先进半导体制程与材料选择

时间:2019-05-13 03:54:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《先进半导体制程与材料选择》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《先进半导体制程与材料选择》。

第一篇:先进半导体制程与材料选择

半導體科技 > 雜誌導讀 > 技術專文

先進半導體製程與材料選擇

作者:宋健民/中國砂輪企業股份有限公司總經理 日期:2008/12/10 來源:半導體科技

人類的物質文明可以說是建立在「材料科技」上,從史前的石器時代,到發明文字後的鐵器時代,或從近代的塑膠時代,到現在的矽晶時代,都是材料科技的里程碑,而物質文明的巔峰極緻將為「鑽石時代」...工欲善其事,必先利其器,鑽石,在現今環境裡,不再只是首飾,在工業應用可是極為重要的礦材,在一般工業用途最常見用於切割,為了在車床上做良好的切削,車刀本身也應具備足夠的強度、硬度、而且耐磨、耐熱。其中尤以鑽石刀具,常用於高級表面加工時,使用圓形或表面有刃緣的工業用鑽石來進行光製,得到更為光滑的表面。

鑽石時代

鑽石不僅質地堅硬,也早已成工業製造中不可或缺的超級磨料(每年使用1,000公噸),它同時也是特性最優越的半導體!鑽石性能遠超過現在的主流矽晶。「鑽石」更已用在矽晶半導體的生產上(如台灣領先世界的鑽石碟)。此外,鑽石可成為矽晶積體電路(IC)最好的絕緣體及CPU最快的散熱面,有如下述。

摩爾定律

人類科技進步最快速的產品,即為積體電路(Integrated Circuit或IC)。1965年Intel的共同創始人Gordon Moore,曾大膽預言電腦CPU上的電晶體數目會以倍數成長,這個所謂的摩爾定律(Moore’s Law),迄今仍以每18個月成長1倍的高速持續挺進。由於電晶體的倍數成長已超過40年,2007年Intel推出的Penryn4核心晶片上竟有高達8億2,000萬個電晶體。

圖一:摩爾定律使IC內電路的線寬急速變窄,而其厚薄的差異更只有線寬的1/10,這種設計規格,使製程的困難度大幅提高,因此IC電路極小時,電流信號(Signal)與亂流雜訊(Noise)就難以區分。

nm IC 由於電晶體越來越多,它的尺寸越來越小,而聯結電晶體的電路(Interconnect)也越來越密。上述的Penryn晶片線寬已小至45 nm,相當於較小的濾過性病毒(Virus)。可以這麼形容,Penryn是藥片大小的晶片,其上密佈接近中國人口總數,但比病菌小10倍的電路開關。

2007年,只有Intel及台積電(TSMC)有能力量產45nm的IC。但全球的其他主要半導體大戶,都加入IBM聯盟(Consortium)合作發展45nm的IC製程,預計在今年許多聯盟成員將陸續導入量產45nm的IC。

圖二:2007年Intel推出以High K Metal Gate的Penryn晶片(45nm)。

半導體的三國演義

值得注意的是,IBM不僅將移轉45nm的技術給晶圓代工的韓國三星(Samsung)及新加坡特許(Chartered Semiconductor),更將技術賣給了中國的中芯。

中芯已開始規劃在深圳成立研發中心,及建設8吋和12吋兩座晶圓廠,準備接收IBM領先世界的技術。中芯本身也開始在12吋晶圓上生產65nm的IC。台積電及聯電雖是晶圓代工的龍頭,但面對IBM的技術輸出,將會被北、中、南的低價製造者聯合夾殺。Intel早看出國際無力封殺中芯,因此就進行「以華制華」,它正緊鑼密鼓在大連建立12吋晶圓廠,將在2010年量產90nm的IC。可嘆的是台灣目前仍只准8吋晶圓帶180nm的技術登陸,以原始的武器和先進的對手「境外交戰」。

中國已成為世界最大的晶片市場,2010年中芯規模將超越聯電,其製造成本會低於台積電。台灣晶圓代工主導世界的時代可能結束。台積電應和聯電聯盟或合併,組成「台聯」對抗中、韓、新的3面包抄。台積電更應和中芯停止互控,在法庭外合解,雙方甚至可討論如何分工生產,以華人晶片佔據中國市場。「台聯中」可和Intel及IBM聯盟演出「三國演義」,這樣台灣就可以持續主導未來的晶圓代工。

圖三:IBM聯盟展示HKMG所製32nm IC的晶圓。圖中的聯盟成員代表包括IBM、Freescale、AMD、Samsung、Chartered Semiconductor、Infineon等公司。

High K Metal Gate

世界晶圓大戰的下一個關鍵,乃是發展32nm的製程技術。當電晶體的Gate Gap進入這個「次病毒」的領域時,其電極(多晶矽)的電阻太大,而且電流不穩,必須改用金屬(Metal Gate)。更有甚者,絕緣層(二氧化矽)變得太薄(<1nm),只有不到10個原子的堆疊高度,這時電極的電子便會穿隧過去(Tunnel Through),其結果為不僅造成漏電,而且使電晶體的開關信號難以辨認。

Intel為了解決這個漏電問題,在設計45nm IC時就把電極改用鉿合金(Hf Alloy),而其絕緣層則改為鉿化物(HfO2或HfC)。由於鉿化物的誘電率(Dielectric Constant或K)比氧化矽高得多,這種介金屬層的厚度可以加倍(>2nm),因此避免了穿隧的漏電。Intel的HKMG(High K Metal Gate)已用在Penryn的晶片上,其設計將延伸至32nm線寬的電晶體IC。IBM已驗證HKMG可用在32nm的SRAM晶片上。台積電雖成功的試製32nm的傳統IC,但尚未成功的開發HKMG。聯電仍未生產45nm製程,更惶論HKMG了。

