第一篇:陶瓷基复合材料的连接
先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
摘要:陶瓷基复合材料具有抗热震冲击、耐高温、耐腐蚀、抗氧化和抗烧蚀低膨胀、低密度、热稳定性好的优点,这些优点使其成为备受关注的新型耐高温结构材料。陶瓷基复合材料的连接不仅具有陶瓷材料连接的难点、异种材料连接的问题、加强相与基体的不利反应及加强相的氧化与性能的降低,还具有陶瓷基复合材料承压能力差的缺点。因此陶瓷基复合材料的连接成为一个研究的热点。
1.陶瓷基复合材料及其应用
陶瓷复合材料虽然具有高温强度高、抗氧化、抗高温蠕变等耐高温性能和高硬度、高耐磨性、线膨胀系数小及耐化学腐蚀等一系列优越的性能特点,但也存在致命的弱点,即脆性,它不能承受激烈的机械冲击和热冲击,这限制了它的应用。而用粒子、晶须或纤维增韧的陶瓷基复合材料,则可使其脆性大大改善。陶瓷基复合材料(CMC)是目前备受重视的新型耐高温结构材料。[1,2,3]
陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。增韧的思路经历了从消除缺陷或减少缺陷尺寸、减少缺陷数量,发展到制备能够容忍缺陷,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片)弥散增韧、晶须(短切纤维)复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。目前陶瓷基复合材料分为:非连续纤维增强陶瓷基复合材料、连续纤维增强陶瓷基复合材料、层状陶瓷基复合材料。
1.1非连续纤维增强陶瓷基复合材料
相变增韧可以大幅度地提高陶瓷材料的常温韧性和强度,但因在高温下相变增韧机制失效而限制了其在高温领域的应用。颗粒弥散及晶须复合增韧CMC 制备工艺较简单,可明显提高陶瓷材料的抗弯强度和断裂韧性。将颗粒、晶须等增 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
强物加入到基体材料中,由于两者弹性模量和热膨胀系数的差异而在界面形成应力区,这种应力区与外加应力发生相互作用,使扩展裂纹产生钉扎、偏转、分叉或以其它形式(如相变)吸收能量,从而提高了材料的断裂抗力。对于高温下使用的颗粒弥散及晶须复合增韧陶瓷基复合材料,就基体而言,综合考虑高温强度、抗热震性、比重、抗蠕变性、抗氧化性等,首选材料仍是Si3N4 和SiC。在高温下它们的表面会形成氧化硅保护层,能满足1600℃以下高温抗氧化的要求。通过在基体材料中加入合适的增强物及选择适当的材料结构,可大幅度提高陶瓷材料的强度和韧性。[4]
1.2连续纤维增强陶瓷基复合材料
连续纤维增强陶瓷基复合材料(CFCC)具有较高的韧性,当受外力冲击时,能够产生非失效性破坏形式,可靠性高,是提高陶瓷材料性能最有效的方法之一。CFCC 的研究始于1973 年S1R1Levitt 制成的高强度碳纤维增强玻璃基复合材[5]料。70年代中期,日本碳公司(Nippon Carbon Co.)高性能SiC连续纤维Nicalon的研制成功,使制造纯陶瓷质CFCC 成为可能。80年代中期,E1Fitzer[6]等用化学气相沉积法制备出高性能的Nicalon 纤维增强SiC基陶瓷复合材料,有力地推动CFCC的发展。十几年来,世界各国尤其是美国、日本、欧共体等都对CFCC 的制备工艺及增韧机理进行了大量的研究,取得了一些重要成果,少数材料已达到实用化水平。
从目前来看,解决纤维问题的途径主要有2条;一是提高SiC 纤维的纯度,降低纤维中的氧含量。二是发展高性能的氧化物单晶纤维。氧化物连续纤维出现较晚,且一般为多晶纤维,高温下纤维会发生再结晶,使其性能下降,而单晶纤维则可避免这一问题。例如目前蓝宝石单晶纤维使用温度可达1500℃,使材料的高温性能有了很大提高。[7]
随着能承受更高温度的氧化物单晶纤维的出现,高温结构陶瓷基复合材料的研究必将有所突破。连续纤维增强陶瓷基复合材料虽然在力学性能上具有一定优势,但是连续纤维的生产、排布和编织等工艺复杂,复合材料的成型和烧结致密化都很困难,复合材料强度较低,成本高昂。同时,高性能的耐高温陶瓷纤维问题至今尚未完全解决,这都极大地限制了它的推广应用。先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
1.3层状陶瓷基复合材料
近年来,人们模拟自然界贝壳的结构,设计出一种仿生结构材料—层状陶瓷复合材料,其独特的结构使陶瓷材料克服了单体时的脆性,在保持高强度、抗氧化的同时,大幅度提高了材料的韧性和可靠性,因而可应用于安全系数要求较高的领域,为陶瓷材料的实用化带来了新的希望。层状陶瓷复合材料的基体层为高性能的陶瓷片层, 界面层可以是非致密陶瓷、石墨或延性金属等。与非层状的基体材料相比,层状陶瓷复合材料的断裂韧性与断裂功可以产生质的飞跃。
层状复合不仅可有效改善陶瓷材料的韧性,而且其制备工艺具有操作简单、易于推广、周期短而廉价的优点,尤其适合于制备薄壁类陶瓷部件。同时,这种层状结构还能够与其它增韧机制相结合,形成不同尺度多级增韧机制协同作用,立足于简单成分多重结构复合,从本质上突破了复杂成分简单复合的旧思路。[8]
1.4陶瓷基复合材料的应用
(一)航空燃气涡轮发动机的应用
Cf / SiC复合材料在高温下有足够的强度,且有良好的抗氧化能力和抗热震性,非常适合作为高温结构材料。
使用Cf / SiC 复合材料不仅能减轻质量、延长使用寿命,同时具有很低的操作损耗。NASA Lewis 研究中心制备的Cf / SiC 涡轮发动机在燃烧环境及相应热机械载荷作用下其材料的耐热和力学疲劳性能良好,耐高含氢气体环境性能优越。因此Cf/ SiC 复合材料目前被广泛应用于军事和商业运载器,包括应用在涡轮发动机的消耗管道、涡轮泵旋转体、喷管等。欧洲一些研究机构也研制了Cf/ SiC 复合材料发动机喷管和燃烧室部件。[9]
(二)热保护系统的应用
在航天领域,当飞行器进入大气层后,由于摩擦产生的大量热量,将导致飞行器受到严重的烧蚀,为了减小飞行器的这种烧蚀,需要一个有效的防热体系。在热结构材料的构件中包括航天飞机和导弹的鼻锥、导翼,机翼和盖板等。Cf / SiC复合材料是制作抗烧蚀表面隔热板的较佳候选材料之一,它具有质轻耐用的 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
特点。目前,欧洲正集中研究载人飞船及可重复使用的飞行器的可简单装配的热结构及热保护材料,其中Cf / SiC复合材料是一种重要材料体系,并已达到很高的生产水平。在美国,用Cf / SiC复合材料制备的T PS 可用于航天操作工具和航天演习工具,AlliedSignal 复合材料公司生产的Cf / SiC材料在高温环境测试中显示出优异的性能。波音公司通过测试热保护系统大平板隔热装置,也证实了Cf / SiC复合材料具有优异的热机械疲劳特性。[10]
(三)高温连接件的应用
主要应用于连接固定热的外表面和航空框架结构中冷的衬垫,及用作密封装置。未来的空间运输系统和超音速的航天飞机中均要求热保护系统和装置能够耐高热的机械和空气动力载荷,大多数结构和元件需要固定系统,Cf / SiC 复合材料高温连接件能够满足热性能和力学性能的要求,这些材料将由CVI 法制得, 能够在-100℃~1800℃范围内使用,拉伸强度大于230MPa。目前可生产的连接件尺寸在8~12mm 范围内,在连接件上涂上一层抗氧化涂层可使它适用于氧化气氛中。由于金属材料的热性能和化学性能不稳定, 及单相陶瓷太脆的缺点,因此Cf / SiC 复合材料的应用成为必然。Cf / SiC 陶瓷材料已经被制成螺钉和其他连接件。
(四)光学和光机械结构中的应用
