第一篇:连铸技术手册
1、连铸 1.1概述
1.2基本理论和计算 1.2.1计算和设计公式
1.2.1.1坯壳厚度及液芯长度 1.2.1.2拉速 1.2.1.3振动 1.2.1.4温度
1.2.1.5结晶器的散热 1.2.1.6二次冷却
1.2.1.7热坯长度的确定 1.2.1.8收缩
1.2电磁搅拌
1.2.1结晶器电磁搅拌 1.2.2末端电磁搅拌
1.3安全
1.3.1不能开浇(!)1.3.2禁止连续浇注 1.3.3中包停浇
1.3.4怎样区分钢水和钢渣 1.4中包包衬
1.4.1可应用的工作层
1.4.2中包和侵入式水口的预热 1.4.3塞棒浇注的中包预热
1.5拉浇前设备的前提准备 1.5.1结晶器的准备 1.5.2引锭杆的准备 1.5.3送引锭 1.5.4封引锭
1.5.5推荐使用的封引锭方式(1802)1.5.6开浇前大包中包的操作步骤
1.6开浇
1.6.1开浇的前提条件 1.6.2火切机控制板 1.6.3大包开浇
1.6.4大包长水口的操作 1.6.5塞棒浇注的手动开浇 1.6.6自动开浇 1.7连铸工艺 1.7.1更换大包 1.7.2快换中间包
1.8停浇
1.9质量控制/质量保证 1.9.1间接检验方法 1.9.2直接检验方法 1.9.3表面检验 1.9.4内部缺陷检验 1.9.5取样和检验 1.9.6中包前取样 1.9.7中包测温 1.9.8中包取样 1.9.9铸坯取样
1.9.10冶金缺陷-铸坯缺陷-原因/纠正方法 1.9.11表面缺陷 1.9.12内部缺陷
1、连铸 1.1概述
钢水由液态转变为固态是在连铸进行的,其产品被称为小方坯、大方坯或板坯
精炼后,吊车将大包吊在大包旋转台的支撑臂上,盖上大包盖,将大包放在大包回转台上后,将其旋转至浇注位。
预热好的中间包车(大于1000度)从预热位开至浇住位,将预热好的侵入式水口与结晶器对中并插入。同时使用长水口操作机构将通有氩气保护的大包长水口靠近大包滑动机构,之后,打开大包滑动水口,钢水从大包注入至中间包,中包填液时间即从大包开浇至打开塞棒的时间不应超过2分钟。
中间包向结晶器注入钢水上是通过安装在中间包内的塞棒来控制的,中间包支持在中间包车上。
开浇前,先起动结晶器振动台和液位控制系统。人工加保护渣,结晶器安装于平台上,通过振动机构完成上下运动。安装在结晶器末端的足辊对刚出结晶器的热坯导向作用。
足辊后的导向辊是固定的,将铸坯导入固定半径的弧线中。
置于弧形末端的拉矫机将铸坯由恒定半径的弧形矫直为水平。
挤压辊安装于拉矫机下方,以支撑、拉戈引锭杠和铸坯,汽水喷淋用来冷却铸坯及调节冷却强度。喷淋室在铸坯铸坯导向周围与之成为一体,在喷淋室形成的蒸汽由排蒸汽机抽到空气中。在不需要引锭杠导向时,由脱引锭辊将引锭脱开,并送自引锭杆辊道上。其上装有引锭杆存放装置,将引锭杆从开浇后至下次开浇前,存放于其上。铸坯由火切机切成定尺。在辊道末端装有可移动档板,将铸坯停下。拉浇结束时,低速拉尾坯,高速矫直。尾坯由尾坯处理装置切尾送走。当最后一支坯移至输出辊道,引锭杆由存放引锭杆装置落至辊道上,送入铸坯导向辊至结晶器下方将引锭头对中送入结晶器。封引锭杆准备下一浇次。1.2基本原理和计算 1.2.1计算和设计公式
1.2.1.1坯壳厚度及液芯长度
液芯长度由坯壳成长常数和凝固时间所决定的,此常数可看作一个数值,在凝固区增大。坯壳凝固厚度“S”的计算公式如下: S=K*/t 固态坯壳 S(mm)凝固常数
K(mm/min1/2)凝固时间=L/VC t(min)凝固长度 Vc(m/min)拉速
现在铸坯任一点的坯壳厚度都可计算。
凝固常数是由拉浇的钢种所决定的,以确定冶金长度,数值如下: K=27mm/min1/2 K=26mm/min1/2 1.2.1.2拉速
最大拉速由冶金长度(从结晶器液位至铸坯凝固的连铸长度)计算公式如下: VC MAX=LM/tsolid D/2=K*/tsolid Tsolid=(D/2K)2 VCMAX=Lm*(k/s)2=LM*(2*K/D)2 其中:
K(mm/ min1/2)——凝固系数 Vcmax*(m/min)-----最大拉速 D(mm)——————热坯厚度
Lm(M)——————液芯长度,也称“冶金长度” Tsolid(min)————铸坯全部凝固的时间 不能超过最大可用拉速(由冶金长度估算出的);否则铸坯内的液芯长度会超出铸坯支撑长度而导致鼓肚。
举例:Lm=27m K=26mm/min1/2 D=220mm VCMAX=27*(2*26*220)2=1.51m/min 在实际生产中,根据要求的拉速时间、化学成分、铸坯性能及中间包温度采用比较低的拉速。1.2.1.3振动
振动的速度,频率乃至振幅对铸件的表面性能及外形有着重要的影响。
避免坯壳粘在结晶器壁上,振动装置是密不可少的。振动参数(振幅、频率、负滑脱)影响着振痕的深度、间距、保护渣的消耗及坯壳的成长。振动的平均速度,公式如下: Vo=2*h*f h(m)——振幅
f(min-1)——频率
Vo(m/min)——平均振动速度
振动速度理论上应比拉速高30~40%,即:Vo=1.3to1.4*Vc 1.2.1.4 温度
拉浇温度对凝固过程有着相当大的影响,因此其对铸坯质量有着紧密的关系,过高的拉浇温度导致铸坯质量差(中心疏松、晶粒组织粗大、大量的树枝晶、应力裂纹等)且增加漏钢的危险,过热度应为10~35度之间。过热度增高会导致铸坯厚度变薄,这样由于坯壳很薄,拉应力增大,大大增加了粘壳的危险,而导致漏钢的危险增加。
过热度超过45~60度(不同钢种而不同),必须停止拉浇。过低的过热度会使钢水在侵入式水口中结死,大包钢水的温度应根据工艺要求在二次冶炼中确定下来。
不当的过热度对铸坯质量的影响; *过热度过高--纵向裂纹
--深度的中间裂纹和中心分层--极重的偏析 *过热度过低--水口结死
下面是对应生产顺序的相关温度: 大包温度(Tl),为开浇前在大包内的钢水温度。中包温度(Tt),为中包内钢水温度。液相线温度(Tlid),为分钢种开始凝固的温度。计算液相线温度的公式: °C(液相线)=1.5366-X%C-Y% 合金 %C X =0.025 90 0.026-0.05 82 0.06-0.10 86 0.11-0.50 88.4 0.51-0.60 86.1 0.61-0.70 84.2 0.71-0.80 83.2 0.81-1.00 82.3
合金元素 含量范围% Y Si 0-3 8 Mn 0-1.5 5 P 0-0.7 30 S 0-0.08 25 Cr 0-18 1.5 Ni 0-9 4 Cu 0-0.3 5 Mo 0-0.3 2 V 0-1 2 W-18%at0.66%C 1 As 0-0.5 14 Sn 0-0.03 10 O* 0-0.03 80 N* 0-0.03 90 H* 0-? 1.300 Ti 17 Al 5,1 Co 1,7 *=预估的
1.2.1.5结晶器散热
从结晶器带走热量的过程及热传导形式,描述如下: *凝固的坯壳间钢水的对流.*通过坯壳的热传导.*坯壳与铜板/铜管表面(保护渣气隙)的接触.*结晶器铜板/铜管的热传导.*通过结晶器铜板/铜管与水套间冷却水的对流.最重要的温降发生在结晶器铜板/铜管与坯壳的热传导,见图1:
结晶器冷却的几个重要参数: *拉速: 拉速增快,铸坯与铜板/铜管,接触的长度增加.*保护渣: 熔化的保护渣填充在铜板/铜管与坯壳之间,有助于散热.*结晶器的几何尺寸: 改变结晶器倒锥度提高散热强度.*结晶器冷却: 通常为避免形成气泡,结晶器冷却水必须达到一定流量,水的粘度比水更重要,计算水的流量及压力参见连铸机供应商提供的操作手册.1.2.1.6二冷水
二冷水的冷却强度由连铸机内铸坯的表面温度,拉浇的钢种及拉速决定的,二冷区所有的凝固常数在 K=26mm/min1/2-28 mm/min1/2之间,取决于钢种及二冷水量,为了得到满意的浇注组织,几个冷却水段的冷却水量是单独调节的。气雾冷却由于铸坯的冶金冷却,使用这种形式的喷嘴可得到较宽范围的水量调节,但必须达到下面的平衡:铸坯不能过冷(避免表面缺陷),设备不能过热(以避免辊子及轴承的损坏)。对流量,压力及喷嘴型式的要求,参加连铸机供应商提供的操作手册。1.2.1.6热坯长度的确定
计算 热坯长度的公式如下: Lhot=Lcold*X+S Lhot(mm)----热坯长度,其值应在长度测量装置上调节 Lcold(mm)----冷却后的铸坯长度(约+20℃)S(mm)------切缝宽度(因火切机及质量的不同而不同)X(1)-------收缩因子,考虑铸坯从切割机至冷坯的收缩值,是铸坯在切割辊上温度的函数及铸件成分的函数.铸坯在切割辊道上的平均温度(整个断面的平均温度)约在900℃,冷坯是在+20℃的室温上测的.计算热坯长度,必须知道收拾因子,收缩因子为一常量X=1.013.用于所生产的铸坯.如生产钢种扩大到合金钢,收缩因子可随之修改.C钢:X=1.013 举例: 铸坯长度=8000mm(冷坯)质量:St37---收缩率=1.013 Lhot= Lcold*X+切缝---=8000mm*1.013+8mm Lhot=8112mm 1.2.1.8收缩 1.2.1.8.1概述
连铸在固相线温度下的热收缩对质量有特别的影响,一些铸坯表面的缺陷及生产中遇到的一些现象都是由于不同的C含量的钢种其收缩特性不同引起的.C含量为0.09%~0.16%的钢种(包晶范围)对表面及内部裂纹表面粗糙、扭曲变形、拉漏比C含量低于或高于这个范围的钢种更为敏感。
研究表明0.09%~0.16%的钢种通过结晶器的热流量最小,且结晶器与坯壳之间的摩擦力也较低。
以上观察到的现象归因于包晶反应而引起铸坯收缩量增大及机械应力提高。δ/γ相变
在固相线温度以下恒定的温度区间内,铁碳合金的收缩量是C含量的函数。
C含量的0.09%~0.16%的热收缩量增加,相应的体积缩小(密度增大)是与δ/γ相变相关联的。
δ/γ相变只发生在铸坯上特定的一段,由于收缩不均匀,以及钢水静压力引起的除热应变外的弹性应变、粘弹性应变、使机械应力增强。在连铸生产中,收缩及应力的成长都是由于拉浇过程中各种因素复杂的相互作用(温度梯度、坯壳成长速度)以及钢的材质特性的结果。
就VOEST-ALPINE STAHL产品,经验表面:收缩率取1.013满足计算的要求,分析表明收缩率对其影响微小.1.3电磁搅拌
1.3.1结晶器电磁搅拌