圖四:電晶體漏電示意圖。

半導體的散熱

Intel雖以HKMG解決了穿隧的漏電問題,但卻有更多的電流,經矽晶本身漏掉。原來矽晶為半導體,並非絕緣層,當線寬細到45nm時,經矽流失的電流已高達1/3。為了阻絕漏電,法國的Soitec發展出氧化矽絕緣層墊在電晶體下。這種技術稱為絕緣底半導體(Semiconductor On Insulator或SOI)。

SOI已大量用在電晶體緊密的晶片上,例如NVIDIA的繪圖晶片、及Sony的遊戲晶卡都用SOI晶片。然而SOI解除漏電危機,卻惡化了另一個更大的問題,即目前半導體業束手無策的散熱瓶頸。晶片的生熱速度與熱源密度,已遠超過煮飯的電爐,所以用晶片煮蛋會比電爐快得多。過去摩爾定律除了加密電晶體外,也同時加速電晶體的開關速率。但當這個速率快到4 GHz時,電晶體就有燒毀之虞。Intel不能解決這個問題乃將單核心拆成雙核心。

Intel又將電晶體的時脈(Clock Speed)降下,再加大晶片把熱源分散。但這個轉進策略只是以空間換取時間,當線路的寬度更窄時,生熱的速率更快。Intel被迫只好將雙核心再拆成4核心,而8核心的產品也已經上路。這種多核心的設計無法將CPU的運算能力發揮盡致。台灣已製成鑽銅散熱片,其熱傳導率可倍於現今散熱最快的銅散熱片。這種快速散熱片可避免晶片分成多核心而可組回單核心使用。

鑽石底半導體

SOI以氧化矽阻電,但氧化矽卻同時阻擋了熱流,所以晶片的時脈更難提升,為徹底解決這個難題,台灣發明了鑽石底半導體(Semiconductor On diamond或SOD)。鑽石的熱傳導率(>1,000 w/mk)比氧化矽高10倍以上。尤有進者,鑽石的晶格是所有材料中最穩定的。以SOD製造32nm的IC不僅可以降溫、加速,還可以避免背景輻射所引發的亂流(Noise)。32nm電晶體的電流信號極為微弱,因此矽晶內自發的雜訊(Noise)會干擾開關狀態判別,SOD新技術則可把雜訊降到最低。

IC內的熱源,除了電晶體的開關及漏電外,也來自銅導線內電流所生電磁波彼此的干擾(RC Delay)。為了隔絕電磁波,銅線乃以低誘電(Low K或LK)材料製成。LK材料內含大量氣孔,所以非常脆弱。當線寬縮小到32nm時,LK材料的氣孔率大於50%。這種脆弱材料不僅難以蝕刻,更不能在CMP時拋光。

此外,LK材料也容易吸附水氣,變得更易於變質。幸虧台灣已發明先進鑽石碟(Advanced Diamond Disk或ADDTM)。CMP時ADD可以低接觸應力,快速拋光晶圓。LK材料也可使用鑽石和鐵氟龍的網路沈積生成,這樣不僅可以微影蝕刻,也不會吸附水氣。

全碳積體電路

電腦的中央處理單元(central Process Unit或CPU),乃以矽晶製造電晶體(Transistor),再以銅線連接(Interconnect)。電晶體的開關乃以High K Gate(如Hf化合物)控製,而線路之間則以Low K Dielectric(如含HF的SiC)絕緣。

碳是奇蹟的材料,它可形成導電率比銅高的單晶石墨層(Graphene),石墨層可蝕刻成為奈米電路,層間可以奈米碳管導通。石墨和鑽石可以交互數層原子堆砌成超晶格(Supperlattice)。碳的超晶格具有極高的誘電(K)能力,但卻不會漏電,而且它可以在高電場下運作。這種未來材料可取代鉿化合物的High K Metal Gate。除此之外,碳可和氟形成鐵弗龍(Teflen)似的網狀結構,具有極低(K=2)的誘電力和極高的電阻,它可取代現行的Low K脆弱材質(如Black Diamond)。

上述的夢幻設計可組成全碳的電路,其性能將遠勝於現有的任何設計。全碳IC可延伸摩爾定律至線寬10nm以下。不僅如此,石墨及鑽石散熱速度超過銅的多倍。全碳CPU有內建的散熱系統,它可使電晶體的運作頻率遠高於4GHz。摩爾定律的CPU原來為單晶片,但因不能解決CPU散熱問題,於是拆成多核心,而靠加大面積避免熱源過度集中。

全碳CPU可使多核心重合成為單一晶片,讓摩爾定律回歸正統。

尤有進者,鑽石半導體比矽晶耐溫及抗壓,而且它的運算快速。鑽石的P型半導體可填入比矽晶更多的硼原子,而使電洞的濃度大增。鑽石的N型半導體可以鋰氮(LiN)滲透製成。鑽石半導體可和上述的全碳IC整合製成全碳CPU。由於鑽石是散熱極品,全碳CPU的體積會比矽晶小很多,但速度可高百倍。這種「神算機」可把人類的物質文明推上顛峰,進入永遠的鑽石時代。