Cf / SiC复合材料除了具有优良的高温性能,而且在恶劣环境下工作的超轻光学系统中,其光学和光机械结构同样具有重要的应用前景。Cf / SiC 复合材料是一种轻质高强的工程材料,它有着可调的力学和热学性能,与传统的粉末基体陶瓷相比,由于其韧性的提高和可忽略的体积收缩,设计非常自由。到目前为止,Cf / SiC已经用于制造超轻反射镜、微波屏蔽反射镜等光学结构部件。另外, 由于Cf / SiC 具有优异的力学性能,同时它的高热导性与其合适的热膨胀系数结合较好,因此其热稳定性也比其他反射镜基座材料优越,被广泛应用于光学系统中的结构材料及反射镜支撑体系,如反射镜底座。
(五)在刹车系统中的应用
Cf / SiC复合材料由于其低密度、高强度以及良好的耐磨性等性能也被逐渐用于高速飞行器和高速汽车、火车上的刹车系统。国外一些航天中心和设计研究 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
机构采用液态硅浸渗的方法制备的Cf / SiC复合材料正考虑用于制造汽车的刹车片。在这种刹车盘中,刹车片表面之间具有冷却通道,这种结构可以改善刹车盘的散热性,大幅度提高刹车系统的寿命。此通过应用Cf / SiC复合材料刹车片,刹车片的质量小于以前使用的钢刹车片质量的50%,刹车系统中其他组件的质量同样能够减轻50% 左右,这样不但能够大幅度减少费用,同时也能明显提高刹车系统的功能,因此Cf / SiC复合材料应用在刹车系统是一个潜在的大市场。
2.陶瓷基复合材料的连接问题和连接方法
2.1陶瓷基复合材料的连接问题
陶瓷基复合材料的连接不仅具有连接陶瓷材料的难点,如高熔点及有些陶瓷的高温分解使熔焊困难、多数陶瓷的电绝缘性使之不能用电弧或电阻焊进行焊接、陶瓷固有脆性使其无法承受高压力的方法进行连接、陶瓷材料的化学惰性使其不易润湿而造成钎焊困难等等,还应注意连接异种材料时的问题,如选择连接方法与材料时要同时考虑基体材料与加强材料的适应性。另外在连接陶瓷基复合材料时还应考虑避免加强相纤维的氧化与性能的下降等。因此连接时间和连接温度一般不能太长太高。除此之外,由于纤维增强的陶瓷基复合材料的耐压性能较差,因而连接时不能施加较大的压力。[11] 2.2陶瓷基复合材料的连接方法
常用的连接方法大致可分为三类: 粘接、机械连接、焊接。粘接的界面为物理及化学作用,接头强度低,使用温度也较低, 一般低于200℃。机械连接界面是机械力作用,接头无气密性,易产生应力集中。考虑到CMCS 复杂的受力条件, 较高的使用温度及可靠性因素时,焊接的方法较为适用。由于CMCS 连接的难点: 基体熔点高,不能使用熔焊,耐压能力差,不能使用大的压力进行固相扩散连接。复合材料的化学惰性使之不易润湿而造成钎焊的困难,连接材料对复合材料的适用性,避免增强相和基体之间不利的化学反应而造成CMCS性能的下降。考虑到以上的问题,因此目前常用的焊接方法有: 钎焊、无压固相反应连接、ARCJIONT、先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
聚合物分解连接及在线液相渗透连接。
(一)粘接
粘接是在粘接剂的作用下,使类似的材料或不同材料界面、内部紧密连接的技术。粘接具有固化速度快,使用温度范围宽,抗老化性能好等特点被广泛的应用在飞机的应急修理,炮弹导弹辅助件连接,修复涡轮,修复压缩机转子等方面。粘接剂主要是一些环氧树脂类、改性酚醛类、有机硅等,形成的接头一般只有在使用温度较低,一般低于200℃,且大多用于静载荷和超低静载荷零件。
(二)机械连接
机械连接可分为两种,一种是传统意义上的用紧固件如销钉、螺钉、铆钉和螺栓等进行结合的连接。这种方法连接CMCS 的参数有: 纤维类型与制备方法;纤维的走向;结构形式;纤维的体积分数;紧固件材料等。其优点是: 易于质量控制,安全可靠,强度分散性小;抗剥离能力强,能传递大载荷;便于装卸。但它也存在许多缺点:连接结构一般采用间隙配合,不用干涉配合;制孔和安装过程中易使孔产生分层、掉渣等缺陷,影响连接强度;各向异性显著;应力集中高;对碳纤维复合材料,为防止电偶腐蚀,一般用与之电位接近的钛、钛合金、耐蚀不锈钢、蒙乃尔合金等金属材料的紧固件;而且紧固件的使用增加了整个构件的重量。
另一种是成型连接方法。这种方法可以在制备两个待连接构件时进行接头的设计,使之在制备后自动完成连接。在机械连接中,载荷的传递是依靠连接件进行的。由于机械连接需要增加构件的重量,对连接件的形状有较高要求,而这正是陶瓷基复合材料较难做到的一点。因此,机械连接在陶瓷基复合材料的应用还很少。[12](三)焊接
焊接一般是指界面发生化学反应的连接,其优点是连接强度高,使用温度高, 构件精度高;它的缺点是由于焊接温度高,热物理失配引起的界面应力也高。
对于CMCS 来说,由于有多种材料的存在,CMCS与其他的材料在高温连接时, 界面附近易出现复杂的残余应力,这不仅容易引起陶瓷基体力学性能的下降,而且还可能降低纤维和基体间的结合,使纤维和基体之间发生破坏;而且由于纤维 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
增强的CMCS 表现出各向异性,因此钎焊面和纤维布面之间的关系也会影响接头的强度,当纤维和钎焊面垂直时, 接头的强度一般较高, 这和残余应力有关。
但是考虑到构件的使用温度,气密性,承载能力和可靠性等因素一般认为焊接是连接复合材料较为合适的一种方法。几种有效的连接CMCS的焊接方法有: 钎焊、局部过渡液相连接、无压固相反应连接、聚合物分解连接、ARC Joint 和在线液相渗透连接。
① 钎焊
钎焊是利用钎料在高温下熔化,其中的活性组元和复合材料发生反应,形成稳定的反应梯度层,从而将两种材料连接到一起。
CMCS的化学惰性使之不易润湿,因此可以采用以下两种方法进行钎焊;一是用活性钎料直接进行连接。二是先对复合材料待连接面采用热喷涂、PVD 沉积金属层、CVD 法, 及离子注入等方法进行金属化处理后, 再用一般钎料进行连接。
钎焊结合的主要机制是:钎料在界面处可以产生机械和化学的结合,机械结合可以认为是钎料质粒嵌入或渗入复合材料表层的微孔区,而化学结合强度归结于钎料和基体间的物质转移和反应。在钎焊中, 钎料的选择在连接后接头的性能方面起了关键的作用。为了提高接头的强度, 钎料的选择要从以下几个方面进行考虑:(1)钎料和连接母材材料的润湿性问题。由于连续纤维增韧陶瓷基复合材料很难被润湿,大多数的钎料在接头上往往只形成球珠,很少或根本不产生润湿,这就导致了接头强度较低。针对这种情况,可以选择在钎料中添加表面活性元素Si,Mg,Ti等。
(2)由于陶瓷基复合材料钎焊时存在钎料/ 基体,钎料/ 加强相,基体/ 加强相三种界面。因此在选择钎料时要注意钎料对基体和加强相的共同作用。
(3)钎料和复合材料热膨胀系数的差异,产生的残余应力,导致接头在使用过程中开裂,因此要考虑在中间层中加入塑性材料或线膨胀系数和复合材料相合适的材料作为缓冲层(Cu,Ti 作为软缓冲层;W,Mo作为硬缓冲层;钎料中加入C 纤维以降低钎料的线膨胀系数)。[13] ②局部过渡液相连接(PTLPB)先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
PTLPB 是为了解决活性钎焊、固相扩散焊中的问题,即:低温连接时使用温度低,高温连接时热应力大而使材料的性能受到损害。PTLPB 使用复合层中间层(如B-A-B的形式,其中A厚度远大于B厚度),在连接温度下形成液相,随着连接时间的延长,过渡液相被高熔点金属层消耗,同时过渡液相和母材发生反应的一种连接方法。一般认为它可以分为下四个阶段:
(1)中间层的熔化和扩大,此过程速度取决于液相扩散。
(2)液相的继续扩大,同时成分均匀化并达到液相线,液相的宽度可以由相图计算,这一阶段既有液相扩散又有固相扩散,而且以固相扩散为主。
(3)液相凝固阶段。由固相扩散控制, 凝固时间取决于液相的宽度和互扩散系数。
(4)固相均匀化阶段。
中间层的设计在连接中有很大的作用, 主要从以下几个方面考虑:(1)熔化的B 或AB 的界面产物可以和陶瓷连接。