M-EMS(结晶器电磁搅拌)对铸件的内部和表面质量有着积极的作用,由于能量消耗较高(约3Kwh/t),EMS主要在浇注高品质的特钢中使用.特殊情况:包晶钢!(C含量为0.09~0.16%)经验表明,调节M-EMS的参数(主要是电流),可提高生产和冶炼的效果.M-EMS放于结晶器装配下放更适合于使用保护渣和侵入式水口的形式.使用建议的M-EMS参数设置时,特别观察弯月面的情况,以确保弯月面的情况,以确保弯月面无大的搅动.如弯月面波动过大过侵入式水口侵蚀,必须逐渐减少电流,(如25A)直到满意为止.结晶器断面超过200mm2及结晶器壁>20mm的情况,建议选用2~2.5Hz的频率.如结晶器断面小于200mm2及结晶器壁<15mm的情况,建议选用4Hz的频率.为了方便操作,如果最大电流为400A,或接近400A(390A),也可选用固定的频率4.0Hz,注:范围由C含量来确定)!分钢种设置M-EMS参数,举例: 表1所示根据C含量的不同而设置的电流: M-EMS的频率应调节到2~4.5HZ之间(根据不同的断面尺寸,如小断面高频率,大断面低频率).表1 C含量 M-EMS(A)<0.25 150 0.26~0.45 250-400 0.46~0.60 350~400 >0.60 >400 注意:为了避免注流钢水时卷渣,侵入式水口必须保证最小插入深度(如建议插入深度80~140mm).1.3.2末端电磁搅拌
使用末端电磁搅拌只对高碳钢或MnCr含量高(>1%)的钢种有意义.注:为使末端电磁搅拌达到最优效果, 末端电磁搅拌中心应置于铸坯内液芯50mm处!如出现”白亮带”,强度通过下面方法可控制: *增加M-EMS的电流.*减少F-EMS的电流.*调节反转周期见表3===特别是用于低C钢.*降低拉速(也就是缩短液芯长度).表2所示F-EMS电流与C含量的函数关系.F-EMS的频率应调节至17.0~20.0Hz之间.C含量(%)F-EMS频率(A)<0.25-0.26~0.45 250 0.46~0.60 300 >0.60 350-400 周期(正反向)(sec.)小断面 大断面 5~8 8~12 表2 建议最小拉速应使F-EMS达到最佳效果。180*180末端搅拌 K-因子为26 拉速(m/min)冶金长度(m)在F-EMS处的实际液芯(mm)名义液芯(mm)1.0 12 58 >50 1.1 13.2 64 1.16 13.9 68 1.2 14.4 69 1.3 15.6 73 1.4 16.8 77 300*300末端搅拌 K-因子为26 拉速(m/min)冶金长度(m)在F-EMS处的实际液芯(mm)名义液芯(mm)0.4 13.3 34 >50 0.45 15 49 0.5 16.6 62 0.55 18.3 73 0.6 20 83 1.4安全
1.4.1不能拉浇(!)*无结晶器冷却水 *无二冷水 *无振动
*无润滑(油或保护渣)1.4.2禁止继续拉浇
*结晶器冷却水为事故状态 *结晶器冷却水温差Δt>12℃ *结晶器冷却水事故水箱未满
*发现大包或中包即将穿包(大包或中包车呈红斑)*中包弯月面低于300mm *铸坯停留超过4分钟 *拉速过快 *中包温度过高 1.4.3中包停浇
在大包停浇后,大包工必须立即通知P3工留心敞开浇注的钢流或是塞棒浇注应注意弯月面.原因:防止渣流入结晶器而导致漏钢甚至停浇.1.4.4钢和渣的区分
*当钢水从黄蓝或黄绿(在于眼镜繁荣颜色)变为深黄色时.*当钢流由强度到分流时.*持钢棒快速从钢流中挑出些渣,如溅起许多小的火花,那多是钢;如果钢流穿过钢棒轻轻掠过,那是渣.*如果是塞棒浇注,其弯月面搅动挺大,注意只是在由钢转换为渣时!*一下渣立即停浇(最好稍稍提前一点).*中包停浇时,大包工应用钢棒(勿用管子)测几次钢水液位,这样也可以知道,中包是否有渣,有多少.1.5中包包衬
连铸工艺中对钢的质量、成本及产品的安全都有严格的要求,对此领域中使用的耐材产品有更高的要求,对中包包衬耐材主要以下几个部分: *隔热层 *永久层 *工作层
隔热层是由陶瓷纤维或高铝砖制成位于永久层之间.两种不同形式的永久层: *永久层为耐火砖或高铝砖
永久层的缺点是每个中间包都需要特殊形状的砖,其连接处比较薄,使用后,永久层表面的砖磨损不均匀,特别是接缝处变大.表面的不均匀及宽的接缝,使钢壳粘在永久层上.一旦钢壳剥落永久层就遭到破坏.*永久层砖的另一缺点是,中包容积增大及复杂后,其成本及安装时间延长.*永久层为高铝,低水泥,低湿气的浇注料: 这种浇注料在各温度段都有绝好的机械强度,及耐热冲击抗力.因其为低水泥浇注料避免了接触反映.高机械强度的化合物以及少量的粘接剂大大提高了此种包衬的中包使用寿命.低水泥的浇注料制成单体无接缝的包衬,消除了用砖砌所存在的接缝问题,使用低水泥浇注料使永久层的安装更方便,更快,且中包寿命增至1500炉.1.5.1可应用的工作层 下面是几种工作层的制法: *板式包衬
*用喷枪喷涂的包衬 *喷雾式喷涂的包衬 *干粉中包衬
*板式包衬,最初使用于1974年,其为高绝热,低密度可更换的预制板.这项工艺使用冷中间包开浇成为现实,是中包准备的一次革命.早期的板式包衬为硅质板后来发展为可预热的镁质板,这样既满足了板坯的连铸开浇的要求,又利用了板式包衬的优点.可预热板式包衬消除了预热是工作层碎落的可能,另外,还比喷枪喷涂或砌砖的形式有以下优点: *中间包冷热均可用 *增加了绝热性能 *良好的抗碎裂性能 *延长一个浇次的寿命
*提高中间包使用率,缩短周转周期
制作时的一个缺点,特别是大的中包,需要大量的劳动
80年代初期,开始喷雾包衬系统,其于喷枪包衬不同的重要之处为在喷补料中增加纤维,这不仅降低其密度和成本,而且便于干燥提高了储热性能.同时这种工艺在制作厚的包衬时比喷枪补更加容易控制,这种包衬可以预热也可以冷包没有问题.其成品的决热特性比起板式包衬更加受欢迎.喷雾喷包衬的主要优点为包衬的喷补与中包的几何形状无关.此工艺只需要短的时间准备,相对劳动强度低,喷补材料可自动由机器人制作,以后的劳动需求更低.此工艺与其它湿的工艺相比主要缺点为:在使用前要进行干燥.干粉中包衬,于1986年左右提出,此工艺与前面提到的工艺不同之处为采用干粉形式,干粉包衬利用松脂在相对温度较低(约200℃)的条件下的粘合力而制成的.粉剂准备好后将一模型置于中包内,将干粉灌入中间包永久层与模型之间.这种特制的模型要求能均匀传递中包热量,防止中包中间包钢板的移动和扭曲变形,对可否振动的要求取决于使用的产品.这种工艺的优点 *中包周转快 *劳动量低 *良好的脱膜性
*对永久层有良好的保护作用
*干净精致的工作层(使非金属夹杂容易上浮)比起湿的工艺其主要的优点为减少了必要的热循环周期 采用哪一种包衬不同的钢厂根据各自的因素来确定如下: *中包大小 *连浇炉数 *钢水清洁度 *费用 *是否容易脱壳
*周转周期的重要性和中包利用率 *现有设备和包衬制度
*钢水质量的要求,低H,低C *使用人工或自动方式 1.5.2中包及水口预热
1.5.2.1塞棒浇注的中包预热 *中包必须干燥清洁 *将中包包盖置平
*预热时间预计为60~90min.*加热前安装好水口==如是单体水口,必须先安装水口.*将载有中包的中包车开至结晶器上方对中(必须关上塞棒)*返回加热位调节预热烧嘴 *将塞棒打开约40mm *计划开浇前,启动加热(从上端)加热时间不超过90min,不少于60min(参见耐火材料供应商提供的加热曲线)*加热温度为1000℃~1300℃之间.*水口预热30~60min,时间长短取决于烧咀质量
*大包到站后检查大包滑动水口油缸及液压系统工作是否正常 1.6拉浇前设备的前提准备 1.6.1结晶器的准备
开浇前必须检查下面的前提准备,必须完成下面各项准备工作 *铜管无损伤,如划痕或不均匀磨损 *足辊如有不均匀磨损必须更换 *结晶器冷却水准备完毕
*结晶器足辊段喷淋水准备完毕,检查喷淋方式
*结晶器可见部位无水,不得有水渗入结晶器内,结晶器铜管必须干燥 *结晶器罩固定于结晶器上 *结晶器液位检测系统准备完毕
如为新上的结晶器,必须增加以下检查项目 *结晶器液位控制系统装入准备就绪 *结晶器冷却套内充满水,无空气 *只能使用检查过调整过的结晶器
*固定结晶器于振动台上的螺栓必须拧紧 *润滑软管联接完毕
*冷却介质的连接处紧固(在振动台架与结晶器间无泄露)*结晶器足辊至扇形段的第一辊的过度段检查,调整.1.6.2引锭杆准备 正确安装引锭杆
引锭杆,特别是引锭头插入结晶器前必须检查是否清洁
必须认真检查引锭头部与热坯接触的部位,如表面有损伤(划痕裂纹等)应送检查(点焊或点磨)应按维护手册进行接头处加油动作检查.1.6.3送引锭 下面的前提准备,自动系统无法检测只能目测: *引锭杆准备是否完毕
*拉矫机上辊是否在”UP”位
*有无检修任务或检修在拉矫机区和导向区 *检查调整引锭杆压力为正常
目视及电气检测前提条件全部满足后,可以开始送引锭 1.6.4封引锭
封引锭操作步骤如下: 铜板与引锭头一圈的缝隙用密封绳封闭,并用小钢棒手动压紧.注意:必须将引锭杆头部与结晶器中心尽可能对正.另外,密封绳和引锭杆头上撒一层金属屑.所有封引锭材料必须是干燥无锈的(铁锈中含氧!),封完引锭头,振动台,拉浇机和喷淋水直到开浇时候才启动(通常电气联锁).在等大包时候,结晶器上需要盖一钢板保护其不被破坏,否则所封好的引锭头破坏后,必须重新封.1.6.4.1推荐使用的封引锭杆方式(180*180)举例 第一步==引锭杆于结晶器的位置 引锭杆插入深度不超过100mm(!)原因: *必须为钢水流出足够的空间,这样结晶器添液时,会给水口额外的预热作用.*更多的空间可以延长结晶器的添液时间,使其连接更好.*使开浇时在紧急情况下更加安全,例如:发生结流.第二步==用棉绳密封引顶头
小心地将棉绳捣入引顶头与结晶器缝内,以防止损坏结晶器镀层,确保结晶器的使用寿命.第三步==撒铁屑
*铁屑必须干燥无油的金属制品.*将铁屑均匀地撒在引顶头上,以防止钢液损坏引顶头.*所用的铁屑确保能将引顶头与热坯快速简单的分开.第四步==放置钩子
所用的钩子确保引顶头与热坯的连接安全可靠.另外兼备冷钢的作用,其传热效果极好.第五步==放入冷钢(弹簧)冷钢有以下优点: *这种紧密的排布确保了在需要冷钢的位置有冷钢,并且保证侵入式水口足够多的插入深度,例如:4孔水口.*这种形式和设计是高效的(冷钢直径小,接触面积大)这种冷钢在经过结晶器下口时不会掉落(有时会发生在螺纹钢形式上)而导致阻塞.*钢水良好的渗透性保证与引顶杆连接牢固.1.6.5开浇前大包中包的操作步骤
钢水应该准时到站,并且化学成分正确,恰当均匀的温度.大包由其上的行车吊至大包回转台.大包一到回转台,立即将悬挂在旁边的大包滑动油缸连于大包上,其具体的位置在吊架上调节.接上滑动水口后,准备将大包转到浇注位.在将大包转到浇注位之前应该关掉中包及水口预热,并开走中包车.中包车到位浇注位后应该按供应商提供的手册所述方法操作结晶器液位自动控制系统.中包对中后,将必备工具(如挑渣棒等)置于结晶器盖板旁.中包车至浇注位后,称重装置置0位,只显示中包包内的钢水重量.中包在浇注位对中时应该将长水口垂直接到滑动水口上.1.7开浇
2.1.7.1开浇的前提条件
如前面章节所述,开浇前必须进行各种准备工作.除以前提到的,还必须考虑以下的工作: *是否选定钢种? *结晶器冷却水是否工作,流量是否正确? *是否选定振幅? *中心润滑泵是否启动? *排蒸汽风机是否启动? *检查水,油,气的压力流量和温度 *二次冷却水冷却曲线是否选定? *大包回转台是否准备就绪? *中包车是否准备就绪? *振动台是否准备就绪? *拉矫机是否准备就绪? *事故水是否准备就绪? *结晶器液位控制是否为自动方式? *是否选定起步拉速? 1.7.1.1火切机控制板 *是否检查所有显示灯? *进行空试车