台灣的科技向來尾隨西方的先行國家,但全碳CPU的發展可以領先世界。台灣政府若有遠見應該加速發展鑽石科技把缺乏資源的台灣建設成為「鑽石島」。摩爾定律所面對的漏電、散熱、拋光等難題都可以台灣的鑽石科技迎刃而解。

450mm大晶圓

晶圓生產的成本,受限於晶圓上的晶片多寡。台灣雖已加碼投資300mm晶圓廠成為最密集的生產國家,但Intel、TSMC、Toshiba、Samsung已在規劃試製450mm(18吋)的晶圓,預計在2012年導入量產。但這麼大的晶圓其直徑比線寬大數千萬倍,加上線路的電流對線寬的敏感度大增,晶圓表面在CMP拋光時其平坦度比300mm要求更高,目前的CMP技術根本辦不到。

圖五:Intel的Mike Goldstein手持矽粉燒結的450mm晶圓,及未來晶圓表面可能密佈電晶體(電流開關)的示意。這種大晶圓與小線寬(22nm)的比率可超過千萬倍(107x)。一片晶圓上旳電晶體總數將超過全球人口總數的百倍。

幸虧台灣推出ADD鑽石碟,可以把拋光墊表面修整得非常平坦但卻不溜滑,這樣就可把大晶圓快速拋光,而不傷及纖弱的銅導線路、與有氣孔的Low K絕緣及堅硬的High K Metal Gate。SST-AP/Taiwan

圖六:ADD的面相(左圖),其尖錐乃以微米鑽石在超高壓(6GPa)及高溫(1400℃)燒結製成。這是台灣產品壟斷全球獨一無二的設計。右圖為下一世代的IDD產品,它乃由氣相沈積的多晶鑽石構建而成,這也是台灣的獨門絕活。

作者

宋健民,現為中國砂輪企業股份有限公司總經理,亦為鑽石科技專利發明人。在CMP的領域,作者亦為台灣品牌DiaGrid鑽石碟及ADD鑽石碟的發明人,亦協助Applied Materials發展eCMP,現正協助韓國的SKC及台灣的IVT研究次世代的CMP Pad。

第二篇:半导体激光疼痛治疗仪检测制程

半导体激光疼痛治疗仪检测制程

1、检测激光功率

检测设备:光功率表、电源供应器

检测方法:把PCB接电流供应器正负极,调整电源电压4.2V、注意正负极,切不可接反,按下开关,激光点亮。把激光器发光口贴到激光功率表授光面内读其最大值,在1.15—1.35MW之间为OK,否则调整PCB上的VR使其达到指定功率。

2、电压检测

检测设备:电源供应器、数字示波器

检测方法:把电源供应器调到4.2V与PCB电池的正负极接通,按下开关,示波器调到电压档,用T探针接到弹簧的两极测其电压,旋转拨动开关大小,其电压在140V—160V之间为OK.3、充电IC检测

检测设备:电源供应器

检测方法:把电源供应器调到4.2V,接通PCB的充电接口,按下开关,激光及电脉冲分别正常工作。OK

第三篇:质量管理---IQC与制程整改建议范文

针对协作部门对于本部门两项投诉内容的改善意见和建议

2011年11月10日会后分析报告

报告人:颜 佳

针对协作部门对于本部门的两项投诉内容,11月10日上午本部门召开了内部通告会议,方经理传达了协作部门相关投诉内容,现场要求各生产车间QE工程师总结两方面的原因并做出改善意见和建议。现针对IQC重复发生来料不良以及生产线制程控制环节薄弱这两个投诉问题提出一些自己浅显的意见和建议,希望能够帮助部门内部的流程完善,一线品质人员的判定立场和原则得到提升。

首先,说一点题外话,但还是以质量管理的八项基本原则出发,强调过程和方法,一切变革,改善都需要由内而外。只有先解决了内部问题,才能够着手去解决外部问题。否则将是事倍功半,达不到预期效果。正如“其身正,不令而行。其身不正,虽令不从。”道理都是很浅显的。但是作为目前的质量管理部内部的队伍建设和整个氛围,都是各自为政,已经形成一个凡事先从外部找原因的思维定势。

所以,这里需要强调的是人与人之间的沟通及观念的提升,“天下事非一人之所能独力,事事欲有所为,必与其类同心共济”,搞好品质不是靠一个人或者几个人就能把事情做得好,也需要一个分工协作的过程,各个部门不一样,立场也就不一样,看问题的角度自然也不一样。所以这就对于质量管理人员来说,必须要具备接纳和换位思考的能力,只有接纳他,才能更好的改变他。

要解决这个问题,必须要统一认识,消除沟通失效,这就需要大量的培训和团队活动提升凝聚力和彼此的信任度。

其次,对于制程控制这一块,IPQC专业技能方面,目前仅停留在初级阶段,仅仅是对于产品比较熟悉,对于自身的职责不够清晰。制程中缺失数据监控环节,IPQC在生产全过程,行使的只是基本的现场巡查,抽检和不良判定三大基本职能。就判定这一方面,没有相关标准文件提供支持,造成在线IPQC该判不判,甚至不敢判的情况出现。试想一下,作为生产一线的IPQC而言,只有建议权,而没有行使权,所以我们无法要求他们主动去处理问题,解决问题。我们自然也就无法要求他们有很强的执行力。毕竟人员素质参差不齐。另外一点,我们是否有岗位说明书,是否有将该岗位的作业内容和职责告知该岗工作人员。