(2)高熔点的中间层能够消耗低熔点层, 形成合适的高熔点合金。(3)A是高熔点元素且线膨胀系数和复合材料相似。
这种连接方法较固相扩散焊,连接温度更低;不需要使用更大的压力,避免了复合材料性能的降低;另外由于液相的存在,被连接件的表面质量不要求太高。和钎焊相比,使用温度可以大幅度的提高。在这种方法中,由于中间层是由多种金属构成的,因此不仅要考虑中间层对复合材料的适用性,还要考虑各层金属之间的作用,防止生成脆性金属相降低了接头的性能。
③无压固相反应连接
无压固相反应连接是在大气(或Ar或真空中)加热至金属钎料熔点90%,仅施加使接触面产生接触的压力,使复合材料和金属钎料直接反应的一种连接方法。为获得热核反应的高温接头,用高熔点活性元素Zr、T i作为连接材料。由于CMCS材料耐压性能差,所以连接过程中不能施加太大的压力进行连接,主要是利用Zr和Ti固态下和C,SiC反应,形成Zr和Ti的碳化物与硅化物。[14]由于CMCS的抗压能力差,使用较大的压力会使CMCS的纤维发生破坏, 因此这种连接方法最大的优点在于避免了母材的损坏,而且可以形成致密的接头,但接头的力学性能很差, 基本上不能承受载荷。因此Zr和Ti无压固相反应连接可以用来连接 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
CMCS, 形成不承受载荷,但可以耐高温的致密接头。
④利用聚合物分解进行连接
聚合物分解连接CMCS是通过陶瓷先驱体聚合物在高温下分解转化为陶瓷进而实现连接的一种方法。但是由于聚合物在高温分解的过程中会产生大量的气孔, 这将会大大的降低接头的强度。为此,可以通过在聚合物中添加活性或惰性填充物、纤维;在分解过程中施压;以及增加渗透和分解次数来改善这一情况。
聚合物分解进行连接的这种方法的优点在于接头与待连接复合材料的热膨胀系数相匹配,连接后不会产生过大的残余应力,在聚合物的高温分解过程中不需要施加很大的压力。但这种连接方法的不足之处在于聚合物的分解会导致接头处产生大量的气孔,这将会大大的降低接头的强度,因此使用这种连接方法形成的接头可靠性不高。
⑤ARCJoint ARCJoinT 是一种反应成形连接方法。该工艺首先把碳质混合物放置到接点区域,并用夹具固定,在100~120℃温度下热处理10~20 min,然后将Si和Si合金以浆料的形式涂到接点周围,然后根据浆料的类型,在1250~1450℃间对其保温10~15min,融熔状态的Si 或Si 合金与C 发生反应,形成可控硅含量的SiC。在这个方法中, 可以根据冶金成分决定其它相成分, 接头的厚度也可以通过调节碳质浆料的成分和夹紧力大小来控制。由ARCJoinT 方法连接后的连接件在高温下可以保持其结构的完整性, 具有良好的机械强度和耐环境稳定性。它也可以连接大尺寸部件和形状复杂部件, 可满足接头厚度要求和成份要求, 可以修复材料部件所存在的缺陷。但是由于接头产物是SiC, 因此接头较脆, 强度较低。
⑥在线液相渗透连接
它是在CMCS 制备过程中控制其孔隙率,采用一种满足高温使用需求并具有一定耐蚀性的Ni 基合金作为连接剂,在一定的温度及压力下使得连接剂熔化并渗入复合材料的孔隙中,形成的树根状咬合结构,从而实现连接。连接完后再对材料进行气相沉积以完成材料的制备,这一步气相沉积过程还可以为复合材料连接提供防氧化涂层。由于这种连接方法是在复合材料的制备过程中完成连接, 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
连接完成时材料并没有制备完成,因而这是一种在线的连接方式。它具有如下优点:(1)在线连接。在线液相渗透连接方法在复合材料的制备过程中完成的,使连接过程对材料的损伤作用降低到最小。而且后期的化学气相沉积过程不仅完成材料的制备,同时可以为整个连接构件提供防氧化涂层,真正体现了连接制备加工一体化。
(2)物理结合能力强。在线液相渗透连接方法中,连接剂在复合材料内的渗透大幅度增加了连接剂与复合材料的接触面,并形成了机械的咬合结构,大幅度增加了连接强度,同时提高了连接可靠性。
(3)产生良好的梯度层,缓解热应力。在线液相渗透连接方法由于大量连接剂渗入复合材料,渗入的连接剂在复合材料内部形成一个的良好梯度层,使得在得到最佳连接性能的同时最大限度的缓解连接过程中产生的热应力。
(4)连接温度高。由于所用连接剂有较高的熔点, 所得连接可以满足1000℃ 温度下的使用需求, 因而在线液相渗透连接方法是一种高温连接方法。
(5)连接时间短。在线液相渗透连接方法是在连接剂熔化状态下渗入复合材料而完成连接的,液相的参与使得连接所需时间较短。
3.总结
上述几种方法共同的缺点是需要对连接件进行整体加热。这样做一方面,如果连接件的体积大,则需要加热设备和加热功率增大,这样势必会造成资源浪费。另一方面由于连接件的各个部分热膨胀系数不同,整体加热会造成很高的残余应力,损坏连接件。
因此有必要发展局部加热的连接方式,目前提出的有: 微波连接、电子束连接等方法。这些连接方法都是使用高能量,集中加热接头区域,使接头熔化并进行连接。但由于目前对热源的加热过程控制还不成熟,因此还需要进一步的研究。先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
参考考文献:
[1]黄勇,吴建光.高性能结构陶瓷的现状和发展趋势.材料科学进展,1990,4(2);150~160 [2]许永东,张立同,张湛.陶瓷基复合材料进展.材料科学进展,1992,(4);18~25 [3]苏波.陶瓷纤维及其陶瓷复合材料.材料导报,1994,1(223~237);67~70 [4] Courtright E L.Engineering property limitation of structural ceramics and ceramic composites above 1600℃.Ceram.Eng.Sci.Proc.,1991,12(9/ 10): 1725 [5] Levitt S R.High-strength graphite fiber/ lithium aluminosil-icate composites.J.Mater.Sci.,1973,8(6);793~ 806 [6] Fitzer E,Gadow R.Fiber-reinforced silicon carbide.Am.Ceram.Soc.Bull.,1986,65(2): 326~ 335 [7]刘宏,刘素文,戴干浩.连续纤维补强陶瓷复合材料.现代技术陶瓷,1996,17(4):26~ 31 [8]周洋,袁广江,徐荣九,杜林虎,李宏泉,陈大明.高温结构陶瓷基复合材料的研究现状与展望.硅酸盐通报,2001 [9]葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[ J].导弹与航天运载技术,2003, 264(4);22—26.[10] IMUTAM,GOTOH J Development of high temperature materials including CMCs for space application[ J ].Key Engineering Mater, 1999, 164—165:439—444.[11]任家烈,吴爱萍.先进材料的连接[M].北京;机械工业出版社,2000.120-168, 258-261.[12]柯晴青,成来飞,童巧英,张 青.连续纤维增韧陶瓷基复合材料的连接方法.材料工程,2005
[13]陆善平,郭义,陈亮山.活性元素Ti和Ni 基钎焊合金/Si3N4界面上的动态行为研究[ J].焊接技术, 1998,(3): 3-4.[14]童巧英,成来飞,张立同.二维复合材料的显微组织结构和性能[ J ].材料科学与工程, 2002,(11): 14-16.