*火切机移至起始位.*所有的拉矫机,辊道驱动方式是否为自动? *横移机和冷床是否为自动方式? *所以设备准备就绪才可以开浇.此信号由电气系统通报,详细操作参见电气手册.通常,只用几流生产,其拉浇时间延长.这可能导致钢水结流和连浇节奏跟不上的问题.必须确认当结晶器冷却水打开后结晶器铜板上无水垢.1.7.2 大包开浇
大包开浇前,每一流必须在操作状态且应满足”ready to cast”条件.不管是手动开浇还是自动开浇,下面的设备有其独立的自动/手动操作方式: *振动台(前面提过)*喷淋水 *拉矫机
当浇注状态为初始状态或操作工将拉矫方式由手动改为自动时,以上功能缺省状态为自动方式.如没有钢水流下,操作工应该关闭滑动水口然后再次打开,如仍无钢水流出,那么必须打开滑动水口烧氧.烧氧前,将长水口移开.中包钢液位一超过长水口下口就应加保护剂.如必须烧氧,在大包注入初期就将长水口置于钢流外.二次装长水口之前中包钢水必须加满一半.如果大包滑动水口为人工操作,不能将滑动水口全部关死,以防止结流.必须提前清理掉大包滑动水口的积聚物.安装长水口时,将大包水口关掉,为减少结流的危险,关闭水口的时间应尽量短.中间包内的钢水的液面至少为200mm,以防止”涡流的效应”.中包的钢水必须覆盖为黑色.1.7.2.1大包长水口的操作 1.7.2.1.1长水口的固定
当大包转到中包上方的浇注位时候,将长水口连到滑动水口的收集水口上.1.7.2.1.拆长水口
从大包滑动水口上拆长水口前必须关闭滑动水口.降低大包长水口的操纵机构,如果长水口安装在收集水口上,那么前后左右地摇动操纵臂,直到将水口拆下.注意:活动操作臂时候要小心,不要损坏长水口和收集水口的陶瓷咀.1.7.3塞棒浇注的手动开浇 *中包烘烤到位 *预选:Manual方式
*将预备好的保护渣和推杆置于结晶器面板上 *设定结晶器自动液位控制的设定值(约75%)*将拉速设定到最大拉速的70% *同时将大包吊入大包回转台 *插入大包滑动水口油缸
*打开结晶器液位自动控制的放射源 *同时,水口必须已经预热了约30分钟 *关闭预热装置 *将中包移至浇注位
*在OS-1上将开关打为”casting”位
*在OS-1上每一流”Ready-to-cast”灯亮.如果一流的灯闪烁.用OS-2,确定故障原因,如果是次要的可以忽视的问题,可以继续开浇,如果问题严重,必须先解决掉.*连接大包长水口
*在结晶器上方对中中间包
*打开大包,如不自开,那么打开大包后直到中包钢水超过一半时再连长水口.*中包填满一半后,开浇(手动).中包降至水口低于正常液位50mm.*在约30_40秒内,注流2-3次将结晶器注满
*当液面达到检测范围,加入足量的保护渣(先加开浇保护渣,然后按钢种加特殊的保护渣),到达检测范围后关塞棒.*发出”strand start”指令.铸坯以最大拉速的70%的速度起步.拉浇工采用塞棒杠杆控制液位.*如果拉浇工将各流控制得好,即设定值和实际值相符,可尝试转至自动方式.拉浇工简便地拉下事故开关打开拉浇杠,脱开塞棒油缸上的旁路连接,检查OS-1,是否发生转换(可通过检查automatic on和实际值与设定值)!*不要忘记连续地加足够量的保护渣
*如果结晶器自动液位控制不正常(波动太大),那么立即转至手动拉浇.因为拉浇工在结晶器中的视野有限,应通过观察实际液位和设定液位来操作.1.7.4自动开浇 *中包预热好 *在OS-1预选:automatic(结晶器液位设定值应该为75%)*将拉速设定为最大拉速的70% *同时大包吊入大包回转台 *插入大包滑动水口油缸
*打开结晶器液位自动控制的放射源 *中包开至浇注位
*在OS-1上将开关打为”casting”位
*在OS-1上每一流”Ready-to-cast”灯亮.如果一流的灯闪烁.用OS-2,确定故障原因,如果是次要的可以忽视的问题,可以继续开浇,如果问题严重,必须先解决掉.*连接大包长水口
*在结晶器上方对中中间包
*自动”on”(白灯)闪,且结晶器液位控制的”actual value”指示为零
*大包浇注启动,如不行,移开长水口,打开大包烧氧,不加长水口继续浇注,直到结晶器浇注成功
*中包填满一半,立即启动”start casting”---即按下自动开浇按钮 注意: *开浇时应从中包外侧开始,既从离冲击区最远的一流开始,以避免开浇结死.*塞棒自动地打开2.3次,直到结晶器液位控制的actual value indicator显示第一个波动 *液面到达弯月面检测范围后,立即加入足量的保护渣(先加开浇保护渣,然后根据钢种不同加特殊保护渣),到达检测范围后,关塞棒
*等待约20秒后,以最大拉速的70%速度自动起步,自动方式采用控制塞棒机构的油缸来控制流量
*如果自动方式控制的很好,即实际值与设定值相符,拉浇工不要忘了不断地加足量的保护渣!*如结晶器液位控制工作不正常(波动太大),那么立即转至手动拉浇.因拉浇工结晶器中的视野很有限,应该通过观察实际液位和设定液位来操作 *如果每流自动控制.则”automatic”灯亮
*同时中包测温.如果温度控制得好,即高出液相线温度35度,应达到最高拉速(分断面和钢种)*这时候,铸坯到达脱引锭区,即操作工必须加倍小心,如果脱引锭失败,这一流必须停下来 *通常铸坯会自动停下来
*直到用事故切割将铸坯和引锭杆脱开,再重新开浇,为了安全起见,建议手动开浇,成功后再转自动,详细内容见”手动开浇” 1.8连铸工艺
1.8.1更换大包(连浇)在大包即将结束时,根据当前浇注情况确定二级机系统,计算出大包倒空时间计划下一包起吊时间。
当上一包还在浇注时,下一包钢水应放到回转台上。下一包在上一包倒空前6-10min到站。在连铸平台上所有的工作必须在很短的时间—5min内完成(例如:连滑动水口,观察从长水口中流出的渣,操作滑动水口,操作长水口操纵机构等)。
另外,实际停浇时间可能要比估算的提前(例如,估算的钢水重量和渣子重量的误差)。超过10min,大包等待时间就太长了,导致温度损失过多及有可能使大包内的钢水温度分层。另外,烧氧次数增加也延长大包等待时间。更换大包操作步骤如下:
停浇前5分钟,观察中包冲击区(长水口附近)的钢水。如大包下渣,立即关闭滑动水口。因为长时间的连浇中渣量是增长的,非金属夹渣物也要积聚,所以必须将中包渣控制为最少。不主张除渣到溢流箱中,因为这样会减少事故溢流的空间。在停浇第一炉时,中包液位准许升到溢流位附近,这样: *在更换大包时,中包包内的钢水可起一个缓冲作用 *在没有新钢水下来的期间,中包钢水温度损失为最少
关闭大包滑动水口后,将长水口移开---将滑动水口油缸拆下。旋转大包回转台,将新包旋入浇注位。
用氧枪清洁大包长水口,特别是收集水口相连的密封面。如长水口被损坏,必须更换一只新的。
清理/更换后,将长水口连接在新包的滑动水口上,压紧。连接大包滑动水口油缸。大包开浇过程与前面所述《大包开浇》过程相同。重要的是要尽可能缩短无钢流注入中包的时间。更换大包时间过程长导致:
*中包钢水减少,这样使拉速降低,继而导致拉浇时间的问题或质量的问题。*降低钢水温度,这意味着水口有结死的危险,特别同时降低拉速(减少通流量)
更换大包的时间通常控制在2-3min内,但如果大包自开有问题的话(如:烧氧)可能要延长一些。
由于中包浇完第一炉钢的时间问题比较高(有利于减少温降),连接下一包钢水的大包温度可以比第一包低10度。
打开下一大包后,10~15min中包测一次温度。以确保新旧混合的钢生产完,测的只是新包钢水的温度。
检查确信滑动水口关闭,滑动水口油缸拆下,旧包由行车从回转台上吊走。在同一浇次中只换大包而未换中包,只生产同一钢种。连浇中换钢种会在铸坯形成混合区域,既不属于上一钢种也不属于后一钢种,如果钢种区别很大混合区差别很大。1.8.2快换中包
长时间的连浇需要换中包,同时也伴随着大包的更换.更换中包之所以叫”快换”,是指换包后可继续拉浇,新来的钢水直接浇入现有的钢水上.因此,每一流都必须停下来,开走旧中包,新中包和大包开过来重新开浇.由于耐材(工作层座砖长水口)的使用寿命有限,所以快换是必要的.拉浇时快速换中包,节约了重新启动时间限制了切头切尾坯子的数量.增加有效拉浇时间,提高收得率.连浇同一钢种通常无混钢种现场.如果连浇不同的钢种,必须使用钢种分离片(分离蓝)每次快换中包都存在一定的危险,这也可通过操作工的经验和良好的钢水来弥补.在进行首次快换中包之前,连铸人员必须在一块配合过做几回试验.重要的是尽可能减少快换时间,使热坯停留时间减为最短.原因: *在停留时铸坯收缩脱离结晶器铜板
*如果铸坯与结晶器的缝隙增大,钢水有可能从缝隙中流过结晶器,导致漏钢.因此,热坯停留时间不超过4min.如超过的话,拉浇必须停止.进行快换中包,必须满足下面的条件: *下一中包在中包预热站预热好后并全部准备完毕
*混合浇注时连接器(分钢种的分离蓝)必须准备在结晶器的旁边.*下一中包吊到大包回转台上准备开浇 *快换中包同时也换大包,为了更好地控制温度,作为第一包新包的温度必须高一些快换中包的步骤如下: *在下令停浇前,立即加入保护渣.*保护渣使下面的铸坯热量不散发掉 *尽可能同时将各流关掉,停拉矫机 *停掉二冷水或设为最小值 *旋转大包回转台 *旧中包开走
*将分离钢种的连结器放入结晶器钢液中(如图).检查连接器放置在结晶器内的位置是否正确 *将新中包开至浇注位 *新中包于浇注位 *开浇,步骤同前所述 1.9停浇
正常的计划停浇应提前做好准备。步骤如下:
检测到渣时,应该按前面所述,立即将大包水口关闭。操作工在铸坯操作控制板上选择停浇状态。
关闭大包钢水液面到达前所述液位(约200min),立即停浇。通常中间包外侧的铸坯先拉,因其在中包内温度较低。此时,先拉哪一流也受其他一些因素的影响。如下: *结死 *结流 *优化切割
为得到最大的收得率,中包尽快浇注完。另一方面,应避免将渣子浇入结晶器中。停浇时,钢水液位不低于200mm。通常是在尾坯停止拉浇后停浇。
其间,操作方式转为清空设备(参见后面的功能描述)
尾坯不必喷水冷却。等待一段时间,按电气手册中描述的那样按下需要的按钮,重新启动连铸。
结束拉浇但不停连铸也是有可能的。过程如下:
将铸坯拉出后,按电气手册所描述的那样,初始化所需的操作方式。按此程序,应将拉速减至约名义值的70%,以便在铸坯上部凝固。当拉矫机停止后,喷淋水设为最小值。
对尾坯全部设备都对其跟踪,包括拉矫机,火切机。各设备按尾坯撤离其工作区的顺序停车(结晶器、振动台、二冷水、排蒸汽系统等)。注意:尾坯必须被切除,直到中心无缩孔。1.10 质量控制/质量保证
根据钢种各自的特性和要求,相关钢种的质量标准列于表中。
根据拉浇观察到的及发货条件、检验条件、成品货半成品,应进行下述的检验。1.10.1间接检验方法 间接检验方法 间接检验包括拉浇时进行观察和对连铸相关方面的测定.连铸相关问题 对质量的影响 *长水口注流