要解决这个问题,首先是标准化的建立,完善制程相关文件,以标准文件作为他们的作业支撑,提供给他们可以操作的准则做为依据,其次是充分放权,明确岗位权责,将相应的权利下放给相关岗位和人员,主管领导切实支持各方面工作并加以肯定,以激励他们正确的,有原则性的做出判定和敢于做出判定的能力。其三才是适时的加强专业技能方面的培训。否则我们的一线IPQC人员将变为使用工具的工具,操纵机器的机器,毫无价值可言。

另外,制程不在受控状态的情况,在鄙人刚到车间四天的时间以内,发生了两次,有作业指导书,而且作业指导书上面有相关工序要求,作业人员不按照作业指导书进行作业,现场IPQC不打单,不知会相关基层管理,只在现场对于作业人员进行纠正,而纠正之后仍不在受控状态,IPQC无任何对策,不了了之。那我们还做什么质量? 让你在生产线玩了吗? 有问题也不管,也不知道外部沟通协作,这跟闭门造车有什么分别? 作业指导书作为体系文件的一部分,我们将他视为他律,而在线人员的自律又体现在哪里? 脱离了自律的他律,就等于是白纸一张。

所以说,还是要强调一个全员参与的过程,我们在做品质的过程当中,与其他部门之间的沟通协作是必不可少的,前面谈的要先解决自身问题,但是在解决自身问题的过程当中,这种正常的沟通和协调是有必要的。而部门之间的配合程度,也在一定程度上决定了IPQC是否愿意反映问题。

要解决流程失控这个问题,不仅仅要对于生产全过程进行质量意识的灌输和培训,而更为重要的是人的自律问题。自律对于一线IPQC人员来说,是相当重要的。比如说,政府颁布的法律法规,你去触犯了,你就必须受到相应的惩罚,而且你颁布的惩罚越重,老百姓的自律性就越高。

其三,IQC重复发生来料不良这个问题,就质量管理部而言,首先要理清思路,从源头上着手,解决问题。建立健全供应商管理体系,从各个关键环节入手,对来料进行全面的掌控,只有将主动权掌握在自己部门手上,才能更高质量的保证生产用料的品质。

首先,在新产品研发阶段,专案工程师确认用料涉及到采购的,应向供应商索要承认书,确认该物料可用后,签字确认,并将承认书以及剩余的样本,交到IQC封样存档。该供应商入选IQC合格供应商名录。而由采购新开发供应商,样品应交研发部审核验证,再执行如上程序。

其次,新开发供应商,以降低独家供应商供货风险。保证每个元器件有2-3家合格供应商,可供挑选。这样做的意义,可以从性能,价格,交期三方面进行比较,控制成本的同时不降低产品质量,与供方互利。

其三,将采购的一系列的采购活动,纳入到供应商管理体系的管理当中来,采购活动发生的对象,必须为合格供应商名录之内的合格供应商。否则,IQC对于非在册的物料,有拒绝接收的权利。当然,对于特殊情况,必须作出让步接收的,必须由IQC开具书面材料,说明原因,并请相关人员签字确认,以便于追溯。

其四,在有条件的情况下,比如采购数量较大,尽量使用月结货款的方式,以便于IQC对于物料质量的判定,更具备主动权。另外在供销合同上,建议争取品质管理部门审核的权利,并约定质量方面的要求,可以使用扣款,罚款等方式进行控制。

其五,对于在录的合格供应商,在供货三次以上,无质量问题的情况下,IQC部门可以适度放宽检验标准AQL值。而对于来料检验不良的供应商,应加严AQL值进行检验。同一供应商出现两次来料检验不良,IQC对该供应商作删除合格供应商名录之处罚,并知会采购部门,不得继续采购活动。如需再次加入,必须重新送检,承认。

总之,作为IQC部门,必须充分掌控和健全合格供应商管理体系,使之成为一个闭环,方能更好的保证来料质量以及生产用料。但是,同时也就要求我们的IQC人员,有较强的专业技能和业务水平。整改和整顿的过程是漫长的,只有持续改进,就一定会有效果。当然,也需要内部和外部的各位同仁的大力支持。需要变革的推动者,坚定立场,获得高层的支持,充分发挥领导的作用。以上,仅是本人的一些意见和建议,仅作为参考,如有不当之处,还请批评,指正。

第四篇:制程防呆结训测试题与答案[范文模版]

制程防呆结训测试题答案

部门:

姓名:

得分:

一、填空,每项5分,共25分

1、防错法:又称(愚巧法)、(防呆法)。是指没有经验的、做事马虎的甚或愚笨的人来做,都不会出错的方法。是指在(过程失误发生)之前就加以防止。

2、防错法、防呆法中,“错”与“呆”的理解:(发生错误)、(效率低下)、(工作难度大)、(容易疲劳)。

3、主动防呆是指采用专门防呆机构,器具,仪器,软件等工具或设计自动化来防止失误产生,特点是(不依赖操作者的注意力)。被动防呆是指在机构,夹具等设计过程中,通过改善硬件的某些特性使人少犯错误以实现防呆的手法,特点是(依赖操作者的注意力)。

4、防错法、防呆法的功用:(提升品质)、(减少浪费)、(提高效率)、(保证安全)。

5、防呆的基本思路:(削 除)、(替 代)、(简 化)、(检 测)、(减 少)

二、简要叙述防呆的基本原则。(10分)

1、使作业的动作轻松;

2、使作业不要技能与直觉;

3、使作业不会有危险 ;

