.方差也可用代换式简化计算:

(4)反映数据分布规律的是频率分布和它的直方图,一般步骤是:

(i)计算极差=最大数-最小数;

用心 爱心 专心

122号编辑

(iii)决定分点(可用比数据多一位小数的办法);

(v)画频率分布直方图.

其中,分布表比较确切,直方图比较直观.

说明:此例很“大”,但是必要的,因为,当前大多数的中考题,很重视基本内容的表述,通过“填空”和“选择”加以考查,我们要予以扎实.而更为重要的,这些概念和方法,正是通过偶然认识必然,通过无序把握有序,通过部分估计整体的统计思想在数学中的实现.

用心 爱心 专心

122号编辑

第二篇:工程数学(线性代数与概率统计)第三章典型例题分析

第三章

例1 设A为n阶方阵,若存在正整数k和向量,使Ak0,且Ak10.证明:向量组,A,,Ak1线性无关.证明:(利用线性无关定义证明)假设有常数1,2,,k,使得

k1AA0(1)12k将(1)两边左乘Ak1,可得

1Ak12AkkA2k20

由已知条件A0,可知上式从第二项全等于零,所以1A又由条件Ak1kk10,0,所以10.类似地,将(1)两边左乘Ak2,可得20;

k1类似地可证得34k0,所以向量组,A,,A线性无关.例2 设向量组1,2,3线性相关,向量组2,3,4线性无关,问:

(1)1能否由2,3线性表示?证明你的结论;(2)4能否由1,2,3线性表示?证明你的结论.解:(1)1能由2,3线性表示.证明:由于向量组2,3,4线性无关,那么其部分组2,3也线性无关。又由已知条件有1,2,3线性相关,故1能由2,3线性表示.(2)4不能由1,2,3线性表示.证明:假设4能由1,2,3线性表示,即存在不全为零的常数1,2,3,使得

4112233

由(1)的结论,我们可以设1k22k33,代入上式,可得

4(21k2)2(31k3)3

即4可由2,3线性表示,从而2,3,4线性相关,与已知条件矛盾.因此假设不成立, 4不能由1,2,3线性表示.例3 设两向量组

(1)11,2,3,23,0,1,39,6,7(2)10,1,1,2a,2,1,3b,1,0 TTTTTT已知两向量组的秩相等,且3能由1,2,3线性表示,求a,b.解:令A(1,2,3),B(1,2,3)

由于矩阵A已知,可以先对A进行初等变换求秩.1391391392r1r250612A2060612rr3233rr3171301020000因此r(A)2,且1,2为(1)的一个极大无关组.由已知条件两向量组的秩相等,所以r(B)2,从而B0,即

0B11所以aa21b1ab0 03b.又由条件能由,,线性表示而1,2为(1)的一

123个极大无关组.所以3能由1,2线性表示,则1230,即

13b2b100123201,解得 310b5,所以有ab5.例4 求向量组11,1,1,3,21,3,5,1,TTTT32,6,10,a,44,1,6,10, 53,2,1,c的秩和一个极大无关组.解:对以1,2,3,4,5为列构成的矩阵A,做初等变换

T11A131102000012351240a2610a3112061010c04313107708c1104126412002412240432431a62a20314c9 31B1c3当a=2且c=3时, r(B)3,B中第1、2、4列线性无关,此时向量组的秩为3,1,2,4是一个极大无关组;

当a2时,r(B)4,B中第1、2、3、4列线性无关,此时向量组的秩为4,1,2,3,4是一个极大无关组;

当c3,r(B)4,B中第1、2、4、5列线性无关此时向量组的秩为4,1,2,4,5是一个极大无关组.例5设向量组(1)1,2,3,4的秩为3;向量组(2)1,2,3,5的秩为4,证明:向量组1,2,3,54的秩为4.证明:(要证明1,2,3,54的秩为4,可通过证明1,2,3,54线性无关来得到想要的结论)

由向量组(2)的秩为4,可知1,2,3线性无关,又由向量组(1)1,2,3,4的秩为

3,可知1,2,3,4线性相关,从而4可由1,2,3线性表示,即存在不全为零的常数l1,l2,l3,使得4l11l22l33,不妨设k11k22k33k4(54)0,将4代入,可得