第二篇:陶瓷基复合材料的复合机理
陶瓷基复合材料的复合机理、制备、生产、应用及发展前景
1.陶瓷基复合材料的复合机理
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
1.1陶瓷基复合材料增强体
用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种。
1.1.1纤维类增强体
纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。连续纤维中又分为单丝和束丝,碳(石墨)纤维、氧化铝纤维和碳化硅纤维(烧结法制)、碳化硅纤维是以500~12000根直径为5.6~14微米的细纤维组成束丝作为增强体使用。而硼纤维、碳化硅纤维是以直径为95~140微米的单丝作为增强体使用。连续纤维制造成本高、性能高,主要用于高性能复合材料。短纤维连续长度一般几十毫米,排列无方向性,一般采用生产成本低,生产效率高的喷射成型制造。其性能一般比长纤维低。增强体纤维主要包括无机纤维和有机纤维。
1.1.2颗粒类增强体
颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末。
1.1.3晶须类增强体
晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。
1.1.4金属丝
用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。
1.1.5片状物增强体
用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。
1.2陶瓷基的界面及强韧化理论
陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性
等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面 作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影 响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。
1.2.1界面的粘结形式
(1)机械结合(2)化学结合陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。
若增强体与基体在高温时不发生反应,那么在冷却下来时,陶瓷的收缩大于增强体,由此产生的径向压应力与界面剪切应力有关: = ,为摩擦系数,一般取0.1~0.6。
1.2.2界面的作用
陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。因此,陶瓷基复合材料界面要有一个最佳的界面强度。强的界面粘结往往导致脆性破坏,裂纹在复合材料的任一部位形成并迅速扩展至复合材料的横截面,导致平面断裂。这是由于纤维的弹性模量不是大大高于基体,因此在断裂过程中,强界面结合不产生额外的能量消耗。若界面结合较弱,当基体中的裂纹扩展至纤维时,将导致界面脱粘,发生裂纹偏转、裂纹搭桥、纤维断裂以至于最后纤维拔出。所有这些过程都要吸收能量,从而提高复合材料的断裂韧性。
2.复合材料的制备与生产
陶瓷基复合材料的制备工艺主要有以下几部分组成:粉体制备、增强体(纤维、晶须)制备和预处理,成型和烧结。
2.1粉体制备
粉体的性能直接影响到陶瓷的性能,为了获得性能优良的陶瓷基复合材料,制备出高纯、超细、组分均匀分布和无团聚的粉体是很关键的。
陶瓷粉体的制备主要可分为机械制粉和化学制粉两种。化学制粉可获得性能优良的高纯、超细、组分均匀的粉体,是一类很有前途的粉体制备方法。但是这类方法或需要较复杂的设备,或制备工艺要求严格,因而成本也较高。机械法制备多组分粉体工艺简单、产量大,但得到的粉体组分分布不均匀,特别是当某种组分很少的时候,而且这种方法长会给粉体引入杂质。除此外,还可用物理法,即用蒸发-凝聚法。该方法是将金属原料加热到高温,使之汽化,然后急冷,凝聚成分体,该法可制备出超细的金属粉体。
2.2成型
有了良好的粉体,成型就成了获得高性能陶瓷复合材料的关键。坯体在成型中形成的缺陷会在烧成后显著的表现出来。一般成型后坯体的密度越高则烧成的收缩就越小,制品的尺寸精度越容易控制。陶瓷材料常用的成型方法有:
2.2.1模压成型
模压成型是将粉体填充到模具内部,通过单向或者双向加压,将粉料压成所需形状。
2.2.2等静压成型
一般等静压成型是指将粉料装入橡胶或塑料等可变形的容器中,密封后放入液压油或者水等流体介质中,加压获得所需坯体。
2.2.3热压铸成型
热压铸成型是将粉料与蜡(或其他有机高分子粘合剂)混合后,加热使蜡(或其他有机高分子粘合剂)熔化,是混合料具有一定流动性,然后将混合料加压注入模具,冷却后即可得到致密较结实的坯体。
2.2.4挤压成型
挤压成型就是利用压力把具有塑性的粉料通过模具挤出,模具的形状就是成型坯体的形状。
2.2.5轧模成型
轧模成型是将加入粘合剂的坯料放入相向滚动的压辊之间,使物料不断受到挤压得到薄膜状坯体的一种成型方法。
2.2.6注浆成型
注浆成型是基于多孔石膏模具能够吸收水分的物理特性,将陶瓷粉料配成具有流动性的泥浆,然后注入多孔模具内(主要为石膏模),水分在被模具(石膏)吸入后便形成了具有一定厚度的均匀泥层,脱水干燥过程中同时形成具有一定强度的坯体。
2.2.7流延法成型
一种陶瓷制品的成型方法,首先把粉碎好的粉料与有机塑化剂溶液按适当配比混合制成具有一定黏度的料浆,料浆从容器同流下,被刮刀以一定厚度刮压涂敷在专用基带上,经干燥、固化后从上剥下成为生坯带的薄膜,然后根据成品的尺寸和形状需要对生坯带作冲切、层合等加工处理,制成待烧结的毛坯成品。
2.2.8注射成型
陶瓷料粉与热塑性树脂等有机溶剂在注塑机加热料筒中塑化后,由柱塞或往复螺杆注射到闭合模具的模腔中形成制品的加工方法。
2.2.9泥浆渗透法
泥浆渗透法是先将陶瓷基体坯料制成泥浆,然后在室温使其渗入增强预制体,再干燥就得到所需的陶瓷基复合材料坯体。
2.3烧结
在高温下(低于熔点),陶瓷生坯固体颗粒的相互键联,晶粒长大,空隙(气孔)和晶界渐趋减少,通过物质的传递,其总体积收缩,密度增加,最后成为具有某种显微结构的致密多晶烧结体,这种现象称为烧结。陶瓷基复合材料基体常见烧结方法有普通烧结、热致密化方法、反应烧结、微波烧结和等离子烧结。
其中反应烧结是指粉末混合料中至少有两种组分相互发生反应的烧结。微波烧结是一种材料烧结工艺的新方法,它具有升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,并能提高产品的均匀性和成品率,改善被烧结材料的微观结构和性能,近年来已经成为材料烧结领域里新的研究热点。
2.4陶瓷基复合材料特殊的新型制备工艺
2.4.1熔体渗透
熔体渗透是指将复合材料基体加热到高温使其熔化成熔体,然后渗入增强物的预制体中,再冷却就得到所需的复合材料。
2.4.2化学气相渗透(CVI)
化学气相渗透(CVI)制备陶瓷基复合材料是将含挥发性金属化合物的气体在高温反应形成陶瓷固体沉积在增强剂预制体的空隙中,使预制体逐渐致密而形成陶瓷基复合材料。
2.4.3由有机聚合物合成由有机聚合物可以合成SiC、Si3N4,并可作为基体制备陶瓷基复合材料。通常是将增强
体材料和陶瓷粉末与有机聚合物混合,然后进行成型烧结。
3陶瓷基复合材料的应用
陶瓷基复合材料具有较高的比强度和比模量,韧性好,在要求质量轻的空间及高速切削的应用很有前景。
在军事上和空间应用上陶瓷基复合材料可做导弹的雷达罩,重返空间飞行器的天线窗和鼻锥,装甲,发动机零部件,专用燃烧炉内衬,轴承和喷嘴等。石英纤维增强二氧化硅,碳化硅增强二氧化硅,碳化钽增强石墨,碳化硼增强石墨,碳,碳化硅或氧化铝纤维增强玻璃等可用于上与上述目的。
陶瓷基复合材料耐蚀性优越,生物相容性好,可用作生体材料,也可用作制作内燃机零部件。陶瓷件复合材料可做切削道具,如碳化硅晶须增强氧化铝刀具切削镍基合金,铸铁和钢的零件,不但使用寿命增加,而且进刀量和切削速度都可大大提高。
5陶瓷基复合材料现状与发展前景
复合材料所面临的问题是:怎样把不同的材料有效地结合起来使某些性能得到加强,同时又把成本控制在市场可接受的范围。目前,只有少数CMC达到实际应用的水平,大多数尚处于实验室研究阶段,但从其具有的优异性能和研究状况来看,CMC有着非常广阔的应用前景。因而,对CMC的未来发展趋势作一预测是非常有必要和有意义的。
5.1为了保证陶瓷基复合材料性能的可靠,除了从工艺上尽量保证陶瓷基复合材料的均一性及完整性之外,对材料性能的准确评价也是一个很重要的问题。因此,无损探伤是一项急待开展的工作。
5.2由宏观复合形式向微观复合形式发展。目前应用最多的是纤维、晶须补强复合材料
补强剂尺寸较大属于宏观复合。所谓微观复合就是均质材料在加工过程中内部析出补强剂,(晶体)与剩余基体构成的原位复合材料或用纳米级补强剂补强的纳米复合材料。