4、使作业不依赖感官。

三、你认为我们日常工作中出错的原因有哪些? 请举例说明(20分)

1、忘记;

2、对过程/作业不熟悉。

3、识别错误。

4、缺乏工作经验。

5、故意失误。

6、疏忽。

7、行动迟缓;

8、缺乏适当的作业指导;

9、突发事件

四、简要叙述防呆法的应用原理,并分别就每种原理举出自身工作生活的一个案例。(20分)

1.断根原理:将会造成错误的原因从根本上排除掉,使绝不发生错误,藉“排除”的方法来达成。

2.保险原理:藉用二个以上的动作必需共同或依序执行才能完成工作。

3.自动原理:以各种光学、电学、力学、机构学、化学等原理来限制某些动作的执行或不执行,以避免错

误之发生。

4.相符原理:藉用检核是否相符合的动作,来防止错误的发生。

5.顺序原理:避免工作之顺序或流程前后倒置,可依编号顺序排列,可以减少或避免错误的发生。

6.隔离原理:藉分隔不同区域的方式,来达到保获某些地区,使其不能造成危险或错误的现象发生。隔离原理亦称保护原理。

7.复制原理:同一件工作,如需做二次以上,最好采用“复制”方式来达成,省时又不错误。8.层别原理:为避免将不同之工作做错,而设法加以区别出来。

9.警告原理:如有不正常的现象发生,能以声光或其它方式显示出各种“警告”的讯号,以避免错误的发生。

五、您认为咱们公司的防呆运用状况如何?关于防呆应树立什么样的观点?(25分)

1.自检和互检是最基础但有效的防呆方式。

2.防呆装置并不需要大量的资金投入或很高的技术。

3.任一作业均可通过预先设计时加入防呆技术而防止人为失误。4.通过持续过程改善和防呆,零缺陷是可以实现的。5.防呆应立足于预防,在设计开始即应考虑各过程操作时的防呆方法。

6.在所有可能产生问题的场所均考虑防呆方法。

第五篇:半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结

材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。

一、几种重要的半导体材料的发展现状与趋势

1.硅单晶材料

硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。

除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的集成度来看,最终要研制出适用于硅深亚微米乃至硅纳米工艺所需要的硅外延片,将会成为硅材料发展的主流。

目前硅技术的线条发展越来越细了。现在我们国家的909工程是0.35微米的工艺,可以做到0.25微米;然而随着集成度的提高,要求光刻线条越来越细,是否有个极限呢?当线条的宽度变到35个纳米的时候,或者比35个纳米更小的时候,或许就是硅集成电路的“极限”,当然这个极限不是物理的极限。因为这个所谓的极限预测过多次,曾经预测过1微米是硅线条的极限,后来是0.5微米,又变到0.35微米,现在实验室的0.18微米的集成电路也已经做出来了。通过人们的努力和新的技术的发明,线条也许还可以进一步的减小,当然它最终将受到量子力学测不准原理、光速和热力学的限制。这里讲的所谓的技术限制,就是说在目前这样的条件和技术下,它能够达到的一个极限。我们知道现在的集成电路的布线可多达七、八层以上。如果多层分布的连线过长,那么电子从一个器件到另一个器件的所需的时间完全消耗在走的路上了。也就是说,延迟时间限制了速度的进一步提高。硅材料虽然可能到21世纪的中期仍将占有很重要的地位,然而,硅微电子技术最终是难以满足人们对更大信息量的需求的;所以,发展新型半导体材料比如说Ⅲ-Ⅴ族化合物半导体材料,超晶格量子阱材料以及硅基锗硅合金材料等,作为硅材料的一个替补材料也是很重要的。

2.GaAs和InP等Ⅲ-Ⅴ族化合物材料

GaAs和InP等Ⅲ-Ⅴ族化合物材料可能是一个好的替补材料。我们知道硅材料是间接带隙材料,它的发光效率很低,所以它不可能作为光电集成的基础材料,用硅来做发光管、激光器目前还是不可能的。那么Ⅲ-Ⅴ族化合物材料,像GaAs和InP,首先,它的电子的光跃迁不需要声子的参与,它的发光效率很高;与硅相比,它的电子的漂移速度高,同时它耐高温,抗辐照;与此同时,作为微电子器件来讲,它具有高速、高频,低噪音,故在光电子器件和光电集成方面,占据非常独特的优势。Ⅲ-Ⅴ族化合物,现在的市场情况怎么样呢?随着移动通信的发展,目前工作在0.8GHz以下的手机,是以硅材料为主体,那么到2.2GHz的时候,或超过这个频段到7.5GHz的时候,硅材料作为它的接收和发射器件或电路,可能就不行了;这个时候,一定要用GaAs, InP或者GeSi材料。从光纤通信来看,也是如此。所以说从移动通信和光纤通信的发展需求看,对半导体Ⅲ-Ⅴ族化合物材料,特别是用于集成电路的GaAs材料的需求,将会每年以20%到30%的速度增长。那么它的研究现状是怎么样的呢?以GaAs, InP为代表的Ⅲ-Ⅴ族半导体材料,两英寸和三英寸的n型的和p型的材料,基本上能够满足现代的微电子和光电子器件的需求。没有掺杂的半绝缘体的GaAs单晶材料,它是GaAs集成电路的一个基础材料,目前主要采取一种叫作液封直拉法LEC的方法制造。就是将GaAs熔体放置在一个热解BN的坩埚里面,因为As是易挥发的,而氧化砷有很大毒性,因此在它上面覆盖一层材料,比如说三氧化二硼。三氧化二硼的熔点低于GaAs的熔点,可以把熔体的GaAs覆盖起来。在单晶炉里面充了很高的气压,使As不能挥发出来,然后把GaAs籽晶通过氧化硼这个透明的液体伸入到GaAs的熔体里面拉晶。这项生产技术,叫做液封直拉法。目前用这种办法,直径为两英寸、三英寸、四英寸的片材已经商品化。我们国家可以拉制三英寸GaAs单晶。两英寸的可以小批量生产。在国际上,六英寸的半绝缘砷化单晶已在实验室里拉制成功。