*(大包----中间包)C *中包液位 CCDLTO *塞棒 C *中包内钢水温度 SLMSC *保护渣 CEO *结晶器内的钢流 CDL *拉速 CDSM *铸坯表面温度 TE 其中: *C-----高倍和低倍的纯净度 *CD-----分布的非金属夹杂 *S------偏析 *L------纵裂 *T------横裂 *E------角裂纹 *M------中心裂纹 *SC-----皮下气泡 *O------振痕
正确调节以下方面: 可避免: *铸坯导向辊缝 STMSC *铸坯导向调节 TESC *挤压辊压力 STMSC *结晶器倒锥度 LTE *铸坯与结晶器间的摩擦 LT漏钢 1.10.2直接检验 1.10.2.1检验表面
没有一种检验方法可将所有的表面缺陷同时检验出来的,所以需要进行几种不同的检验.要把严重缺陷的产品(S)----在铸坯表面、肉眼可见的与轻微缺陷的产品(L)----除非表面处理后才看清楚的区分开来。VOEST-ALPINE设计出一种特殊的设备,用来酸洗半成品并测出振痕的侧面图。通常使用涡流、激光、红外线等检测方法检测。1.10.2.2内部缺陷的检测
检验铸坯内部缺陷,非特殊情况一般采用硫印,深度酸蚀,组织酸蚀,用切面评估法检验内部质量.检验
角裂 边裂 星裂 低倍夹渣 针孔 气泡 振痕 其它缺陷,如:溢钢,渣坑,双浇 检验方法 横向 纵向 横向 纵向 目检
铸坯表面: S S S S S * S yes 酸洗表面 L+S L+S L+S L+S L+S * * * L+S yes 剥皮检验 S S L+S L+S L+S yes yes yes yes
塔形: S* S* L+S L+S S yes yes yes 涡流检测 L*+S L*+S L*+S L*+S L*+S 激光红外线检测等:
L*+S
L*+S
L*+S
L*+S
L*+S 振痕简图: L+S *在一定条件下评估
检验
偏析 皮下气泡 低倍组织 箸状夹渣 低倍夹渣 检验方法 S C-Mn 裂纹偏析带2)无偏析3)硫印(断面)R R * R* * 4)*
组织酸蚀(纵向和圆面)R R* yes R R * yes 切面评估(剪切火切)
* yes yes
振痕 气泡 yes 角样
蓝幛弯月检验(小断面)
* * * * 特殊成分分析 yes yes
2)例如:弯曲挤压或皮下裂纹 3)如:中心线裂纹 4)如:脱铝低碳钢
R 根据内部标准图评估 * 在一定条件下评估 1.10.3取样及检验 1.10.3.1入中包前取样
包括所有至大包到连铸平台,为确定温度合乎和钢水化学成分的样.基于上面的化学成分可计算出相应炉号的液相线温度.在大包处理站的EMF测温取样(CELO+样)装置使镇静钢脱S成为可能.1.10.3.2中包测温
在拉浇过程中要测几次温度.温度应为液相线上20~30度;当C含量<0.06%,高出液相线30~40度,但如果钢水C含量>0.5,则只高出液相线15~20度.1.10.3.3中包取样
取化学成分样及后面的EMF测温样.开浇后(即过热度消散掉)5-10min取样.1.10.3.4铸坯取样
无检验表面质量的样相反,所有的铸坯在准备热送前或喷沙前都应检验,无论是否打磨或清理,只有经过酸洗才使表面得到大面积处理.除了对切面的评估外应切下300mm长的铸坯.从这一断面上经过酸蚀硫印可取下(碟形样,角样,纵向样)各种样,角样只在高应力铸坯上取.对于高品质的钢种,例如:100Cr6推荐采用以下步骤:每炉取两个样: &第一炉
从外侧一流的第二根坯子取一个样 从里侧一流的第二根坯子上取一个样 &第二炉至倒数的第二炉
从外侧一流的中间一根坯上取一个样 从里侧一流的中间一根坯上取一个样 &最后一炉
从外侧一流倒数第2根坯子上取一个样 从里侧一流倒数第2根坯子上取一个样 注意:如果铸坯送缓冷其取样规则是一样的
对普遍和低等级钢种的建议:每一浇次至少取一样 &第一炉:从2或5流,第二根坯上取一个样.1.10.3.5冶炼缺陷----铸坯缺陷----原因/纠正方法
许多生产条件都会影响产品质量.同时,也要考虑生产工艺和各种质量要求引起如下所列缺陷.根据目前我们的知识和经验,提出一些补救措施.特别是以下参数会引起冶金缺陷: *连铸机大小 *拉浇温度 *拉速 *保护拉浇 *结晶器参数 *振动频率 *振幅
*保护渣/润滑油 *冷却 *铸坯导向
缺陷主要分为两类: *表面缺陷 *内部缺陷
1.10.4.1表面缺陷
生产过程中出现的表面缺陷必须尽早检查到,即: 当铸坯在输出辊道上和后部精整能量回收区.在所有的表面缺陷中,裂纹发生的最多,其被空气氧化后构成很严重的质量问题.在后续热扎中也不能焊合,所以直到扎成材也不能消除.表面裂纹造成材质疏松,可能成为废品,次品及需要大量的表面清理作业.如发生表面裂纹,必须检查相应一流的铸坯导向和结晶器.下面的表面缺陷祥述于后面的章节中: *纵向角裂 *横向角裂 *横向裂纹 *纵向裂纹 *星裂 *振痕 *皮下气泡 *低倍夹渣 *重接 *横向凹陷 *菱形变形 *鼓肚,凹陷
1.10.4.1.1纵向角裂 缺陷/起源的描述: 一般易发生在结晶器下方,由于在角部或靠近角部坯壳成长不充分并形成黑痕.原因 纠正措施 由于结晶器倒锥度不够在角部形成缝隙 改变结晶器倒锥度 结晶器底部极度磨损 更换结晶器 结晶器角部有间隙 更换结晶器 中包温度过高 降低拉速 拉速过高 降低拉速
C含量在包晶区间其S,P高 如可能的话,改变化学成分 1.10.4.1.2横向角裂 缺陷/起源的描述: 极易发生在小断面铸坯结晶器底部,二冷水区,拉伸矫直区,由拉应力引起的.原因 纠正措施
由于倒锥度过大,引起结晶器角部摩擦力过大 改变结晶器倒锥度 角部冷却强度过大 减少角部水量 二冷区温度梯度过大 减少二冷水量
结晶器保护渣/润滑油不足 改变保护渣/增加润滑油加入量 不规则振动 改变振动的运动
短时间溢钢 停浇此流----清理溢钢 结晶器扇形段不准 校弧 矫直温度过低 至少900度
合金元素增加裂纹敏感 如可能的话,改变化学成分 1.10.4.1.3横向裂纹 缺陷/起源的描述: 特别容易发生于小断面裂纹敏感的钢种,由于结晶器底部,二冷水区,拉矫区的拉伸应力而造成的,横向裂纹经常在热坯上就可以发现.原因 纠正措施
由于倒锥度不当,引起摩擦力过大 改变结晶器倒锥度 结晶器表面缺陷 更换结晶器
保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 不规则振动 改变振动台振动
短时间溢钢 停浇此流----清理溢钢 二冷区温度梯度过大 减少二冷水量 纵向拉应力 检查校正弧度 矫直温度过低 至少900度
合金元素增加裂纹敏感 如可能的话,改变化学成分 1.10.4.1.4纵向裂纹 缺陷/起源的描述: 随着张力强度的波动,这些短裂纹常伴有轻微的表面凹陷,常发生于二冷区的上部,在热坯上就可以检测出.原因 纠正措施 拉速过快 降低拉速 拉浇温度过高 降低拉速
保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 结晶器倒锥度不够,结晶器表面缺陷 更换结晶器 变化的振动/拉速 保持稳定值
二冷水温度梯度太大 减少冷却水量 纵向拉应力 检查校正弧度
合金元素增加裂纹敏感性 如有可能改变化学成分 1.10.4.1.4星裂 缺陷/起源的描述: 发生在结晶器底部的坯壳上,只能通过火焰轻度清理,打磨或酸洗后才能检测出,小断面尺寸很少发生.原因 纠正措施
结晶器底部极度磨损 更换结晶器 结晶器镀Cr层磨掉 更换结晶器
保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 由于温度的变化而产生热应力 保持稳定的拉速和水量 二冷水太强 减少二冷水量
由于弧度不当而产生的机械应力 检查校正弧度
1.10.4.1.5异常的振痕 缺陷/起源的描述: 主要的表面裂纹起源于结晶器顶部,深度的振痕会导致横裂,浅的振痕发生翻皮,轻轻地角磨后就可检查测出.原因 纠正措施 振幅太大 提高频率
保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 结晶器角部有裂纹 更换结晶器
悬壳 改变保护渣/增加润滑油加入量,防止短时间溢钢;避免液面急剧升降.1.10.4.1.6皮下气泡 缺陷/起源的描述: 一种主要的表面缺陷,发生在结晶器内.多数为体积小,气体活性高的,只通过表面清理就可以检测出,间距0.5~3mm不规则分布,圆形的,球形的或椭圆形的,最大为皮下5mm.也包括细孔,针孔.原因 纠正措施
脱氧或脱气不足 干燥合金元素
潮湿的保护渣/润滑油 使用干燥的保护渣/无水润滑油
弯月面的扰动 提高脱氧效率,降低通氩量,增加水口侵入深度 水口插入深度太深,通氩距离太远 抬高中包 耐材潮湿 更好地干燥中间包 拉浇温度太高 降低拉速或停浇
1.10.4.1.7低倍夹渣 缺陷/起源的描述: 主要的表面缺陷,主要的发生在结晶器内,拉浇之初,更换中包之后和拉浇结束时,尺寸为5-10mm,深度为10mm,轻微的表面清理后即可检测到。原因 纠正措施
保护渣不合适(粘度,流动性及熔点不对)更换保护渣 保护渣/润滑受潮 干燥保护渣,使用无水润滑油 耐材过度磨损 更换中包包衬
弯月面的扰动 增强脱氧效果,降低氩气量,增加水口侵入深度 拉浇温度过低 增加拉速,更换大包
Mn硅酸盐的凝结物 检查Mn/Si比,使用EMS
1.10.4.1.8重接 缺陷/起源的描述: 与振痕类似,多数发生在弯月面区域内夹渣聚集处,深度可达5mm裂纹形状。严重的重接在热坯上可见。原因 纠正措施 振幅太大 增快频率 液位波动 保持液位稳定
水口侵入深度不足或不正确 调节中包高度 拉速变化极快 保持拉速恒定 1.10.4.1.9横向凹陷 缺陷/起源的描述: 与重接类似,发生在结晶器内,大多数情况下都各有不同,在热坯上就克检测出来,凹痕长度达到50mm,深度达到10mm,在同一水平上。原因 纠正措施
拉速变化大 保持拉速稳定
浇注液位变化太大 保持弯月面液位恒定
1.10.4.1.10菱形 缺陷/起源的描述: 易发于小断面铸坯的包晶或高碳钢,起源于结晶器内或二冷区内。原因 纠正措施
两相邻结晶器壁的冷却强度不同 更换结晶器
由于变形在二冷区产生拉伸应力 仔细调节结晶器足辊以限制拉应力 结晶器过冷 增加Δ-T,增加拉速 偏心浇注 对中注流中心
1.10.4.1.11鼓肚 缺陷/起源的描述: 发生在铸坯支撑区域,特别是大断面铸坯,严重的鼓肚(凹陷)会导致内部缺陷(角裂)原因 纠正措施
铸坯支撑段太短 增长铸坯支撑的长度
相对于坯壳的厚度,支撑辊间距太大 缩短辊间距,或增加支撑辊 拉速太快 降低拉速 拉浇温度太高 降低拉速 偏心浇注 对中注流中心 拉矫机压力过大 降低压力
1.10.4.1.12凹陷
纵向凹陷宽5-20mm,深度达到4mm长度为几米,由于保护渣粘度太大,发生在弯月面区,由于保护渣产生分离的效果,形成二层薄的球子晶会在二冷区引起凹陷,张力和内部裂纹。火焰清理会使内部裂纹开裂。原因 纠正措施
保护渣不当 更换保护渣
弯月面内扰动 提高脱氧效果,减少通氩量,增加水口深度 偏心浇注 对中注流中心
1.10.4.2.1内部缺陷