(k1k4l1)1(k2k4l2)2(k3k4l3)3k450

由于1,2,3,5线性无关,所以

k1k4l10kkl0242k1k2k3k40 k3k4l30k40故1,2,3,54线性无关,从而该向量组的秩为4.例6 设向量组1,2,,m(m1)的秩为1,2,,m的秩为r

r,123m,213m,,m12m1,证明向量组

证明:(由推论等价的向量组有相同的秩,此题只需证明两个向量组等价即可)由已知1,2,,m可由1,2,,m线性表示,且有下式成立

12m(m1)(12m)

从而ii12m于是有i1(12m),m11(12m)i,即1,2,,m也可由m11,2,,m,故向量组1,2,,m与向量组1,2,,m等价,从而他们的秩相等,从而向量组1,2,,m的秩为r.

第三篇:高等数学概率统计基础部分典型例题解析

高等数学(2)概率统计基础部分典型例题解析

第1章 随机事件与概率

例1 填空题

(1)设A与B是两个事件,则P(A)P(AB)+。

(2)若P(A)0.4,P(AB)0.3,则P(AB)。

(3)设A,B互不相容,且P(A)0,则P(BA)

。解:(1)因为 AABAB,且AB与AB互斥 所以 P(A)P(AB)+P(AB)应该填写: P(AB)(2)因为 AABAB,P(AB)P(A)P(AB)0.40.30.1

P(B)P(AB)P(AB)0.10.30.4

所以

P(AB)P(A)P(B)P(AB)0.40.40.10.7 应该填写:0.7(3)因为A,B互不相容,即P(AB)0 所以 P(BA)应该填写: 0

例2 单项选择题

(1)事件AB又可表示为().A.AB

B.AB

C.AAB

D.ABAB

(2)掷两颗均匀的骰子,事件“点数之和为3”的概率是()A.***P(AB)P(A)0

B.C.D.(3)若等式()成立,则事件A,B相互独立。

A.P(AB)P(A)P(B)

B.P(AB)P(A)P(BA)

C.P(B)P(BA)

D.P(A)1P(B)

(4)设A与B是相互独立的两个事件,且P(A)A.1212,P(B)13,则P(AB)()

B.56

C.23

D.34

解:(1)依定义,事件AB表示A发生但B不发生,因此AB也可以表示为AAB.应该选择:C(2)基本事件总数为36,点数之和为3的事件有(1,2)和(2,1),即事件数为2,故“点数之和为3”的概率是

236118。

应该选择:B(3)因为当式子P(B)P(BA)时,由乘法公式P(AB)P(A)P(BA),得

P(AB)P(A)P(B)

所以事件A,B相互独立。应该选择:C(4)因为A与B是相互独立,所以由加法公式

P(AB)P(A)P(B)121356。

应该选择:B 例3 A,B为两事件,已知P(A)P(AB),P(AB)。

12,P(B)13,P(BA)12,求P(AB),解 P(AB)P(A)P(BA)12121412

1314712P(AB)P(A)P(B)P(AB)

1P(AB)P(AB)34 1P(B)43例4 已知两个事件A,B相互独立,且已知P(A)0.6,P(B)0.3,求P(AB). 解

由P(B)0.3,得 P(B)1P(B)10.30.7

所以 P(AB)P(A)P(B)P(AB)

P(A)P(B)P(A)P(B)

0.60.70.60.70.88

例5 设P(A)0.5,P(AB)0.3,求P(BA).