这种材料也存在的问题。半绝缘体GaAs的纯度与硅相比,是远不如硅的。硅可以做得非常纯,有12个9的纯度。就是10-6PPM,就是说它的杂质的含量仅为百万分之一PPM。但GaAs呢,仅仅只有6个9,就是一个PPM,即它的杂质和缺陷的浓度高达一个PPM。所以说GaAs半绝缘体的性质并不是由纯度高、杂质少决定的,而是由杂质和缺陷互相补偿,这样的材料实际上是电学补偿导致的高阻材料。这种材料的热学稳定性较差,在器件工艺的热处理过程中,缺陷产生、杂质缺陷络合等,可能改变它的导电性能。这是什么原因呢?我们知道,硅是一个元素半导体,它只有两种点缺陷,即硅的空位和硅间隙。那么对于Ⅲ-Ⅴ族材料,它的点缺陷就有六种,有两种空位,两种间隙,两种反位的缺陷。比如As占了Ga位,Ga占了As位,这都是点缺陷。这些缺陷都对导电性能产生影响。所以对这种材料,如果把它的杂质和缺陷络合物加起来的话,缺陷就更多了,因而这种材料的制作是非常困难的。它是用LEC法拉制的。晶体拉制过程中,在固体与液体交界面处,它的温度剃度比较大,在晶体内部存在着大的应力;在晶体冷却过程中应力的释放将产生大量缺陷,它的位错密度非常高。所以说这种材料目前存在着很多的问题要求克服。从硅来讲,硅可以做到无位错,所以说它可以用于制作超大规模集成电路。比如说,对于一个平方微米内有一个器件,或多个器件的电路,那么GaAs就不行了;因为,它每一个平方厘米就有一万个以上的缺陷。如果一个器件,碰到这个缺陷,那么整个电路就失效了。所以说,用GaAs研制大规模集成电路,它的质量还有待提高。

Ⅲ-Ⅴ族半导体材料的发展趋势,也可以总结为下面几点。从提高它的价格和性能比来看,增大直径仍是大趋势,只有增大直径,它的价格才可能进一步降低。从另外一个方面来讲,为满足大规模集成电路和光电器件的衬底的需求,它的位错密度必须降下去。要降到每个平方厘米1000或100以下,甚至更小,这最终取决于集成度和材料将要用在什么地方。我刚才讲到,GaAs的高阻性能是杂质与缺陷补偿的结果,很不均匀;如何提高这种材料的电学和光学均匀性,也是需要解决和克服的问题。此外,还要重视片材制备技术,即要做到片材拿来就可以用的要求,不需要再去抛光或腐蚀和再去作其他的处理。这就是说,要将拉制的锭条进行滚圆、磨定位边、抛光和在保护氛围下将抛好的片子封装起来等。当然,还要求片材的表面没有被损伤,除了肉眼看不见的损伤以外,亚表面损伤,即在材料的表层下面,比如说几十个纳米以下的地方,人的肉眼甚至光学显微镜看不见的损伤也是不能有的。即在片材制备的过程中,不能在它的表皮下面一层产生应力或缺陷。

3.半导体超晶格、量子阱材料

比如说GaAlAs和GaAs的晶格常数相差很小,而它们的禁带的宽度不同。GaAlAs的宽度要大于GaAs的,把这两种半导体材料用新的生长技术,像分子束外延技术,金属有机化合物化学汽相淀积技术等一层一层的、周期性的生长出来。这个周期人为地可以控制,不像硅单晶,它的晶格常数是一定的;这样的结构,我们称为超晶格结构。这种超晶格结构的想法,是1969年由日本的江琦和美籍华人朱兆祥提出来的,而且江琦因此获得了诺贝尔奖。我们知道,超晶格的概念提出来的时候,还没有实现这种想法的技术,只是从理论上预测这种结构会有很多新的性质。一直到20世纪70年代中期的时候,分子束外延技术的发展,还有MOCVD技术的发展,才使这种材料生长得到了实现。我们知道,现在的分子束外延,MOCVD可以控制一个原子层一个原子层的生长,界面的陡峭度也可以做到单原子层。由于这种材料的结构可以人为地改变,可以设计一个程序,通过计算机的控制,把它生长出来;如果设计的是一个器件结构,那么它的电学和光学的性质则可由人工控制,所以,能带工程设计是研制新一代量子器件的基础。