如果是严重的内部缺陷,通常在火切机就应检验出来,如较重的分层,夹渣,偏析。通常是在取样后检测出来的。
发生较频繁的内部缺陷是内裂,中心偏析,氧化物夹杂和中心疏松。这些缺陷的原因为材料,拉浇工艺和设备。特别是凝固条件会产生很多缺陷。
凝固组织的描述:
球状边缘区细结晶体是由结晶器的热吸收而形成的。
柱状树枝晶区是由局部冷却到凝固点以下而形成的,晶体沿着温降的方向成长。晶体的宽度受二冷水量和中包过热度的影响。球状心部区域在过冷区形成,由于铸坯中心低温降而产生的。如果无此区可能是过热度太高而且是对柱状晶敏感的钢种。
钢中的杂质和离析物被推向树枝晶的前沿并形成结晶体的晶核。我们对下列部分内部缺陷进行说明: *中间裂纹 *角裂
*三角点裂纹 *中心裂纹 *对角线裂纹 *挤压裂纹 *弯曲矫直裂纹 *冷裂
*近表面偏析线 *缩孔和中心疏松 *中心偏析 *非金属夹渣
1.10.4.2.2中间裂纹 缺陷/起源描述:
位于表面和铸坯中心的中间,起源于二冷区后的区域。出现率受钢种的化学成分的影响。如果二冷区过冷和铸坯回热,拉浇温度高产生裂纹。原因 纠正措施
二冷水过强 减少二冷水量 拉速太低 拉高拉速
结晶器过冷 提高Δ-T,提高拉速
坯壳回热 检查二冷水的分配,检查可能堵塞的喷嘴
结晶器倒锥度不足 检查结晶器倒锥度,检查结晶器的磨损情况 钢种对裂纹敏感 如有可能,改变化学成分
1.10.4.2.3角裂
缺陷/起源描述:如果在结晶器内有较大的菱形或二冷区有鼓肚,在二相区脆弱的树枝状凝固组织在靠近角部形成裂纹,多发于大断面铸坯上。原因 纠正措施
相对于坯壳厚度支撑辊间距太大 缩短间距,降低拉速 支撑辊太短 增长支撑辊长度,降低拉速
结晶器倒锥度不足 改变倒锥度,检查结晶器磨损情况 相邻两边冷却强度不同 检查结晶器几何形状 偏心注流 对中注流中心
1.10.4.2.4三角点裂纹 缺陷/起源描述:
发生与凝固前沿相遇区,由于鼓肚产生拉伸应力而引起的,同时也产生窄边偏析。原因 纠正措施
铸坯支撑太短 增加铸坯支撑长度,降低拉速
相对于坯壳厚度支撑辊间距太大 缩短辊间距,增加辊子,降低拉速
Mn含量太高(Mn最大为0.9%,Mn/S比最小为30/1)如有可能改变化学成分
1.10.4.2.5中心裂纹 缺陷/起源描述:
中心裂纹在凝固前沿由分层,(H)裂及许多铸坯中心树枝不规则二冷缩孔所构成.原因 纠正措施
由凝固末期温度梯度过高,在相邻之间形成收缩和张力 减少二冷水量或增快拉速
缩孔由于成分分离后,从树枝晶间或松散的晶体聚集处的偏析成分而形成的 拉浇温度太高 液芯末端的辊子偏斜 检查辊子对正
1.10.4.2.5对角线裂纹 缺陷/起源描述:
特别多见于小断面铸坯,经常发生于菱形的小方坯,在钝形边上,起源结晶器,或二冷区,裂纹的长度取决于应力的强度和间距.原因 纠正措施
相邻两边冷却强度不同 检查结晶器冷却
倒锥度不足 更换结晶器,检查结晶器磨损情况 拉速太低 提高拉速
结晶器内过冷 提高ΔT,提高拉速
坯壳回热 检查二冷水的分布,检查可能堵塞的喷嘴
1.10.4.2.5挤压裂纹 缺陷/起源描述:
如液芯在变形区较粗时,挤压裂纹为垂直铸坯轴心线的方向.如液芯在变形区较细时,其为平行压辊轴线方向,大多数裂纹被残余钢水填充(=压力裂纹)原因 纠正措施
输送辊不对正 检查辊子对中情况 挤压辊处的变形太大 降低液压缸压力
1.10.4.2.6弯曲矫直裂纹 缺陷/起源描述:
频发于铸坯有张力的两侧,顺着铸坯中心的方向,经常发生于铸坯底侧(连铸外侧),当在弯曲的应力和内弧的矫直应力超过坯壳的塑变后面产生弯曲矫直裂纹.原因 纠正措施
辊子移位 检查设备对中
矫直温度太低(应大于850度)提高拉速,在快换中包时停掉二冷水
1.10.4.2.7冷裂 缺陷/起源描述:
发生在结晶器内靠近铸坯的表面,或是在二冷区,铸坯中心,大多数情况与铸坯同向.原因 纠正措施
倒锥度不足 更换结晶器,检查结晶器磨损情况 拉速太低 提高拉速
结晶器内过冷 提高ΔT,提高拉速 二冷水过强 减少冷却水量
1.10.4.2.7靠近表面的偏析线 缺陷/起源描述:
三角点裂纹和冷却裂纹由于被偏析残余钢水填充而形成偏析线,由于漂浮的作用夹渣也能在内部上方形成偏析线.原因 纠正措施
拉浇温度过低 提高拉速/更换大包 拉浇温度过高 降低拉速/使用EMS 弯月面扰动严重 提高钢水脱氧能力,减少通氩量,增加水口侵入深度
中包工作层耐材不好 更换材料,中包不满一半不开浇,保持中包液位不低于200mm.
第二篇:连铸技术的发展
内蒙古科技大学 本科生课程论文
题 目:连铸技术的发展 学生姓名: 学 号: 专 业:09成型 班 级: 指导教师:邢淑清
连铸技术的发展
摘要:介绍了连铸的历史、发展、及其优点,主要阐述了连铸生产的相关技术及设备的应用;同时详细的介绍了高效连铸生产技术和最新连铸技术的发展。对连铸技术的发展进行了展望。
关键词:连铸技术;连铸设备;高效连铸技术;发展现状
Development of Continuous Casting
Technology Abstract:The history, development, continuous of casting and its advantages is introduced in this paper.Mainly elaborated the continuous casting production technology and equipment application.Which detailed introduction of the high efficient continuous casting technology and the latest development of continuous casting technology.And On the development of continuous casting technology is discussed.Key words: Continuous casting technology;Continuous casting equipment;High efficient continuous casting technology.引言
1858年,在钢铁协会伦敦会议上,首次提出“无锭浇铸”的概念。然而,直到20世纪40年代,该工艺才开始商业应用。因为钢的熔点和热传导性高,在此期间,研究者遇到了很多问题。首台投用的连铸机是立式的,装有一个带弹簧装置的结晶器。生产率低,常因金属粘结结晶器而发生漏钢。结晶器振动的概念由德国一非铁金属连铸的先驱提出,于1952年用于德国某钢厂的直结晶器立式连铸机上, 这是连铸工业化规模的开始。
由于技术限制,多年内连铸技术只限于小钢厂,自1970年开始,连铸开始用于钢铁联合企业生产板坯。对凝固现象的科学合理的透彻理解,导致连铸快速增长。连铸技术
1.1连铸技术简介
连铸是把液态钢用连铸机浇注、冷凝、切割而直接得到铸坯的工艺。它是连
接炼钢和轧钢的中间环节,是炼钢生产厂(或车间)的重要组成部分。一台连铸机主要是由盛钢桶、中间包、中间包车、结晶器、结晶器振动装置、二次冷却装置、拉坯矫直装置、切割装置和铸坯运出装置等部分组成的。连铸技术的应用彻底改变了炼钢车间的生产流程和物流控制,为车间生产的连续化、自动化和信息技术的应用以及大幅度改善环境和提高产品质量提供了条件。此外,连铸技术的发展,还会带动冶金系统其他行业的发展,对企业组织结构和产品结构的简化与优化有着重要的促进作用。1.2连铸工艺的优点
钢液的两种成形工艺:模铸法和连铸法比较如图1所示
图1 模铸与连铸工艺流程的对比图
可以看出二者的根本差别在于模铸是在间断情况下,把一炉钢水浇铸成多根钢锭,脱模之后经初轧机开坯得到钢坯;而连铸过程是在连续状态下,钢液释放显热和潜热,并逐渐凝固成一定形状铸坯的工艺过程[1]。钢在这种由液态向固态的转变过程中,体系内存在动量、热量和质量的传输,相变、外力和应力引起的变形,这些过程均十分复杂,往往耦合进行或相互影响[2]。与模铸—初轧开坯工艺相比,连铸工艺具有如下优点[3]:
(1)简化了铸坯生产的工艺流程,省去了模铸工艺的脱模、整模、钢锭均热和开坯工序。流程基建投资可节省40%,占地面积可减少30%,操作费用可节省40%,耐火材料的消耗可减少15%。
(2)提高了金属收得率,集中表现在两方面一是大幅度减少了钢坯的切头切尾损失;二是可生产出的铸坯最接近最终产品形状,省去了模铸工艺的加热开坯 3
工序,减少金属损失。总体讲,连铸造工艺相对模铸工艺可提高金属收得率约9%。
(3)降低了生产过程能耗,采用连铸工艺,可省去钢锭开坯均热炉的燃动力消耗。可节省能耗1/4~1/2。
(4)提高了生产过程的机械化、自动化水平,节省了劳动力,为提高劳动生产率创造了有利条件,并可进行企业的现代化管理升级。1.3我国连铸技术的发展状况
中国是世界上研究和应用连铸技术较早的国家,从20世纪50年代起就开始连铸技术的研究,60年代初进入到连铸技术工业应用阶段。但是,从60年代末到70年代末,连铸技术几乎停滞不前。1982年统计数字表明,世界平均连铸比为30%左右,而中国的连铸比仅为6.2%。80年代后,中国连铸技术进入新的发展时期,从国外引进了一批先进水平的小方坯、板坯和水平连铸机。80年代中期,中国拥有了第一个全连铸钢厂-武钢第二炼钢厂。近年来,中国连铸技术飞速发展。到2005年,中国除海南、宁夏、西藏外,其他各省(市、自治区)都有了连铸,连铸比已经达到了97.5%,目前,中国的钢铁冶金工艺水平达到了世界中上等水平[4]。
2连铸生产及关键技术
2.1连铸设备
连铸机的发展大致经历了立式→立弯式→弧形→超低头形→水平等几个阶段。每种机型都各有其特点,有它最适应的范围,还没有一种机型可完全取代其他机型。目前, 连铸机除满足产量要求外,从生产率、铸坯品种质量、铸坯断面、降低连铸机高度、节省基建和设备投资等方面综合分析,弧形连铸机是被应用的主要机型[3]。但板坯连铸机的总趋向是用直弧型替代弧型,以消除或减轻铸坯内弧侧夹杂物的积聚问题。
连铸生产所用设备通常可分为主体设备和辅助设备两大部分。主体设备主要包括:(1)浇铸设备-钢包运输设备、中间包及中间包小车或旋转台;(2)结晶器及其振动装置;(3)二次冷却装置-小方坯连铸机、大方坯连铸机和板坯连铸机有很大差别);(4)拉坯矫直机设备-拉坯机、矫直机、引锭链、脱锭与引锭子链存放装置;(5)切割设备-火焰切割机与机械剪切机等。
辅助设备主要包括:(1)出坯及精整设备-辊道、推(拉)钢机、翻钢机、火焰
清理机等;(2)工艺设备-中间包烘烤装置、吹氩装置、脱气装置、保护渣供给与结晶器润滑装置等;(3)自动控制与测量仪表-结晶器液面测量与显示系统、过程控制计算机、测温、测重、测长、测速、测压等仪表系统[3]。2.2连铸关键技术
(1)钢包回转台的关键技术有:钢包加盖,单包升降系统,钢包称量系统,防氧化保护浇注系统,钢包下渣检测系统,钢包倾斜机构,长水口自动安装系统,钢水质量控制系统,钢水温度控制检测系统,钢包吹氩搅拌系统,回转驱动采用液压马达的新型驱动系统。