5.3由结构复合向结构功能一体化方向发展。到目前为止,研究的陶瓷基复合材料基本上是结构复合型材料。将逐步向结构功能一体化方向发展,也就是复合材料既能满足力学性能的要求,同时还具有其他物理、化学和电学性能。
5.4从一元补强、双元混杂复合向多元混杂方向发展。用纤维、晶须或颗粒补强剂的陶瓷复合材料已经取得良好的效果,同时二种补强剂双元混杂的复合材料也取得了一定进展,将会向多元混杂的方向发展。比如在混杂的纤维补强剂中还可以加入颗粒填料二种以上的纳米颗粒同时弥散的复合材料,多元混杂有可能制备出超强度、超韧性的高性能陶瓷材料。
5.5由复合材料的常规设计向电子计算机辅助设计发展
参考文献
[1] 韩桂芳,张立同,成来飞等·二维石英纤维增多孔Si3N4-SiO2基复合材料的制备及其力学性能[J]·复合材料学报,2007,24(1):91-96·
[2] 张存满,徐政,许业文·弥散SiC颗粒增韧Al2O3基陶瓷的增韧机制分析[J]·硅酸盐通报,2001,20(5):47-50·
[3]孙康宁,尹衍升,李爱民.金属间化合物-陶瓷基复合材料[M].北京:机械工业出版社,2002
[4]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004
[5]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005
[6] 周曦亚.复合材料.北京:北京工业出版社,2004
[7] 张杏奎.新材料技术,江苏科学技术出版社,1992
[8] 甘永学.宇航材料工艺,1994;(5):1~5
[9] 林德春等.出国考察技术报告,1994;(2): 87
[10] 国防科技大学五0五教研室.无机材料学报,1986;1(1):329
[11] 杨淑金等.宇航材料工艺,1986;(5):26
[12] 赵稼祥.纤维复合材料,1996;(4):46~50
[13] 郭景坤、杨涵美、张玉峰、诸培南、黄世忠,材料科学进展,1993(2):179.[14]孙康宁,尹衍升,李爱民.金属间化合物-陶瓷基复合材料[M].北京:机械工业出版社,2002
[15]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京:化学工业出版社,2004
[16]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005
[17]穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
第三篇:陶瓷基复合材料
碳/碳化硅陶瓷基复合材料
一、简介
陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。
其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。陶瓷基复合材料的性能与其结构紧密相关, 原材料、结构和工艺不同,材料的性能也不同。构成复合材料的组分材料包括纤维、基体和界面, 对于C/SiC 陶瓷基复合材料而言,界面的材料和结构是影响其性能的关键。陶瓷基复合材料的性能包括物理化学性能和力学性能, 物化性能主要有密度、孔隙率、线膨胀系数、热扩散系数、热导率、比热容、抗氧化等, 力学性能主要有强度、模量、断裂韧性、疲劳、高温蠕变、抗热震性、耐烧蚀等性能。韩秀峰等[4] 通过对C/SiC 复合材料进行基体改性, 制备了2D C/C-SiC 复合材料,并与2DC-SiC 的显微结构和力学性能作了对比, 结果表明, 2D C/CSiC复合材料可在基本保持2D C/SiC 的抗弯强度的基础上, 显著提高断裂韧性,基体改性效果明显, 并得出结论,纤维的逐级拔出是KIC提高的原因。郭友军等[ 5] 采用CVI 法制备了在厚度方向上具有纤维增强的3D-C/SiC 陶瓷基复合材料,其层间抗剪切强度比二维碳布叠层C/SiC 复合材料的剪切强度提高171.4 %, 表现出良好的结构特征和优异的力学性能。然而, 2D 层合编织结构虽工艺成熟、成本低、制品尺寸范围广,但层间结合强度不高, 易分层;3D 整体编织结构虽能有效提高厚度方向的强度和抗冲击损伤性能, 但编织角较小时横向力学性能较差。2.5D C/SiC 复合材料是一种不同于2D 和3D 的新型复合材料, 其编织结构是用纬纱贯穿经纱, 形成互锁, 从而增强材料层间结合强度, 并改善横向力学性能。如Boitier 等对2.5D C/SiC 复合材料的拉伸蠕变性能进行测试和研究。Dalmaz 等对2.5D C/SiC 复合材料的循环疲劳性能和弹性模量进行研究和分析。李宏等对2.5D C/SiC 复合材料的热物理性能进行了研究并得出结论:从室温到1400 ℃纵向、横向的热膨胀系数随温度的升高而缓慢增加,在350 ℃和700 ℃附近出现波动;横向的热膨胀系数略高于纵向, 厚度方向的热扩散系数随温度的升高逐渐降低, 且下降速率随温度的升高而变缓;经过CVD S iC 涂层后,材料热扩散系数提高1 ~ 2 倍。姚亚东等以正硅酸乙酯和硝酸铝为原料, 制备了莫来石溶胶, 用浸涂法在碳/碳化硅Cf /SiC)上制备莫来石涂层(Mullite coating , MC), 对Cf /S iC 和Cf /SiC MC 进行了等温-氧化实验,并研究了两者的氧化规律。结果表明,Cf /SiC 和Cf /SiC MC 的氧化都可以划分为3 个主要阶段:θ<700 ℃;700 ℃<θ<1000 ℃;1000 ℃<θ<1200 ℃。在各个阶段, 控制氧化速率的机理各有不同,Cf /SiCMC 的氧化质量损失比Cf /SiC 的低50 %左右, 由此得出,MC 有效提高了Cf /SiC 的抗氧化性能。
二、C/ SiC 陶瓷基复合材料的主要制备技术
前驱体有机聚合物浸渍热解转化技术
将前驱体有机聚合物浸渍热解(裂解)转化(Polymer infiltrationpyrolysis ,简称PIP)制备陶瓷基复合材料是20世纪70 年代至80 年代发展起来的新工艺和新技术。其基本原理是:合成前驱体有机聚合物, 将纤维预制体在前驱体溶液中浸渍,在一定条件下交联固化, 然后在一定的温度和气氛下热解转化为陶瓷基体, 经反复浸渍热解最终获得致密陶瓷基复合材料。Yajima S 曾以聚碳硅烷(Polycarbosilane, 简称PCS)为原料制备出SiC 纤维, 开创了有机聚合制备陶瓷的新领域。20 世纪80 年代中期掀起了对PIP 技术制备陶瓷基复合材料的研究热潮, 20 多年来, 日本、美国、法国和中国等在PIP 技术制备陶瓷基复合材料领域展开了广泛深入的研究,并取得了一些实用化的成果。简科等将先驱体聚碳硅烷与二乙烯基苯按物质的量比1 ∶0.4 配置成溶液, 真空浸渍碳纤维三维编织体, 120 ℃下交联固化6h , 经过一段时间后取出, 然后在氩气保护下高温热解, 制得三维编织碳纤维增强碳化硅复合材料, 经过7 个真空浸渍-交联固化-高温热解周期, 使材料致密化, 制得材料弯曲强度达到556.7MPa 的Cf /SiC 复合材料。然而, 前驱体有机聚合物浸渍热分解转化技术制备的陶瓷基复合材料孔隙率高、体积变形大、工艺周期长、生产效率低、工艺成本高, 不利于其推广应用。因此, 有待于探讨新的制备方法, 如PIP 与CV I 联用,不仅能够提高复合材料的致密性, 而且缩短周期, 提高生产效率。
化学气相沉积及渗积技术
化学气相沉积技术(Chemical vapor deposition , 简称CVD)是在具有贯通间隙的增强相材料(如纤维、晶须或颗粒)坯体或纤维编织体骨架中沉积陶瓷基体制备陶瓷基复合材料的方法, 其工艺为纤维编织体骨架或坯体置于化学气相沉积炉内,通入沉积反应源气, 在沉积温度下热解或发生反应,生成所需的陶瓷基体材料,沉积在坯体的孔隙中, 并逐步填满。化学气相沉积温度一般为1100 ~ 1500 ℃。如闫志巧等采用化学气相沉积法, 于1100 ℃在碳纤维增强碳化硅复合材料表面制备SiC 涂层, 研究了涂层连续沉积和分4 次沉积(每次沉积时间为6h)所制备的SiC 涂层的微观结构和涂层样品的氧化性能。结果表明,与连续涂层样品相比,4 次涂层能显著提高C/SiC 样品的抗氧化性能。CVD 工艺的优点是:复合材料在制备过程中纤维受到的机械损伤和化学损伤小;可以制备纤维多向排布、编织和复杂形状的制品;可用于制备组成可调的梯度功能复合材料。但CV D 技术也存在不足:生产周期长, 效率低, 成本高;坯体中的孔隙在CV D 过程中容易堵塞或形成闭孔, 即使提高压强, 反应源气体也无法进入, 因而难以获得高致密性的复合材料。目前常见的有常压CV D、低压CV D、等离子CVD、热CVD、间隙CVD 和激光CVD 等方法。基于CVD 技术存在难以克服的缺点, 人们又在此基础上发展了化学气相渗积技术。其基本原理是将气态先驱体送达多孔隙的纤维编制预成型体中的纤维表面, 在其上发生化学反应,生成不挥发的产物并沉积, 形成陶瓷基体, 与预成型体中的纤维一道构成复合材料, 并有可能用于净成型而毋须对复合材料产品进行二次机械加工。CVI 与CVD 相比具有效率高、速度快、密度高、强度高、韧性高、临界应变值高,可以制备大尺寸部件等诸多优点。常规的CV I 工艺是等温CVI , 它具有能在同一反应炉中同时沉积多个或不同形状的预制件的优点, 但只能沉积简单的薄壁件, 对于粗厚型件内部往往出现孔洞, 存在致密性差, 材料沉积不均匀的问题, 同时其工艺周期特别长, 材料制备成本较高。为了降低成本, 缩短工艺周期和优化工艺,陆续出现了脉冲法、热梯度法、压差温度梯度法等。北京航空材料研究院提出了一种位控化学气相沉积法来制备Cf /SiC 材料, 制备的复合材料致密性好, 当纤维的体积分数约为50 %时, 材料的密度达到2.44g/cm3 , 为理论密度的96 %。此外还有激光CV I(LCVI)法、强制流动热梯度CVI法(FCVI)、微波CVI 法(MWCVI)等, 应用这些工艺, 可制备零维到三维的形状稍微复杂的陶瓷材料构件[ 17 ,18]。如魏玺等根据C 纤维预制体的结构特征, 建立了ICVI 过程中预制体孔隙演变的“多尺度孔隙模型” , 并根据化学反应动力学和传质学的基本理论, 建立了用于C/SiC 复合材料ICVI过程的数学模型, 很好地描述了C/SiC 复合材料ICVI 致密化过程,对ICVI 工艺的优化有指导意义。因此, CVI 技术是目前应用较广泛的一种制备陶瓷基复合材料行之有效的方法。