4.高温半导体材料

主要介绍几种重要的高温半导体材料。如Ⅲ族氮化物,它主要有GaN、AlGaN和InGaN等,它不仅仅是一个高温微电子材料,也是很好的光电子材料。比如现在发蓝光、绿光的半导体发光二极管和激光器,就是用这种材料作出来的。另外,碳化硅,立方氮化硼和金刚石,也是很好的高温半导体材料。当然,要达到应用,还存在很多问题要解决。这类材料,主要是应用在一些恶劣的环境,像在高温、航空、航天、石油钻探等方面。现在的电视,广播发射台仍然用的是一人高的电子管,它的寿命短、笨重且耗电多。那么将来,若用碳化硅和氮化镓材料制成的数字电视用发射模块的话,有可能使体积大大减少,寿命增加。从研究现状来看,美国西屋公司,已经研制成功的4H碳化硅的晶体管的功率已达到了400瓦。在碳化硅衬底上生长GaN制成的场效应晶体管,功率也已达2.3瓦。GaN高电子迁移率晶体管的最高频率已做到67GHz。那么这种材料存在的问题是什么呢?例如GaN,这种材料没有好的衬底,现在都是在蓝宝石衬底上外延生长的。GaN外延层的位错密度高达每平方厘米108以上;所幸的是这种材料的键能比较强,即使这么高的位错密度,作为发光管,它的寿命仍然可以达到10万小时以上。但是用这种材料作激光器,如蓝光或绿光激光器的话,这么高的缺陷密度是不行的。此外金刚石单晶薄膜制备,是另一个重要方向。金刚石有着比氮化镓更大的禁带宽度,可以耐更高的温度,它抗腐蚀性能好,可工作在非常恶劣的环境。但是,这种材料存在主要的一个问题是单晶薄膜生长非常难。至今还没有人能够生长出单晶金刚石薄膜。P型金刚石材料已经研制出来,但N型掺杂至今没有完全解决。单晶金刚石薄膜是一个具有非常重要应用前景的材料,但要实用,还要走很长的路。

二、低维半导体材料和量子器件

1.一维量子线和零维量子点材料

维的定义是构成空间中的每一个因素,如长、宽、高,甚至时间,都可以叫做一个维。若不考虑时间,空间是三维的,平面是二维的,而直是一维的,零维的就是一个点。如果载流子仅在一个方向可以自由运动,在另外两个方向受到约束,那么这种材料我们称为量子线材料。如果在载流子运动的三个方向都受到约束,就是说它只能在一个小点内或就像在一个小箱子里头运动,这时,电子的运动受到了三维的约束,我们称之为量子点。按照量子力学原理,量子点里的电子或空穴,它的能量是量子化的。因为它不可以自由运动,它只能是一级一级地跳跃。量子点的这种分立的态密度函数与体材料是截然不同的,体材料是抛物线分布,量子线则像脉冲一样的函数分布,量子点则完全是分立的线,就像分子光谱那样,这样的密度函数就决定了低维材料有着非常优越的性能。随着材料尺寸减小,维度降低,量子尺寸效应、量子干涉效应、量子隧穿、库仑阻塞效应变得越来越明显。这就构成了量子器件的基础,这完全不同于基于PN结里面电子、空穴通过扩散和漂移运动的器件,它是一种崭新的器件。量子点可以是半导体材料,也可以是金属材料做成。基于这种量子效应的新器件,很可能成为新一代微电子技术、光电子技术的发展的基础,它是一个有着非常重要应用前景的研究领域。

这种低维材料有哪些特点呢?为什么会引起人们的兴趣?首先,它的工作频率高。假设一个电子在一个10个纳米的线上运动,若电子在真空中运动的速度接近光速,那么我们可以算出它通过10nm线所需时间,电子从这一点飞到那一点,中间若不经过任何的散射,就像一个炮弹打过来,所以它的工作频率可以非常高,可达到1000GHz以上。现在做到的InP基P-HEMT器件,最高频率已达600GHz。其次它具有很高的集成度。因为这种器件非常小,可以做到每个平方厘米1010个器件以上,相当于每平方厘米有100亿个器件。第三功耗很小。从光电子器件的激光器看,用这种材料制成的量子点激光器的阈值电流密度非常低。所谓阈值,就像一个门槛,当注入激光器的电流高于这个门槛的时候,发光不再是向四面八方的自发辐射,而是光突然集中起来了,沿着一个方向发射出相干的光,称为激光。用低维材料制成的激光器,它的阈值电流密度是非常低的。原因就是由于它分立的态密度函数决定了的。它的量子转换效率非常高,它的调制速度很高,它激光的线宽非常窄,这是因为它源于固定分立量子能级之间的跃迁;窄的线宽在光纤通信上是非常有用的。所以说这种材料在光电子和微电子技术应用上,特别在将来的纳米电子学、光子学以及新一代的超大规模集成电路方面都有着重要的应用前景,极有可能触发新的技术革命。这里强调的低维半导体材料实际上是一个人工设计、通过先进技术如MBE等制造的材料,但是这种材料自然界是不存在的。基于这种新型半导体材料的新一代量子器件,很可能成为21世纪高新技术产业的一个重要支柱。

MBE等生长技术与精细加工技术相结合,可以制备出量子线、量子点材料。这种技术的优点就是可以人为地控制量子线的形状、尺寸、密度。它的缺点是电子束的曝光。干法、湿法刻蚀技术制备的量子结构尺寸远比生长厚度大,目前最好为几十个纳米。刚才讲的量子阱的材料的阱宽可以控制到一个单原子层。一个单原子层就是几个埃,零点几个纳米。要保证横向尺寸同纵向尺寸一样,现在的加工技术是做不到的,要实现这一点,需要发展新的加工技术。我们知道,用电子束曝光也好,离子束注入隔离也好,都要产生缺陷。沿直线两边产生的损伤,都会成为散射中心。电子沿着这样的直线运动时,当碰到损伤的地方,就发生散射,其结果使低维材料所具有的优异特性,就被这些缺陷完全抵消掉了。所以用这种技术制备的低维材料,要想真正达到理论上预计的性能,必须要发展一种高空间分辨和没有损伤的加工技术。