(2)中间包及其烘烤装置的关键技术有:中间包大型化(已达40~80t),中间包结构形状的优化、挡渣墙的设置和新型耐火材料的利用,钢水自动称量反馈系统,中间包冶金技术,采用陶瓷泡沫过滤器过滤各类夹杂物,热中间包循环使用工艺和设备,浸入式水口快速更换装置,滑动水口与浸入式水口组合使用及氩气密封,自动开浇工艺与系统,烘烤装置自动点火器,浸入式水口内部烘烤技术。
(3)中间包车关键技术有:结晶器液面检测器安装机构,复杂紧凑的机械结构、电缆及管线走向设计,长水口自动安装机械手(被设计在中间包车上),中间包倾斜浇注技术(提高金属收得率)。
(4)结晶器关键技术有:结晶器倒锥度,在线热状态调宽调锥度系统,结晶器在线停机调厚,高速浇铸时铜板冷却水高流速均匀传热冷却结构,涡流式、电磁式、同位素式、浮子式、激光式、超声波式等各种有效的液面检控系统,漏钢预报及热成像系统,结晶器铜板热面温度控制系统及最低进水温度控制,结晶器电磁搅拌和电磁制动,一个结晶器浇多流铸坯的插装式结构,结晶器铜板母材采用合金铜并镀镍铬、镍铁合金或镍钴合金(提高其高温抗变形的能力和耐磨性能), 浇铸宽板坯采用分段式结晶器足辊或高拉速时采用格栅支承结构,浸入式水口随板坯宽度和拉速变化而变化的最佳工艺特性,保护渣自动供给装置,保护渣的理化性能检测设施。
(5)结晶器振动装置关键技术有:液压伺服振动机构(能在浇铸过程中改变振幅、频率和波形偏斜率),缓冲力的优化,高频率小振幅工艺的优化,振动体质量的最小化及板簧导向系统,外装式结晶器电磁钢流控制装置的支撑与运转机构,内装式结晶器电磁钢流控制装置的支撑机构,结晶器运动状况动态监视系统(主要 5
监视摩擦力的变化),结晶器振动反向控制模型(拉速提高,频率降低,振幅提高)。
(6)零号扇形段的关键技术有:调宽调厚装置及工艺设备参数,设备冷却、有效润滑及防漏钢设施,牢靠的定位与对弧调整功能。
(7)积极采用连铸新工艺、新成果。引进薄板坯连铸技术、单晶连铸技术、连铸坯高温热送热装及直接轧制、水平连铸技术、铸坯的轻压下技术以及中间包冶金等技术,将对我国连铸甚至整个钢铁工业的发展起到重要的促进作用。
3高效连铸生产
3.1高效连铸作用
3.1.1连铸坯产量大幅度提高
从1989年到2001年我国连铸坯产量由1004万t增加到12 000万t以上,连铸比由16.3%提高到87.5%。如果只靠投资新建铸机,而没有连铸机的高效化,新建和原有铸机都是那样的低生产率,要想达到这样的总产量是不可想象的,无论资金投入、场地占用等许多方面都是难以承受的。高效连铸技术为钢铁行业的调整结构降低成本作出了贡献。3.1.2实现炼钢车间的炉机匹配
我国的转炉车间炉容从几吨到200t都有小方坯生产。由于小方坯铸机生产能力低,3台转炉配4、5台甚至6台连铸机,匹配关系复杂混乱,工艺制度不能保证。这反过来又影响了铸机生产和铸坯质量。3.1.3经济效益
实现高效连铸使各项技术指标提高,消耗下降,铸坯质量改善,可使企业降低成本节省投资,获得很大的经济效益。3.2提高连铸机生产率的途径
提高连铸机产量,主要是从提高连铸机拉速和提高连铸机作业率两方面着手。
3.2.1提高连铸机拉速
连铸机拉速的提高受出结晶器坯壳厚度、液相穴长度(冶金长度)、二次冷却强度等因素的限制。要针对连铸机的不同情况,对连铸机进行高效化改造。
小方坯连铸机高效化改造的核心就是提高拉速。拉速提高后,为了保证出结晶器坯壳不漏钢,其核心技术就是优化结晶器锥度,开发新型结晶器,包括:Concast的凸模结晶器(CONVEX MOLD);Danieli自适应结晶器(DANAM);VAI的钻石结晶器(DIAMOLD);Paul Wurth的多锥度结晶器。虽然结晶器名称不相同,但其实质就是使结晶器锥度与坯壳收缩相一致,不致于产生气隙而减慢传热,影响坯壳均匀性生长。
目前,国际上小方坯铸机拉速达到的水平见图1和表1。
图1 方坯尺寸与拉速关系
表1小方坯铸机拉速
名 称 德马克 康卡斯特 丹尼立 VAI
断面/mm×
mm 130×130 150×150 130×130 115×115 155×155
拉速/m.min 4.0-4.3 3.5 4.3 5.1 2.9
结晶器型式 抛物线 凸型 自适应 钻石 钻石
小方坯铸机拉速的提高,表现为单流产量的提高。从世界连铸发展的历程来看,20世纪70、80、90年代连铸机的单流年产量分别为5~6、8~10、15~16万t。
我国钢材生产结构是长型材较多,板材比较低(约40%),反映在连铸机建设上是中小型钢厂建设小方坯连铸机较多。据统计,我国共建小方坯连铸机280台 7
978流,年产量近6000万t,平均单流年产量约为6万t。与国外比较,连铸机生产率还较低。为提高连铸机生产率,从20世纪90年代以来,我国对旧有小方坯连铸机进行了高效化改造,如120mm×120mm方坯拉速由2.0m/min提高到3.0~4.0m/min,150mm×150mm方坯拉速由1.5m/min提高到2.5~3.0m/min。目前,我国不少钢厂的小方坯连铸机经过高效化改造后,单流年产量已达到15~20万t的国际水平。3.2.2提高连铸机作业率
提高连铸机作业率的技术有:
(1)长时间浇注多炉连浇技术:异钢种多炉连浇;快速更换长水口;在线调宽;结晶器在线快速调厚度(只需25~30min);在线更换结晶器(小方坯);中间包热循环使用技术;防止浸入式水口堵塞技术。
(2)长时间浇注连铸机设备长寿命技术:长寿命结晶器,每次镀层的浇钢量为20~30万t;长寿命的扇形段,上部扇形段每次维修的浇钢量100万t,下部扇形段每次维修的浇钢量300~400万t。
(3)防漏钢的稳定化操作技术:结晶器防漏钢预报系统;结晶器漏钢报警系统;结晶器热状态运行检测系统。
(4)缩短非浇注时间维护操作技术:上装引锭杆;扇形段自动调宽和调厚技术;铸机设备的快速更换技术;采用各种自动检测装置;连铸机设备自动控制水平。
3.3提高连铸坯质量技术 3.3.1提高连铸坯洁净度技术
(1)连铸坯洁净度评价包括:钢总氧量T[O];钢中微观夹杂物(<50μm);钢中大颗粒夹杂物量(>50μm)。不同产品对钢中洁净度要求如表6所示。 [6][5] 8
(2)连铸坯洁净度是一个系统工程。就连铸过程而言,要得到洁净的连铸坯,其任务是:炉外精炼获得的“干净”钢水,在连铸过程中不再污染;连铸过程中应创造条件在中间包和结晶器中使夹杂物进一步上浮去除。连铸过程钢水再污染,主要决定于钢水二次氧化、钢水与环境(空气、渣、包衬)相互作用、钢水流动的稳定性、钢渣乳化卷渣。
(3)连铸过程控制钢洁净度对策:保护浇注;中间包冶金技术,钢水流动控制;中间包材质碱性化(碱性复盖剂,碱性包衬);中间包电磁离心分离技术;中间包热循环操作技术;中间包的稳定浇注技术;防止下渣和卷渣技术;结晶器流动控制技术;结晶器EMBR技术。3.3.2提高铸坯表面质量的控制技术
铸坯表面质量好坏是热送热装和直接轧制的前提条件。铸坯表面缺陷的产生主要决定于钢水在结晶器的凝固过程。要清除铸坯表面缺陷,应采用以下技术:结晶器钢液面稳定性控制;结晶器振动技术;结晶器内凝固坯壳生长均匀性控制技术;结晶器钢液流动状况合理控制技术;结晶器保护渣技术。3.3.3提高连铸坯内部质量的控制技术
连铸坯内部缺陷一般情况在轧制时能焊合消除,但严重时会使中厚板力学性能恶化,使管线钢氢脆和高碳硬线脆断。铸坯内部缺陷的产生主要决定带液芯的铸坯在二冷区的凝固过程。要消除铸坯内部缺陷,可采用以下技术措施:低温浇注技术;铸坯均匀冷却技术;防止铸坯鼓肚变形技术;轻压下技术;电磁搅拌技术;凝固末端强冷技术;多点或连续矫直技术;压缩铸造技术。
[7]4最新连铸技术的发展
4.1近终形连铸技术的发展
世界钢铁生产者开始寻求技术改进以扩展连铸的优势。1989年,德国供应商SMS首次在美国的一个小型钢厂纽柯钢厂安装了一台薄板坯连铸机。新设计了漏斗形结晶器,其它与传统连铸机相似。导致世界范围内薄板坯连铸机的商业化发
展,其厚度范围在40~70mm 之间,典型拉速为5.5m/min。
薄板坯连铸机的成功并没有使钢铁工作者进一步寻求技术进步的脚步停止,其代表为R&D在贝西默的独创带钢连铸概念。1999年,钢铁巨头Nucor/BHP/IHI及Thyssen Krupp steel/Usino r/ VAI开始商业化推广他们的Cast rip工艺及Euro st rip 工艺,可以直接从钢水生产出带钢(见图2)。
图2双辊带钢铸机
在普遍采用的双辊带钢连铸工艺中,钢液倒入两个柜式旋转辊中。两个陶瓷侧板挤压装有钢液的铸辊的前面。钢壳在两个辊面间形成,熔融金属喂入弯月面。坯壳生长至两辊间的接触点(最窄点), 在这里两坯壳相接触,当它们通过铸辊时形成连续的钢带,从结晶器下面出铸机。至形成2mm厚的凝固钢带仅需0.4s。典型的铸速为40~130mm/min,依赖于带钢厚度、铸辊尺寸和溶池高度。
钢梁的首次近终形连铸是铸成“狗骨”形毛坯取代正方形或矩形截面,可生产的梁毛坯尺寸为(480~1050)mm×(355~450)mm×(120~165)mm,铸速为0.45~2.5m/min,其轧制成本较低,生产率较高,能耗降低。4.2 结晶器几何形状的演变
结晶器是铸机的心脏,结晶器设计相应决定了铸速和生产率。为提高铸速和生产率,需要适当的结晶器几何形状,以提高热传输和降低结晶器摩擦。4.2.1厚板坯连铸机的直结晶器
从传统的弧形结晶器到直结晶器的采用,保证在整个结晶器长度内铸流、坯
壳与结晶器铜板的均匀接触。使坯壳快速均匀生长,降低拉漏危险。而且,非金属夹杂容易上升到熔池,保证铸坯的优良内部质量。4.2.2小方坯的多段结晶器
多段结晶器对高速小方坯连铸降低漏钢率较为有效,它由一个主筒结晶器和与之相连的约320mm长的刚性第二段组成。第二段由4块固定在底板上的水冷铜板组成,通过一个支架和基板套在主结晶器的外面。连铸过程中,冷却板通过弹簧作用轻压铸坯,冷却板喷冷却水加快热传输,冷却水直接垂直喷射到小方坯盖板上。这种工艺中,铸速可达4~4.3m/min,高于传统有足辊结晶器连铸机的3.5m/min,而且,漏钢率也较传统铸机降低0.50%~1.0%。4.2.3锥度结晶器
锥度结晶器可用于大方坯/小方坯和板坯连铸机,抛物线结晶器的引入成为连铸历史的转折点。结晶器锥度依赖于钢种和铸速,结晶器设计上考虑铸坯在结晶器内的铸坯收缩,以使结晶器与铸坯接触,保证良好传热。在高速浇铸下,钢在结晶器内的停留时间非常短,因此,坯壳必须有足够的强度以承受液态钢水的静压力,为此,结晶器筒在不同段设计成多种锥度,主要考虑钢水收缩,保证钢坯与结晶器的良好接触。
另一个发展方向是在板坯连铸机结晶器采用有导角的抛物线锥度,保证整个结晶器长度内铸坯与铜板直接接触,促进坯壳快速均匀生长。导角减小了结晶器摩擦,因此可减少铜板磨损。其应用可改善铸态组织、减少铸坯角部内部质量缺陷、降低侧边鼓肚。
4.2.4小方坯铸机的结晶器长度