料浆浸渍及热压烧结法
料浆浸渍及热压烧结法是最早用于制备连续纤维增强陶瓷基复合材料的方法,其基本原理是将具有可烧结性的基体原料粉末与连续纤维用浸渍工艺制成坯体, 然后在高温下加压烧结, 使基体材料与纤维结合制成复合材料。该技术已用于制备各种纤维增强玻璃和玻璃陶瓷基复合材料。20世纪90 年代初又将此工艺用于制备非氧化物陶瓷基体, 如S iC、Si3N4 陶瓷基体等, 并将该法用于先驱体转化制备Cf /S iC 陶瓷基复合材料, 在料浆浸渍热压工艺制备Cf /SiC 复合材料中,可制备性能较好的纤维增强陶瓷基复合材料。但用该法难以制备大尺寸及形状复杂的陶瓷基复合材料,只能制得一维或二维的纤维增强陶瓷基复合材料, 对于三维编织物增强陶瓷基复合材料, 热压时易使纤维骨架变形移位和受到损伤, 并且纤维与基体的比例较难控制, 成品中的纤维不易均匀分布。
液相硅浸渍法
液相硅浸渍法(Liquid silicon infiltration , 简称LSI)是指在真空条件下, 固体硅在1600 ℃下熔融成液态硅, 通过多孔碳/碳坯体中气孔的毛细作用渗透到坯体内部与碳基体反应生成碳化硅基体, 因此, 又称反应性熔体浸渗法(Reactivemelt infilt ration , RMI)。通过控制硅的用量可以得到C/CSiC 复合材料或C/Si-SiC 复合材料。德国宇航院曾采用反应熔体浸渗多孔C/C 复合材料的方法制备了C/SiC 复合材料。万玉慧等采用液相硅浸渍法制备了密度为2.31g/cm3的2D C/SiC 陶瓷基复合材料, 并对材料的结构和力学性能进行了研究。采用液相硅浸渍工艺可以制备大尺寸、复杂的薄壁结构组件, 工艺时间短, 材料来源广泛, 可以近净成型, 成本较低。然而LS I 工艺的不足在于制备Cf /SiC 复合材料时, 由于熔融Si 与基体C 发生反应的过程中, 不可避免地会与碳纤维发生反应, 纤维被浸蚀导致性能下降;同时, 复合材料中残留有一定量的Si 导致复合材料抗蠕变性能降低。
其他制备方法
上述方法均用来制备碳纤维增强碳化硅(Cf /SiC)陶瓷基复合材料,对于制备碳颗粒复合碳化硅(Cp/SiC)陶瓷基复 合材料,采用软化学方法[ 23] 较为经济合理、普遍。随着科学技术的不断进步和社会需求的不断增长, 人们对基础性材料之一———颗粒的粒径、纯度、形貌及微结构提出了越来越高的要求。传统的高温固相烧结法制得的颗粒粒径大且分布范围宽,杂质含量高且波动性大, 一定程度上影响了材料的性能。因此, 高温固相法已不能满足科技发展的要求。相对于传统的高温固相法而言, 软化学方法(Soft chemistry , SF)是一种在低温低压的“软环境”中制备粉体材料的方法,近年来已广泛应用于制备功能纳米材料。作为一类先进的材料制备手段, 软化学方法接近自然过程, 其因反应条件温和, 且生产出的纳米颗粒高纯超细、性能优异, 引起了人们的广泛关注, 并得到迅速发展[ 24]。因此, 加强软化学稳定体系的基础理论及应用研究, 对于开发新的功能材料, 提高材料的性能,不断拓展新的应用空间具有重要意义。溶胶-凝胶法
溶胶-凝胶(S ol-Gel)制备技术已用于生产各种高性能陶瓷[ 27] , 在软化学方法中具有特殊的地位。溶胶-凝胶技术是一种由金属有机化合物、金属无机化合物或上述两者混合物经水解缩聚过程, 逐渐胶化并进行相应的后处理, 最终获得氧化物或其他化合物的工艺。如今它已成为研究最多、应用最广泛的制备纳米材料的化学方法之一。溶胶-凝胶法制备的复合组分纯度高、分散性好,可广泛用于制备颗粒(包括纳米粒子)/陶瓷、(纤维-颗粒)/陶瓷复合材料, 且制得的陶瓷基复合材料性能良好。Liedtke 等[ 25] 采用快速溶胶-凝胶法, 将碳纤维预制体经过溶胶浸渍、固化得到凝胶, 然后经高温高压热分解制备C/SiC 复合材料, 用此法制备的C/SiC 复合陶瓷的性能和可能的应用将优于商业化的产品。Gadiou 等通过溶胶-凝胶法制备的碳化物涂层提高了C 纤维的抗氧化性能。
软机械力化学法
机械力化学技术(Mechanochemical process , CP)是利用机械能诱发化学反应和诱导材料组织、结构和性能产生变化来制备新材料或对材料进行改性处理。机械力化学法与传统的技术工艺相比,具有以下优势:①减少生产阶段, 简化工艺流程;②不涉及溶剂的使用及熔炼, 减少了对环境的污染;③可获得用传统的工艺很难或不能获得的亚稳相产品。21 世纪初, Lu 等将Ti、Si、C 按Ti25 Si25C50 的比例混合, 采用机械力化学法, 经过100h 行星球磨后, 制备出TiC-SiC 复合粉体;崔晓龙等以硅粉和石油焦为原料利用机械合金化技术制备出SiC , 并认为生成物是六方晶型的α-SiC。然而,硬机械力化学法在随机研磨过程中能量效率低, 并对材料产生污染。但是, 软机械力化学法(“ Soft ” mechanochemicalprocesses , SMCP)是采用机械法将原材料进行预处理,从而降低其反应活化能, 制备陶瓷复合粉体的一种方法。如Yang Yun 等以C 粉、Si 粉、聚四氟乙烯/PVC/NH4Cl为原料, 采用机械激活(软机械力化学)燃烧合成反应法(MASHS)在氩气氛保护下球磨2 ~ 8h , 制备出β-SiC 不同粒径的超细粉料, 将传统的燃烧合成SiC 微粉的燃烧温度从2273 ~ 3273K 降低到1600 ~ 1700K , 甚至更低。笔者通过试验得出, 软机械力化学法是制备Cp/SiC 复合粉体行之有效的方法之一, 采用该法不仅较好地改善了碳颗粒在SiC 中的分散均匀性问题, 而且能够降低复合粉体的烧结温度, 制备出综合性能(热稳定性、化学稳定性、可加工性等)良好的陶瓷基复合材料。三、应用前景
可应用于刹车材料、航空航天用热结构材料、卫星反射镜用材料、高温玻璃支架、夹具及模具材料等,应用范围之广,作用之大是未来主要材料之一。
第四篇:陶瓷基复合材料(范文)
陶瓷基复合材料的研究与展望
涂秋梅
(中国计量学院材料科学与工程学院,浙江 杭州 310018)
摘要
陶瓷基复合材料不是传统意义上的陶瓷,它是以陶瓷为基体与各种纤维复合的一类复合材料,通过往陶瓷材料中加入起增韧作用的第二相而增加陶瓷的韧性来克服传统陶瓷脆性差的缺点,使得陶瓷基复合材料成为了人们广泛的研究热点,也使陶瓷基复合材料展现出了广泛的应用前景。本文综述了陶瓷基复合材料的研究现状,阐述了复合陶瓷材料的特点,介绍了陶瓷基复合材料的应用领域。
关键词:陶瓷基复合材料;研究现状;特点;应用领域
Research and Prospect of composite ceramic
Qiumei Tu(College of Material Science and Engineering, China Jiliang University,Zhejiang Hangzhou 310018)
Abstract Ceramic matrix composite materials is not the traditional sense of ceramics, it is a kind of composite material with ceramic composite matrix with various fiber, the second phase in ceramic materials are added to the toughening effect and increase the toughness of ceramic to overcome the traditional shortcomings make the brittleness of ceramic, ceramic matrix composites becomes a research hotspot extensive, also make the ceramic matrix composites showed wide application prospect.This paper summarized the present research situation of ceramic matrix composites, expounds the characteristics of composite ceramic materials, introduces the field of application of Tao Ciji composites.Keywords: ceramic matrix composites;research status;characteristics;application 0.前言