2.基于低维半导体材料的量子器件的研究和发展现状

量子线调制掺杂场效应晶体管,共振隧穿二极管和三极管等都已经研制成功。单电子器件,单电子存储器和单电子晶体管也分别于1993年和1994年在实验室研制成功。这是一个单电子存储器原形器件,源和漏之间有一条宽为10纳米的线,线中间是一个7×7纳米量子点,线与量子点之间有两个缩径,比10纳米还要小。基于库仑阻塞效应的单电子器件的工作原理是两边是金属电极,中间是一个小岛,如果这个岛的面积足够小,它的电容也就非常小。如果有一个电子已经在这个小岛上,当另外一个电子进入这个小岛时,这两个电子则相互排斥,使系统能量提高,致使第二个电子也无法进入这个小岛;同时,处在这个状态的电子也不可能自由地跑走,而要留在这个岛上;只有当加一个偏压使第一个电子离开这个小岛后,下一个电子才会再来。而有电子和没有电子相应于0和1态,这就是单电子存贮器的基本原理。如何利用STM去制作单电子器件?它是在硅衬底上首先氧化生成SiO2,然后镀上金属钛薄膜,在针尖和钛金属膜间放点纯水,加电场使钛氧化,氧化钛是不导电的,而钛是导电的,只要按一定的图形就可以做出一个单电子晶体管来。当有一个电子到这个小岛上以后,它就会被陷在岛上,只有当加一个偏压将这个电子移走以后,第二个电子才能来,那就完成了一个0,1操作。这就是上面说的单电子存储器的工作原理。最近,据报道,在单电子存储器的原形样机的研制上已取得了突破进展。日本用0.25微米的工艺模拟了一个单电子存储器电路,获得成功。我这里讲的所谓单电子,可能不止是一个电子,可能有十几个或几十个电子。与现在的几千,几万个电子的存储器来说,功耗是小多了,存储密度也高多了。

低维半导体结构发展很快,取得很大进展,但存在很多问题。除了超晶格、量子阱的材料在微电子器件、光电子器件中已经得到使用以外,纳米器件研制也已经开始。人们利用STM和AFM这种技术可以研制分立的器件已经不是非常困难的了,但是我们所关心的是要做到每平方厘米制造上亿或更多的器件,而且要连在一起形成一个电路,目前还是难以实现的。采取什么样的连结方式,什么样的技术,还没有解决。从现在来看,如果使用GaAs材料,要制成0.1mm的工艺的器件,要在4.2度K下,才可以工作。在50个纳米的情况下,工作温度也要在77K。因而必须发展纳米加工工艺,才能够满足纳米器件在室温下的工作需要。这种工艺应该是无损伤的纳米加工工艺。若能在每一个探针上配一个可三维移动的微机械,100×100的阵列,就是一万个探针,自动控制一次制作一个芯片就成为可能。设想中这个纳米加工技术,据报道目前已经做到了16×16的规模。纳米技术采用什么材料,也有很多问题。硅材料本身虽然很好,加之天然SiO2的绝缘介质,真可以说是天赐的!但作为绝缘隔离器件的二氧化硅是非晶,杂质、缺陷、表面和界面态的存在,使它作为纳米电子学的基础材料也会遇到问题。我们刚才讲的SK生长模式,量子点的密度、形状、尺寸是比较难以控制的。

下载先进半导体制程与材料选择word格式文档
下载先进半导体制程与材料选择.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    半导体物理习题与问题(精选5篇)

    第一章半导体中的电子状态 例1. 证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速......

    半导体发光材料的总结与进展(精选5篇)

    SA13002034 杨建新 半导体发光材料——LED灯的应用 简介:半导体材料和器件是本世纪六十年代末开始发展起来的半导体技术中的一个分支,所用的材料主要是Ⅲ-Ⅴ族化合物半导体。......

    有机半导体材料与器件课程教学大纲(大全5篇)

    《有机半导体材料与器件》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:(中文)有机半导体材料与器件; (英文)Organic semiconductor materials and......

    《半导体物理与器件》教学大纲讲解(5篇)

    物理科学与技术学院 《半导体物理与器件》教学大纲 课程类别:专业方向课程性质:必修 英文名称:Semiconductor Physics and Devices 总学时:48 讲授学时:48 学分:3 先修课程:量子力......

    选择与坚持

    选择与坚持你工作得快乐吗?是不是工作久了,就厌烦了上班?是不是工作久了,就觉得当初的选择错了?是不是工作久了,就觉得待遇还很不理想?为此,你是不是还很想换个环境呢? 事情做得久了,......

    选择与担当

    选择与担当 ——在2009届研究生毕业典礼上的讲话 校长 赵德武 (2009年3月12日) 亲爱的同学们:大家上午好! 今天,我们欢聚一堂,隆重举行2009届研究生毕业暨授位典礼,一起见证你们付......

    选择与坚持

    选择与坚持 人的一生中其实有很多路可以选择,也并不是每次的选择都是对的。有些人从始至终都坚持最初的决定,有些人在中途改变了航程,选择了其他的路径。也许前后者是对的,也许......

    分析与选择

    一、某食品企业主要有三种产品,主要在北京地区生产和销售。该企业最近有以下下几件事需要处理:1.聘请专家对企业存在的问题进行了诊断, 2.目前三种产品的销售情况不错。市场需......