对高速小方坯,提高结晶器筒长100~200mm,使总长超过传统的900mm,提高钢在结晶器内的停留时间,从而提高坯壳强度。4.3结晶器振动的改进 4.3.1液压结晶器振动
理想的结晶器振动是充分利用结晶器优化设计的前提。液压结晶器振动采用二个液压缸控制伺服阀,每个伺服阀预先设定设置点,将结晶器设置成周期性振动。对伺服阀储存不同的设置点实现相应的振动速度曲线,正弦函数是基本的振动型式。
不同速度曲线的振频和振幅不同,在浇铸过程中,铸速函数能自动与预设定的函数序列相适应。其优点包括:振动曲线、振幅、振频的在线控制,减少结晶器摩擦,减轻结晶器机械运动,减轻铸件振痕,提高操作安全和减少维护等。4.3.2板坯连铸机结晶器振动的三角模式
结晶器振动利于保护最初形成的坯壳,需要一个合理的结晶器正向和负向振动以降低坯壳的拉应力,使结晶器润滑渣充分渗入并沿模壁铺展。在正弦振动中,主要问题是在每个振幅中,正滑脱时间较短,高频振动器使结晶器摩擦增大。为此,开发了三角模式振动,通过调整振动速度,使向上运动的时间长于向下运动,这种较长的正滑脱时间减少了结晶器与凝固坯壳的相对运动,因为负滑脱时间较短,可减小摩擦,降低振痕深度。4.3.3结晶器宽度调整
在线液压结晶器宽度调整利于生产不同尺寸板坯,减小下线时间。该系统可提高连铸产品大纲的灵活性,提高生产率。4.3.4结晶器液面自动控制
当前结晶器液面控制通常采用塞棒调整中间包滑板开闭进行。结晶器液面探测可采用放射性同位素,系统拥有一个PID(比例微积分)控制器,可将液面实际控制信号与设定值相比较。控制器根据反馈结果输出信号促使伺服驱动开闭塞棒激励器。伺服驱动可控制塞棒位置, 控制精度通常为±2mm。在自动开浇模式,按存储的时间曲线对结晶器进行设定,如果液面达到固定的设定值,自动从时间曲线控制切换到闭环控制。其主要优点是优良的表面/皮下质量,较轻的振痕深度和低一倍的漏钢率,因此提高了生产率。4.4电磁搅拌
连铸坯组织为较外层柱状晶区为中心等轴晶区所包围, 柱状晶的长度直接受过热度影响,如图3所示。
图3过热度对柱状晶和等轴晶量的影响
为限制柱状晶区,中间包内钢水温度应接近液相线温度,EMS(电磁搅拌)能限制柱晶结晶,促进细小规则等轴晶形成。搅拌器的工作原理包括磁场的产生,磁场穿透凝固壳,在钢液中感应出傅科勒特电流。这种感应电流和磁感应产生一个电磁力,使液态金属产生运动。通过对流促进液固钢之间的热交换,消除残余过热,导致凝固前沿的热梯度减小,柱状晶生长条件不复存在。这些运动导致柱状晶枝晶重熔和断裂,形成更多的等轴晶。图4示出了电磁搅拌和未搅拌时等轴晶比例对比。
图4电磁搅拌对晶粒的细化作用
根据需要搅拌器可放于结晶器或结晶器之下。对大方坯/小方坯连铸机,EMS可提高表面/皮下质量,减少合金偏析、渣坑和针孔,其主要优点是通过增大等轴晶区提高内部质量,减少枝晶搭桥,阻止中心气孔和中心偏析。
为进一步降低偏析,可在二冷区下部安装EMS,通过搅拌中心未凝固钢液,均匀成分,减少中心线偏析发生。
搅拌器类型应根据浇铸产品的冶金要求和搅拌参数如强度、频率、磁场方向等进行选择,而且设计和位置应慎重考虑。
电磁搅拌改变了弯月面形状,减慢了弯月面钢液凝固,导致弯月面附近液体流动。在板坯连铸中,一种AC和DC双重感应磁场技术被用于进行弯月面控制,另有一种改进的电磁搅拌闸用于控制结晶器自然流动形式。4.5轻压下
大方坯/板坯连铸机轻压下的目的是减少铸坯的中心偏析。采用调整拉坯段的锥度,对出结晶器后的铸坯采用外加机械压力减轻中心疏松、偏析、化学成分不均匀性。通过阻止凝固搭桥,促进粘稠钢液运动,补偿热收缩。轻压下参数取决于铸机布置、铸速、钢的化学成分、钢水过热度及铸坯二次冷却。改进的动态辊缝调整技术可适应拉坯过程中浇铸参数的变化。4.6连铸自动化
二级自动化系统能改善质量和提高生产率,连铸工艺和质量自动控制系统包括结晶器液面控制、铸坯锥度控制、速度控制数学模型、喷水冷却系统和长度切割优化等[8]。5发展趋势
5.1进一步发展高效连铸技术(传统连铸技术的发展方向)[9]。
高效连铸技术是指连铸机实现高拉速、高作业率、高连浇炉数及低拉漏率生产高温无表面缺陷连铸坯的技术。实现连铸高效化的前提是:及时为连铸机供应温度和成分均合格的钢水;完善自动检测的手段和电子计算机的联网控制;具有高质量的连铸用保护渣和耐火材料;操作人员具有熟练的操作技术等。实现连铸高效化,其核心是提高连铸机的拉速。而提高连铸机拉速,需要解决结晶器和二冷段的冷却效果、结晶器的液面控制及相关技术问题。
5.2推广近终形连铸技术。
主要包括薄板坯连铸技术、薄带连铸技术、异型坯连铸技术和喷雾成形等。与传统工艺相比,它主要具有工艺简单、生产周期短、能量消耗低、生产成本低、质量较高等优点。这些优点恰好弥补了传统工艺的不足。此外,利用薄带连铸技术的快速凝固效应可以获得一些难以生产的材料和新功能材料[10]。5.3液芯压下技术
液芯压下又称软压下,是在铸坯出结晶器下口后,对带液芯的铸坯的坯壳施加挤压,使其减薄到目标厚度。根据液芯压下的终点位置又分静态压下和动态压下。液芯压下的终点位置不变,在一个扇形段内结束的称静态液芯压下。动态液芯压下是指根据钢种、过热度、浇注速度及冷却模型计算液芯长度,依据液芯长度在合适的铸坯长度上分配铸坯压下量,且使液芯压下终点处于合适固相率的区域。动态液芯压下可细化晶粒,减少中心偏析,明显提高铸坯的内部质量。由于静态液芯压下是在固定位置实施,而不是在铸坯的凝固末端,普遍认为对铸坯内部质量的提高不大。目前CSP、QSP采用的是静态液芯压下,FTSR采用的是动态液芯压下技术[11,12]。
6结论
(1)我国连铸比已超过世界平均水平,接近工业发达国家水平,连铸比可以说接近饱和状态。
(2)我国小方坯连铸机高效化改造取得很大成绩。小方坯连铸机单流产量已达到国际先进水平。但我国连铸机平均作业率与世界连铸机平均水平还存在较大差距。提高连铸机作业率以增加连铸机产量还有较大发展潜力。
(3)经过近10多年来的努力,我国连铸在高效化改造、新技术的应用等方面取得了很大成就,就大中型企业连铸机装备水平来看已与国外钢厂水平相当。要重视工艺软件技术开发与创新,新技术要用出实效来。要依靠传统的板坯和大方坯连铸机来生产和解决高品质、高附加值的连铸坯质量问题。
参考文献
[1]陈雷.连续铸钢[M].北京:冶金工业出版社,2004.8-10.
[2]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001.15-20. [3]周建男.钢铁生产工艺装备新技术[M].北京:冶金工业出版社,2004.25-100.
[4] 王雅贞,张岩,刘术国.新编连续铸钢工艺及设备[ M] .北京: 冶金工业出版社,1999.6-15. [5]吴长寿,夏祥生.谈中国钢铁连铸的发展[J].江西冶金,2002,22(3):1-4. [6] 蔡开科.连铸技术发展[J].山东冶金,2004,26(1):1-8.
[7] G.P.Kang,G.Shin, C.G.Kang.Development of New Model of Mold Oscillator in Continuous Casting[J].Journal of Mechanical Science and Technology,2007,21:421-425.[8] 张成元,郑林.我国连铸技术的发展[J].山西冶金,2007,106(30):15-30. [9] 张海军,薛庆国.连铸技术的最新发展趋势[J].宽厚板,2005,11(6):42-45. [10]吴建鹏,余新河.薄板坯连铸技术的现状及应用分析[J].炼钢.2005,21(4),45-52. [11] 郑林,赵俊.近终形连铸技术的研究现状及发展前景[J].江苏冶金,2006,34(2):8-11. [12]许中波.我国连铸技术的现状与展望[J],炼钢,2000,16(6):1-5.
第三篇:连铸检测和控制八大技术
连铸检测和控制八大技术
连铸的特点之一是易于实现自动化。实行自动化的目的在于改善操作人员的工作环境,减轻劳动强度,减少人为因素对生产过程的干扰,保证连铸生产和铸坯质量的稳定,优化生产过程和生产计划,从而降低成本。自上世纪80年代以来,冶金自动化装备技术的可靠性、实用性、可操作性和可维护性都得到极大的改善,不断提高的性能价格比使冶金自动化装备技术得到快速推广应用。
目前,连铸自动化系统基本上包括信息级、生产管理级、过程控制级和设备控制级。信息级的主要功能是搜集、统计生产数据供管理人员研究和作出决策;生产管理级主要是对生产计划进行管理和实施,指挥过程计算机执行生产任务;过程控制级接收设备控制级提供的各类数据和设备状态,指导和优化设备控制过程;设备控制级指挥现场的各种设备(如塞棒、滑动水口、拉矫机、切割设备等)按照工艺要求完成相应的生产操作。其中,设备控制级和过程控制级自动化最为关键,直接关系到连铸机生产是否顺畅和连铸坯的质量。目前,在国内外连铸机上已成功应用的检测和控制的自动化技术主要包括以下几种:
1.钢流夹渣检测技术
当大包到中间包的长水口或中间包到结晶器的浸入式水口中央带渣子时,表明大包或中间包中的钢水即将浇完,需尽快关闭水口,否则钢渣会进入中间包或结晶器中。目前,常用的夹渣检测装置有光导纤维式和电磁感应式。检测装置可与塞棒或滑动水口的控制装置形成闭环控制,当检测到下渣信号自动关闭水口,防止渣子进入中间包或结晶器。
2.中间包连续测温
测定中间包内钢水温度的传统方法是操作人员将快速测温热电偶插人中间包钢液中,由二次仪表显示温度。热电偶为一次性使用,一般每炉测温3至5次。如果采用中间包加热技术,加热过程中需随时监测中间包内钢液温度,则连续测温装置更是必不可少。目前,比较常用的中间包连续测温装置是使用带有保护套管的热电偶,保护套管的作用是避免热电偶与钢液接触。热电偶式连续测温的原理较为简单,关键的问题是如何提高保护套管的使用寿命和缩短响应时间。国外较为成熟的中间包连续测温装置的保护套管的使用寿命可达几百小时。国内有少量连铸机采用国产的中间包连续测温装置,使用性能基本满足中间包测温要求。
3.结晶器液面检测与自动控制
结晶器液面波动会使保护渣卷入钢液中,引起铸坯的质量问题,严重时导致漏钢或溢钢。结晶器液面检测主要有同位素式、电磁式、电涡流式、激光式、热电偶式、超声波式、工业电视法等。其中,同位素式液面检测技术最为成熟、可靠,在生产中采用较多。液面自动控制的方式大致可分为三种类型:一是通过控制塞棒升降高度来调节流入结晶器内钢液流量;二是通过控制拉坯速度使结晶器内钢水量保持恒定;三是前两种构成的复合型。
4.结晶器热流监测与漏钢预报技术
在连铸生产中,漏钢是一种灾难性的事故,不仅使连铸生产中断,增加维修工作量,而且常常损坏机械设备。粘结漏钢是连铸中出现最为频繁的一种漏钢事故。为了预报由粘结引起的漏钢,国内外根据粘结漏钢形成机理开发了漏钢预报装置。当出现粘结性漏钢时,粘结处铜板的温度升高。根据这一特点,在结晶器铜板上安装几排热电偶,将热电偶测得的温度值输入计算机中,计算机根据有关的工艺参数按一定的逻辑进行处理,对漏钢进行预报。根据漏钢的危险程度不同,可采取降低拉速或暂时停浇的措施,待漏钢危险消除后恢复正常拉速。采用热流监测与漏钢预报系统可大大降低漏钢频率。比利时的Sidmar钢厂板坯连铸机自1991年安装了结晶器热流监测与漏钢预报系统后,粘结漏钢由每年的14次降低为1次。此外,热流监测系统还能够根据结晶器内热流状况预报纵裂发生的可能性以及发生的位置。同时,因为保护渣的性能影响结晶器的热流,故热流监测系统所收集的热流数据可用来比较保护渣的性能,为选择合适的保护渣提供依据。