近些年新材料的世界市场正以两倍于整个世界经济增长速度而发展。其中陶瓷基复合材料的发展尤为瞩目。同金属材料相比,陶瓷材料在耐热性、耐磨性、抗氧化、抗腐蚀以及高温力学性能等方面都具有不可替代的优点,它克服了一般陶瓷的脆性,其应用已涉及到空间探索、科研、生产、建设的各个领域[1]。
1.陶瓷基复合材料的概况
陶瓷基复合材料不是传统意义上的陶瓷,陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
2.陶瓷基复合材料的增韧技术[2]
陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。2.1纤维增韧
为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。
纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶瓷基复合材料的增韧机制包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等[3,4]。
能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B4C等复相纤维[5]。
纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出较长,但摩擦做功较小,增韧效果也不好,反而强度较低。纤维拔出长度取决于纤维强度分布、界面滑移阻力。2.2晶须增韧
陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体[6]。陶瓷晶须目前常用的有SiC晶须,Si3N4晶须和Al2O3晶须。基体常用的有ZrO2、Si3N4、SiO2、Al2O3和莫来石等。
晶须增韧陶瓷基复合材料的主要增韧机制包括晶须拔出、裂纹偏转、晶须桥联、其增韧机理与纤维增韧陶瓷基复合材料相类似。晶须增韧效果不随温度而变化,因此,晶须增韧被认为是高温结构陶瓷复合材料的主要增韧方式。晶须增韧陶瓷复合材料主要有2种方法[7]。(1)外加晶须法:即通过晶须分散、晶须与基体混合、成形、再经煅烧制得增韧陶瓷。如加入到氧化物、碳化物、氮化物等基体中得到增韧陶瓷复合材料,此法目前较为普遍;(2)原位生长晶须法:将陶瓷基体粉末和晶须生长助剂等直接混合成形,在一定的条件下原位合成晶须,同时制备出含有该晶须的陶瓷复合材料,这种方法尚未成熟,有待进一步探索。2.3颗粒增韧
用颗粒作为增韧剂,制备颗粒增韧陶瓷基复合材料,其原料的均匀分散及烧结致密化都比短纤维及晶须复合材料简便易行。因此,尽管颗粒的增韧效果不如晶须与纤维,但如颗粒种类、粒径、含量及基体材料选择得当,仍有一定的韧化效果,同时会带来高温强度、高温蠕变性能的改善。所以,颗粒增韧陶瓷基复合材料同样受到重视,并开展了有效的研究工作。从增韧机理上分,颗粒增韧分为非相变第二相颗粒增韧、延性颗粒增韧、纳米颗粒增韧[8]。
非相变第二相颗粒增韧主要是通过添加颗粒使基体和颗粒间产生弹性模量和热膨胀失配来达到强化和增韧的目的。延性颗粒增韧是在脆性陶瓷基体中加入第二相延性颗粒来提高陶瓷的韧性,一般加入金属粒子。金属粒子作为延性第二相引入陶瓷基体内,不仅改善了陶瓷的烧结性能,而且可以以多种方式阻碍陶瓷中裂纹的扩展,如裂纹的钝化、偏转、钉扎及金属粒子的拔出等,使得复合材料的抗弯强度和断裂韧性得以提高。Al2O3-10%(体积分数)Ni3Al复合材料中的断裂主要是沿晶断裂,Ni3Al颗粒的存在使裂纹发生偏转,如图1(a)。图1(a)所示的材料室温下断裂韧性值为7 MPa·m1/2。复合材料中裂纹在扩展过程中碰到紧邻的长条状Ni3Al颗粒后发生明显的偏转从而减小了裂纹扩展的驱动力,提高了复合材料的韧性。而图1(b)所示的材料的断裂韧性值仅为3 MPa·m1/2,对Al2O3陶瓷基本起不到增韧的效果。这是因为球状的Ni3Al对促使裂纹偏转作用很小。由此可见第二相对裂纹偏转的程度取决于其颗粒形状。颗粒的长径比越大,对裂纹偏转作用越明显,阻止其扩展的能量越大,直到阻止其继续扩展。因此为了显著地提高复合材料的断裂韧性,应该合理地选择第二相颗粒的长径比[9]。
图1 Ni3Al颗粒对裂纹偏转的作用(b)长条状Ni3Al颗粒;(b)球状Ni3Al颗粒
另外,在图1中还可以明显的看出裂纹的弯曲,当裂纹经过颗粒时,其尖端在颗粒出发生弯曲,形状改变,裂纹长度的增加和新裂纹表面的形成都会消耗能量,从而达到提高复合材料韧性的效果。第二相增韧颗粒从微米级减小到亚微米或纳米时,材料的性能同样会发生显著变化,纳米复相陶瓷便应运而生。在实现陶瓷的完全纳米化比较困难的情况下,纳米复合增韧则是一种非常切实可行的技术。
2.陶瓷基复合材料的成型[1]
陶瓷基复合材料的成形方法分为两类:一类是针对陶瓷短纤维、晶须、颗粒等增强体,复合材料的成形工艺与陶瓷基本相同,如料浆浇铸法、热压烧结法等;另一类是针对碳、石墨、陶瓷连续纤维增强体,复合材料的成形工艺常采用料浆浸渗法、料浆浸渍后热压烧结法和化学气相渗透法。料浆浸渗法是将纤维增强体编织成所需形状,用陶瓷浆料浸渗,干燥后进行烧结。该法的优点是不损伤增强体,工艺较简单,无需模具。缺点是增强体在陶瓷基体中的分布不大均匀。
料浆浸渍热压成形法是将纤维或织物增强体置于制备好的陶瓷粉体浆料里浸渍,然后将含有浆料的纤维或织物增强体布成一定结构的坯体,干燥后在高温、高压下热压烧结为制品。与浸渗法相比,该方法所获制品的密度与力学性能均有所提高。
气相渗透工艺是将增强纤维编织成所需形状的预成形体,并置于一定温度的反应室内,然后通入某种气源,在预成形体孔穴的纤维表面上产生热分解或化学反应沉积出所需陶瓷基质,直至预成形体中各孔穴被完全填满,获得高致密度、高强度、高韧度的制件。
3.陶瓷基复合材料的应用前景
目前有将陶瓷基复合材料用作耐磨材料,做轴承、刀具等。复合材料的应用是十分广泛,几乎包括日常生活、化学工业、机械、电子、石油、食品、航空航天、国防等各个部门与领域。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[10,11]。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性。
4.总结
新型材料的开发与应用已成为当今科技进步的一个重要标志,陶瓷基复合材料使材料的韧性大大改善,同时其强度、模量有了提高。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品,其最高使用温度主要取决于基体特征,并显示出优异的摩擦磨损特性,取得满意的使用效果,陶瓷基复合材料已实用化,它正以其优良的性能引起人们的重视。目前,陶瓷基复合材料几乎遍及现代科技的每一个领域。可以预见,随着对其理论问题的不断深入研究和制备技术的不断开发与完善,它的应用范围将不断扩大,应用前景十分广阔。参考文献:
[1]朱俊.工程陶瓷基复合材料及其应用[J].现代技术陶瓷,2010,02:19.[2]何柏林,孙佳.陶瓷基复合材料增韧技术的研究进展[J].粉末冶金工业,2009-8,19(04):49-52.[3]张振东,庞来学.陶瓷基复合材料的强韧性研究进展[J].江苏陶瓷,2006,39(3):8-12.[4]赫元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.[5] 李专,肖鹏,熊翔.连续纤维增强陶瓷基复合材料的研究进展[J].粉末冶金材料科学与工程,2007,12(1):13-19.[6] 吕珺,郑治祥,金志浩等.晶须及颗粒增韧氧化铝基陶瓷复合材料的抗热震性能[J].材料工程,2000,(12):15-18.[7] 陈尔凡,赫春功,李素莲等.晶须增韧陶瓷复合材料[J].化工新型材料,2006,34(5):1-4.[8] 赫春成,崔作林,尹衍升等.颗粒增韧陶瓷的研究进展[J].材料导报,2002,16(2):28-30.[9] 沈建兴,李肖玲,邹文国.Ni3Al增韧Al2O3陶瓷机理的研究[J].山东陶瓷,2003,3(3):3-6.[10]陆有军,王燕民,吴澜尔.碳/碳化硅陶瓷基复合材料的研究及应用进展[J].材料导报,2010,21(6):14-19.[11] 冯倩,王文强,王震,杨金山.C纤维和SiC纤维增强SiC基复合材料微观结构分析[J].实验室研究与探索,2010,01(3).