因为P(BA)

P(AB)P(A)

AA(BB)ABAB

P(A)P(AB)P(AB)

P(AB)P(A)P(AB)

0.50.30.2 P(AB)0.2所以 P(BA)0.4

P(A)0.5

例6 某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮4次,⑴ 求投中篮框不少于3次的概率; ⑵ 求至少投中篮框1次的概率。

解 设Ai{第i次投中}的事件,i1,2,3,4,P(Ai)0.8,P(Ai)0.2相互独立(1)投中篮框不少于3次的事件可表为 A1A2A3A4A1A2A3A4A1A2A3A4A1A2A3A4A1A2A3A4

其概率为

P(A1A2A3A4A1A2A3A4A1A2A3A4A1A2A3A4A1A2A3A4)

=P(A1A2A3A4)P(A1A2A3A4)P(A1A2A3A4)P(A1A2A3A4)P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)P(A1)P(A2)P(A3)P(A4)P(A1)P(A2)P(A3)P(A4)P(A1)P(A2)P(A3)P(A4)P(A1)P(A2)P(A3)P(A4)

=(0.8)440.2(0.8)30.8192(2)因为,投篮4次均未投中的概率为

P(A1A2A3A4)(0.2)40.0016

所以,至少投中篮框1次的概率为

1P(A1A2A3A4)10.00160.9984

第四篇:应用统计典型例题

关于矩估计与极大似然估计的典型例题 例1,设总体X 具有分布律

231X~22(1)(1)2

其中01为未知参数。已经取得了样本值x11,x22,x31,试求参数的矩估计与极大似然估计。

解:(i)求矩估计量,列矩方程(只有一个未知参数)

E(X)222(1)3(1)232X 433X3x53 得 矩2226(ii)求极大似然估计,写出似然函数,即样本出现的概率

L()P(X1x1,X2x2,X3x3)

P(X11,X22,X31)

P(X11)P(X22)P(X31)22(1)225(1)

对数似然

lnL()ln25lnln(1)

dlnL()510 d1得极大似然估计为

5ˆ极 6

例2,某种电子元件的寿命(以

h记)X服从双参数指数分布,其概率密度为

1exp[(x)/],xf(x)

0,其他其中,0均为未知参数,自一批这种零件中随机抽取n件进行寿命试验,xx,,xn.设它们的失效时间分别为1,2(1)求(2)求,的最大似然估计量; ,的矩估计量。

n解:(1)似然函数,记样本的联合概率密度为

L(,)f(x1,x2,,xn;,)f(xi)

i1n1exp[(xi)/],x1,x2,,xni1 0,其他n1nexp((xin)/),x(1)i1 0,x(1)在求极大似然估计时,L(,)0肯定不是最大值的似然函数值,不考

n虑这部分,只考虑另一部分。

取另一部分的对数似然函数

lnL(,)nln(xin)/,x(1)

i1

nxinlnL(,)ni102 lnL(,)n0可知关于,的驻点不存在,但能判定单调性

lnL(,)n0知 由lnL(,)nln(xin)/,x(1),i1n关于是增函数,故

ˆ极x(1)lnL(,)n将之代入到xnii1n20中得

ˆ极xx(1)

ˆˆx则极(1),极xx(1)一定能使得似然函数达到最大,故,的极大似然估计为

ˆ极xx(1) ˆx极(1)

(2)列矩方程组(两个未知参数)

1E(X)xexp[(x)/]dxXn2112222E(X)xexp[(x)/]dx()Xini1解出

n12ˆ(XX)矩ini11nˆ2X(XX)i矩ni1 例3,设总体X~U[0,],其中0为未知参数,X1,X2,,Xn为来自总体X的一组简单随机样本,12大似然估计。

解:似然函数,即样本的联合概率密度

nx,x,,xn为样本观察值,求未知参数的极

1n,0x1,x2,,xnL()f(x1,x2,,xn;)f(xi) i10,elseL()0肯定不是最大值,考虑另一部分的最大值,取对数似然

lnL()nln,x(n)

dlnL()n0 d知lnL()nln在x(n)内是单调递减的,故的极大似然估计值为

取x(n)能使得似然函数达到最大,则ˆx,极大似然估计量为ˆX (n)(n)极极

第五篇:概率统计复习重点

概率统计复习重点:

1.全概率公式应用题。

练习题:有两只口袋,甲袋装有a只白球,b只黑球,乙袋中装有n只白球,m只黑球,(1)从甲袋中任取1球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