第五篇:陶瓷基复合材料
陶瓷基复合材料论文
2015年5月5日
摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料
基体
增强体
强韧化机理
制备技术
前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。
正文
一、陶瓷基复合材料基本概述
陶瓷基复合材料的基体为陶瓷。如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。化学键往往是介于离子键与共价键之间的混合键。陶瓷基复合材料中的增强体通常也称为增韧体。从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。常用的颗粒也是SiC、Si3N4和A12O3等。陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
二、陶瓷基复合材料的结构性能
(1)陶瓷能够很好地渗透进纤维点须和颗粒增强材料;(2)同增强材料之间形成较强的结合力;
(3)在制造和使用过程中同增强纤维间没有化学反应;
(4)对纤维的物理性能没有损伤;(5)很好的抗蠕变、抗冲击、抗疲劳性能;
(6)高韧性;
(7)化学稳定性,具有耐腐蚀、耐氧化、耐潮湿等化学性能 1.陶瓷基复合材料的基体
陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。2.瓷基体的种类
陶瓷基体材料主要以结晶和非结晶两种形态的化合物存在,按照组成化合物的元素不同,又可以分为氧化物陶瓷、碳化物陶瓷、氮化物陶瓷等。此外,还有一些会以混合氧化物的形态存在。
1)氧化物陶瓷基体
(1)氧化铝陶瓷基体
以氧化铝为主要成分的陶瓷称为氧化铝陶瓷,氧化铝仅有一种热动力学稳定的相态。氧化铝陶瓷包括高纯氧化铝瓷,99氧化铝陶瓷,95氧化铝陶瓷,85氧化铝陶瓷等。
(2)氧化锆陶瓷基体
以氧化锆为主要成分的陶瓷称为氧化锆陶瓷。氧化锆密度5.6-5.9g/cm3,熔点2175℃。稳定的氧化锆陶瓷的比热容和导热系数小,韧性好,化学稳定性良好,高温时具有抗酸性和抗碱性。
2)氮化物陶瓷基体
(1)氮化硅陶瓷基体
以氮化硅为主要成分的陶瓷称氮化硅陶瓷,氮化硅陶瓷有两种形态。此外氮化硅还具有热膨胀系数低,优异的抗冷热聚变能力,能耐除氢氟酸外的各种无机酸和碱溶液,还可耐熔融的铅、锡、镍、黄钢、铝等有色金属及合金的侵蚀且不粘留这些金属液。
(2)氮化硼陶瓷基体
以氮化硼为主要成分的陶瓷称为氯化硼陶瓷。氮化硼是共价键化合物 3)碳化物陶瓷基体
以碳化硅为主要成分的陶瓷称为碳化硅陶瓷。碳化硅是一种非常硬和抗磨蚀的材料,以热压法制造的碳化硅用来作为切割钻石的刀具。碳化硅还具有优异的抗腐蚀性能,抗氧化性能
(1)碳化硼陶瓷基体
以碳化硼为主要成分的陶瓷称为碳化硼陶瓷。碳化硼是一种低密度、高熔点、高硬度陶瓷。碳化硼粉末可以通过无压烧结、热压等制备技术形成致密的材料。3.陶瓷复合材料的增强体
陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。1)纤维
纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。2)颗粒
颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末。3)晶须
晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。晶须与颗粒对陶瓷材料的增韧均有一定作用,且各有利弊。晶须的增强增韧效果好,但含量高时会使致密度下降;颗粒可克服晶须的这一弱点,但其增强增韧效果却不如晶须。由此很容易想到,若将晶须与颗粒共同使用,则可取长补短,达到更好的效果。目前,已有了这方面的研究工作,如使用SiCw与ZrO2来共同增韧,用SiCw与SiCp来共同增韧等。
4.陶瓷基复合材料增强体分布 1.纤维增强陶瓷基复合材料 1)单向排布长纤维复合材料
当外加应力进一步提高时,由于基体与纤维间的界面离解,同时又由于纤维的强度高于基体的强度,从而使纤维从基体中拔出。当拔出的长度达到某一临界值时,会使纤维发生断裂。因此,裂纹的扩展必须克服由于纤维的加入而产生的拔出功和纤维断裂功,这样,使得材料的断裂更为困难,从而起到了增韧的作用。2)多向排布纤维增韧复合材料
单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。
而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。2.晶须和颗粒增强陶瓷基复合材料
长纤维增韧陶瓷基复合材料虽然性能优越,但它的制备工艺复杂,而且纤维在基体中不易分布均匀。因此,近年来又发展了短纤维、晶须及颗粒增韧陶瓷基复合材料。由于短纤维与晶须相似,故只讨论后两种情形。由于晶须的尺寸很小,从客观上看与粉末一样,因此在制备复合材料时,只需将晶须分散后与基体粉末混合均匀,然后对混好的粉末进行热压烧结,即可制得致密的晶须增韧陶瓷基复合材料。晶须增韧陶瓷基复合材料的性能与基体和晶须的选择、晶须的含量及分布等因素有关。
5.陶瓷基复合材料的界面和强韧化机理 1)界面的粘结形式
(1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的结合,但通常是脆性的。
2)界面的作用
陶瓷基复合材料的界面一方面应强到足以传递轴向载荷并具有高的横向强度;另一方面要弱到足以沿界面发生横向裂纹及裂纹偏转直到纤维的拔出。3)界面性能的改善
在实际应用中,除选择纤维和基体在加工和使用期间能形成稳定的热力学界面外,最常用的方法就是在与基体复合之前,往增强材料表面上沉积一层薄的涂层。6.陶瓷的断裂韧性及裂纹类型
陶瓷有很高的强度,但是它同样有较低的断裂韧性。陶瓷断裂韧性低的主要原因是在它内部存在着各种裂纹; 陶瓷的裂纹类型有:
(1)加工过程中产生的裂纹;(2)产品设计导致产生的裂纹;(3)使用过程中产生的裂纹;
三、瓷基复合材料的制备技术
陶瓷基复合材料的制造通常分为两个步骤:第一步是将增强材料渗入未固结(成粉木状)的基体材料排列整齐或混合均勾;第二步是运用各种加工条件在尽 量不破坏增强材料和基体行能的前提下制成复合材料制品。
1.粉末冶金法
制备工艺过程:原料(陶瓷粉末、增强剂、粘结剂和助烧剂)均匀混合(球磨、超声等)冷压成形(热压)烧结。关键是均匀混合和烧结过程防止体积收缩而产生裂纹。2.浆体法(湿态法)
为克服粉末冶金法中各组元混合不均的问题,采用浆体(湿态)法制备陶瓷基复合材料。其混合体为浆体形式,混合体中各组元保持散凝状,即在浆体中呈弥散分布。这可通过调整水溶液的PH值来实现。
对浆体进行超声波震动搅拌可进一步改善弥散性。弥散的浆体可直接浇铸成型或热(冷)压后烧结成型。适用于颗粒、晶须和短纤维增韧陶瓷基复合材料。采用浆体浸渍法可制备连续纤维增韧陶瓷基复合材料。纤维分布均匀,气孔率低。3.反应烧结法
用反应烧结法制备陶瓷基复合材料,除基体材料几乎无收缩外,还具有以下优点:增强剂的体积比可以相当大;可用多种连续纤维预制体;
大多数陶瓷基复合材料的反应烧结温度低于陶瓷的烧结温度,因此可避免纤维的损伤。反应烧结法最大的缺点是高气孔率难以避免。
4.液态浸渍法
用此方法制备陶瓷基复合材料,化学反应、熔体粘度、熔体对增强材料的浸润性是首要考虑的问题,直接影响材料的性能。陶瓷熔体可通过毛细作用渗入增强剂预制体的孔隙。施加压力或抽真空将有利于浸渍过程。5.直接氧化法
按部件形状制备增强体预制体,将隔板放在其表面上以阻止基体材料的生长。熔化的金属在氧气的作用下发生直接氧化反应形成所需的反应产物。由于在氧化产物中的空隙管道的液吸作用,熔化金属会连续不断地供给到生长前沿。6.溶胶–凝胶(Sol-Gel)法
溶胶(Sol)是由化学反应沉积而产生的微小颗粒(100nm)的悬浮液;凝胶(Gel)是水分减少的溶胶,即比溶胶粘度大的胶体。Sol-Gel法是指金属有机或无机化合物经溶液、溶胶、凝胶等过程而固化,再经热处理生成氧化物或其它化合物固体的方法。该方法可控制材料的微观结构, 使均匀性达到微米、纳米甚至分子量级水平。使用这种方法,可将各种增强剂加入,基体溶胶中搅拌均匀,当基体溶胶形成凝胶后,这些增强组元稳定、均匀分布在基体中,经过干燥或一定温度热处理,然后压制烧结形成相应的复合材料。
四、陶瓷基复合材料的应用
陶瓷材料具有耐高温、高强度、高硬度及耐腐蚀性好等特点,但其脆性大的弱点限制了它的广泛应用。随着现代高科技的迅猛发展,要求材料能在更高的温度下保持优良的综合性能。陶瓷基复合材料可较好地满足这一要求。
它的最高使用温度主要取决于基体特性,其工作温度按下列基体材料依次提高:玻璃、玻璃陶瓷、氧化物陶瓷、非氧化物陶瓷、碳素材料,其最高工作温度可达1900 ℃。陶瓷基复合材料已实用化或即将实用化的领域包括:刀具、滑动构件、航空航天构件、发动机制件、能源构件等。
五、今后面对的问题及前景展望
现在看来,人们已开始对陶瓷基复合材料的结构、性能及制造技术等问题进行科学系统的研究,但这其中还有许多尚未研究情楚的问题。因此,从这一方面来说,还需要陶瓷专家们对理论问题进一步研究。新型材料的开发与应用已成为当今科技进步的一个重要标志,陶瓷基复合材料正以其优良的性能引起人们的重视,可以预见,随着对其理论问题的不断深入研究和制备技术的不断开发与完善,它的应用范围将不断扩大,它的应用前景是十分光明的。
参考文献
[1].李丹,武建军,董允.连续纤维增强复合材料的制备方法[J].材料导报:网络版。[2].何新波,张长瑞等.连续纤维增强陶瓷基复合材料概述[J].材料科学与工程。[3].李香兰,纤维增强陶瓷基复合材料的发展及应用。