(2)从甲袋中任取2球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

(3)从甲袋中任取3球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

2.一个正态总体方差的区间估计。两个正态总体的区间估计不考。

3.二维连续型随机变量联合概率密度函数及其性质,边缘概率密度函数的求法,判断两个

随机变量的独立性。

4.已知二维连续型随机变量的联合概率密度函数,求两个随机变量的数学期望,协方差。5.6.7.8.一个正态总体均值的假设检验,方差未知。两个正态总体的假设检验不考。切比雪夫不等式。会求两随机变量的函数的相关系数。样本方差与样本二阶中心矩的关系。

9.常见分布如均匀分布、正态分布、泊松分布的数学期望和方差;数学期望与方差的性质。

10.条件概率公式、加法公式。

11.矩估计、无偏估计。

概率统计复习重点:

1.全概率公式应用题。

练习题:有两只口袋,甲袋装有a只白球,b只黑球,乙袋中装有n只白球,m只黑球,(1)从甲袋中任取1球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

(2)从甲袋中任取2球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

(3)从甲袋中任取3球放入乙袋,然后再从乙袋中任取1球,求最后从乙袋中取出的是白球的概率。

2.一个正态总体方差的区间估计。两个正态总体的区间估计不考。

3.二维连续型随机变量联合概率密度函数及其性质,边缘概率密度函数的求法,判断两个

随机变量的独立性。

4.已知二维连续型随机变量的联合概率密度函数,求两个随机变量的数学期望,协方差。

5.一个正态总体均值的假设检验,方差未知。两个正态总体的假设检验不考。

6.切比雪夫不等式。

7.会求两随机变量的函数的相关系数。

8.样本方差与样本二阶中心矩的关系。

9.常见分布如均匀分布、正态分布、泊松分布的数学期望和方差;数学期望与方差的性质。

10.条件概率公式、加法公式。

11.矩估计、无偏估计。

下载高考数学复习 概率统计典型例题word格式文档
下载高考数学复习 概率统计典型例题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    工程数学(线性代数与概率统计)复旦大学出版社,第二章典型例题分析(★)

    第 二 章 例1 11设A为三阶方阵,A为其伴随矩阵, A,求(A)110A*. 23*1解:因为A可逆,定理3.1A1**A,AA1AA,代入原式得,11(A)10A*3A110A1A2A18A18*2163 例2 32nA设,求A. 03解:由于A的主对......

    高考二轮数学考点突破复习:概率与统计+解析几何

    高考二轮数学考点突破复习:概率与统计+解析几何高考二轮数学考点突破复习:解析几何解析几何是高考的必考内容,它包括直线、圆、圆锥曲线和圆锥曲线综合应用等内容.高考常设置三......

    初三数学总复习-统计和概率 教案

    《总复习——统计与概率》教案 一、教学目标 知识与技能:在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率. 过程与方法:经历模仿、参考例题到......

    复习教案统计与概率(范文大全)

    统计与概率 第1课时 教材内容 1.本节课复习的是教材114页6题及相关习题。 2.6题以我国城市空气质量为素材,让学生根据扇形统计图所提供的信息解决实际问题,在这里,“273个城市空......

    统计与概率复习课

    《统计与概率复习课》教学设计 胡桂芬 一、教学目标 (一)知识与技能 让学生经历收集数据、整理数据、分析数据的活动,使他们在解决问题的整个过程中进一步巩固所学的统计知识,......

    历史高考典型例题

    1.隋唐以前,官府设有谱局,考定父祖官爵、门第。此后该现象逐步消失,主要原因是 () A.宗法制的终结 B.察举制的完善 C.三省六部制的设立 D.科举制的推行 2.《三国志》称秦始皇“罢侯......

    2018年中考数学专题复习-概率与统计5篇

    2018年中考数学专题复习《统计与概率》 1.达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图. D 根据图......

    高考数学典型例题---数学归纳法解题(推荐阅读)

    数学归纳法 每临大事,必有静气;静则神明,疑难冰释; 积极准备,坦然面对;最佳发挥,舍我其谁? 结合起来看 效果更好 体会绝妙解题思路 建立强大数学模型 感受数学思想魅力 品......