5.二冷水自动控制
同一台连铸机在开浇、浇铸不同钢种以及拉速变化时需要及时对二冷水量进行适当调整。早期连铸采用手动调节阀门来改变二冷水量,人为因素影响很大,在改变拉速时往往来不及调整,造成铸坯冷却不均匀。二冷水的自动控制方法主要可分为静态控制法和动态控制法两类。静态控制法一般是利用数学模型,根据所浇铸的断面、钢种、拉速、过热度等连铸工艺条件计算冷却水量,将计算的二冷水数据表存入计算机中,在生产工艺条件变化时计算机按存入的数据找出合适的二冷水控制量,调整二冷强度。静态控制法是目前广泛采用的二冷水控制方法,在稳定生产时基本能够满足要求。根据二冷区铸坯的实际情况及时改变二冷水的控制方法为动态控制。目前能够测得的铸坯温度仅为表面温度,如果能够准确测得铸坯的表面温度,则可根据表面温度对二冷水及时调整。但是,铸坯表面覆盖的一层氧化铁皮、水膜以及二冷区存在的大量水蒸气严重影响测量结果的准确性。因此,在实际生产中根据实测的铸坯表面温度进行动态控制的方法很少被采用。比较可行的方法是进行温度推算控制法。温度推算控制法的思路是将铸坯整个长度分成许多小段,根据铸坯凝固传热数学模型每隔一定时间(例如20秒)计算出每一小段的温度,然后与预先设定的铸坯所要求的最佳温度相比较,根据比较结果给出最合适的冷却水量。在二十世纪80年代中后期,欧洲、日本以及美国的一些先进的连铸机已逐步采用二冷动态控制系统。我国现有的大部分铸机采用静态控制法控制二冷水量,引进的现代化板坯连铸机、薄板坯连铸机等一般采用温度推算动态控制法进行二冷水的调节。
6.铸坯表面缺陷自动检测 连铸坯的表面缺陷直接影响轧制成品的表面质量,热装热送或直接轧制工艺要求铸坯进加热炉或均热炉必须无缺陷。因此,必须进行表面质量在线检测,将有缺陷的铸坯筛选出来进一步清理,缺陷严重的要判废。目前,比较成熟的检测方法有光学检测法和涡流检测法。光学检测法是用摄像机获取铸坯表面的图像,图像经过处理后,去掉振痕及凹凸不平等信号,只留下裂纹信号在显示器上显示,经缩小比例后在打印机上打印出图形,打印纸的速度与铸坯同步。操作人员观察打印结果对铸坯表面质量做出判断,决定切割尺寸并决定是否可直接热送。当裂纹大于预定值时,应调整切割长度,将该部分切除,尽可能增加收得率。涡流检测法利用铸坯有缺陷部位的电导率和磁导率产生变化的原理来检测铸坯的表面缺陷。
7.铸坯质量跟踪与判定
铸坯质量跟踪与判定系统是对所有可能影响铸坯质量的大量工艺参数进行收集与整理,得到不同钢种、不同质量要求的各种产品的工艺数据的合理控制范围,将这些参数编制成数学模型存入计算机中。生产时计算机对浇铸过程的有关参数进行跟踪,根据一定的规则(即从生产实践中总结归纳出来的工艺参数与质量的关系)给出铸坯的质量指标,与生产要求的合理范围进行对比,给出产品质量等级。在铸坯被切割时,可以在铸机上打出标记,操作人员可以根据这些信息对铸坯进一步处理。
8.动态轻压下控制
轻压下是在线改变铸坯厚度、提高内部质量的有效手段,主要用于现代化的薄板坯连铸中。带轻压下功能的扇形段的压下过程由液压缸来完成,对液压缸的控制非常复杂,需要计算机根据钢种、拉速、浇铸温度、二冷强度等工艺参数计算出最佳的压下位置以及每个液压缸开始压下的时间、压下的速度。目前,国内薄板坯连铸机动态轻压下的设备及控制系统均全套引进。总体上讲,我国的连铸自动化水平与欧、美、日等发达国家相比还相当落后。发达国家的连铸机正朝着全自动、智能化、无人浇铸的方向发展。连铸机的操作人员越来越少。例如,奥钢联林茨厂1997年投产的年产量为120万吨的单流板坯连铸机只有5名操作人员(同类铸机为9人)和两个操作站(一般为5个)。开浇、钢包和保护渣等操作、温度测量、机械手取样、缺陷分析、结晶器液面控制、中间包浸入式水口的更换、漏钢预报、火焰切割、打印标记机的操作等所有运行区域的操作都自动运行。国内除了少数引进和近年来新建的连铸机自动化水平较高以外,其它连铸机基本靠常规仪表和一般电气设备进行控制,计算机控制的项目较少,很多靠手动控制。从普及的程度来看,二冷自动配水已为国内大多数铸机所采用,其次为结晶器液面检测与自动控制。近年来,已有少数连铸机采用中间包连续测温技术,但其它如钢流夹渣检测、结晶器热流监测与漏钢预报、铸坯表面缺陷自动检测、铸坯质量跟踪与判定系统等则很少被采用。从总体趋势看,连铸机的产量越来越高,铸坯质量也越来越好,但连铸机的操作人员却越来越少,这是实现自动化控制的必然结果。因此,如何提高连铸机的自动化水平是摆在国内钢铁企业面前的一个不容忽视的问题。
第四篇:连铸检测和控制八大技术(定稿)
连铸检测和控制八大技术
连铸的特点之一是易于实现自动化。实行自动化的目的在于改善操作人员的工作环境,减轻劳动强度,减少人为因素对生产过程的干扰,保证连铸生产和铸坯质量的稳定,优化生产过程和生产计划,从而降低成本。自上世纪80年代以来,冶金自动化装备技术的可*性、实用性、可操作性和可维护性都得到极大的改善,不断提高的性能价格比使冶金自动化装备技术得到快速推广应用。目前,连铸自动化系统基本上包括信息级、生产管理级、过程控制级和设备控制级。信息级的主要功能是搜集、统计生产数据供管理人员研究和作出决策;生产管理级主要是对生产计划进行管理和实施,指挥过程计算机执行生产任务;过程控制级接收设备控制级提供的各类数据和设备状态,指导和优化设备控制过程;设备控制级指挥现场的各种设备(如塞棒、滑动水口、拉矫机、切割设备等)按照工艺要求完成相应的生产操作。其中,设备控制级和过程控制级自动化最为关键,直接关系到连铸机生产是否顺畅和连铸坯的质量。目前,在国内外连铸机上已成功应用的检测和控制的自动化技术主要包括以下几种: 1.钢流夹渣检测技术
当大包到中间包的长水口或中间 包到结晶器的浸入式水口中央带渣子时,表明大包或中间包中的钢水即将浇完,需尽快关闭水口,否则钢渣会进入中间包或结晶器中。目前,常用的夹渣检测装置有光导纤维式和电磁感应式。检测装置可与塞棒或滑动水口的控制装置形成闭环控制,当检测到下渣信号自动关闭水口,防止渣子进入中间包或结晶器。2.中间包连续测温
测定中间包内钢水温度的传统方法是操作人员将快速测温热电偶插人中间包钢液中,由二次仪表显示温度。热电偶为一次性使用,一般每炉测温3至5次。如果采用中间包加热技术,加热过程中需随时监测中间包内钢液温度,则连续测温装置更是必不可少。目前,比较常用的中间包连续测温装置是使用带有保护套管的热电偶,保护套管的作用是避免热电偶与钢液接触。热电偶式连续测温的原理较为简单,关键的问题是如何提高保护套管的使用寿命和缩短响应时间。国外较为成熟的中间包连续测温装置的保护套管的使用寿命可达几百小时。国内有少量连铸机采用国产的中间包连续测温装置,使用性能基本满足中间包测温要求。3.结晶器液面检测与自动控制
结晶器液面波动会使保护渣卷入钢液中,引起铸坯的质量问题,严重时导致漏钢或溢钢。结晶器液面检测主要有同位素式、电磁式、电涡流式、激光式、热电偶式、超声波式、工业电视法等。其中,同位素式液面检测技术最为成熟、可*,在生产中采用较多。液面自动控制的方式大致可分为三种类型:一是通过控制塞棒升降高度来调节流入结晶器内钢液流量;二是通过控制拉坯速度使结晶器内钢水量保持恒定;三是前两种构成的复合型。4.结晶器热流监测与漏钢预报技术
在连铸生产中,漏钢是一种灾难性的事故,不仅使连铸生产中断,增加维修工作量,而且常常损坏机械设备。粘结漏钢是连铸中出现最为频繁的一种漏钢事故。为了预报由粘结引起的漏钢,国内外根据粘结漏钢形成机理开发了漏钢预报装置。当出现粘结性漏钢时,粘结处铜板的温度升高。根据这一特点,在结晶器铜板上安装几排热电偶,将热电偶测得的温度值输入计算机中,计算机根据有关的工艺参数按一定的逻辑进行处理,对漏钢进行预报。根据漏钢的危险程度不同,可采取降低拉速或暂时停浇的措施,待漏钢危险消除后恢复正常拉速。采用热流监测与漏钢预报系统可大大降低漏钢频率。比利时的Sidmar钢厂板坯连铸机自1991年安装了结晶器热流监测与漏钢预报系统后,粘结漏钢由每年的14次降低为1次。此外,热流监测系统还能够根据结晶器内热流状况预报纵裂发生的可能性以及发生的位置。同时,因为保护渣的性能影响结晶器的热流,故热流监测系统所收集的热流数据可用来比较保护渣的性能,为选择合适的保护渣提供依据。
5.二冷水自动控制
同一台连铸机在开浇、浇铸不同钢种以及拉速变化时需要及时对二冷水量进行适当调整。早期连铸采用手动调节阀门来改变二冷水量,人为因素影响很大,在改变拉速时往往来不及调整,造成铸坯冷却不均匀。二冷水的自动控制方法主要可分为静态控制法和动态控制法两类。静态控制法一般是利用数学模型,根据所浇铸的断面、钢种、拉速、过热度等连铸工艺条件计算冷却水量,将计算的二冷水数据表存入计算机中,在生产工艺条件变化时计算机按存入的数据找出合适的二冷水控制量,调整二冷强度。静态控制法是目前广泛采用的二冷水控制方法,在稳定生产时基本能够满足要求。根据二冷区铸坯的实际情况及时改变二冷水的控制方法为动态控制。目前能够测得的铸坯温度仅为表面温度,如果能够准确测得铸坯的表面温度,则可根据表面温度对二冷水及时调整。但是,铸坯表面覆盖的一层氧化铁皮、水膜以及二冷区存在的大量水蒸气严重影响测量结果的准确性。因此,在实际生产中根据实测的铸坯表面温度进行动态控制的方法很少被采用。比较可行的方法是进行温度推算控制法。温度推算控制法的思路是将铸坯整个长度分成许多小段,根据铸坯凝固传热数学模型每隔一定时间(例如20秒)计算出每一小段的温度,然后与预先设定的铸坯所要求的最佳温度相比较,根据比较结果给出最合适的冷却水量。在二十世纪80年代中后期,欧洲、日本以及美国的一些先进的连铸机已逐步采用二冷动态控制系统。我国现有的大部分铸机采用静态控制法控制二冷水量,引进的现代化板坯连铸机、薄板坯连铸机等一般采用温度推算动态控制法进行二冷水的调节。
6.铸坯表面缺陷自动检测
连铸坯的表面缺陷直接影响轧制成品的表面质量,热装热送或直接轧制工艺要求铸坯进加热炉或均热炉必须无缺陷。因此,必须进行表面质量在线检测,将有缺陷的铸坯筛选出来进一步清理,缺陷严重的要判废。目前,比较成熟的检测方法有光学检测法和涡流检测法。光学检测法是用摄像机获取铸坯表面的图像,图像经过处理后,去掉振痕及凹凸不平等信号,只留下裂纹信号在显示器上显示,经缩小比例后在打印机上打印出图形,打印纸的速度与铸坯同步。操作人员观察打印结果对铸坯表面质量做出判断,决定切割尺寸并决定是否可直接热送。当裂纹大于预定值时,应调整切割长度,将该部分切除,尽可能增加收得率。涡流检测法利用铸坯有缺陷部位的电导率和磁导率产生变化的原理来检测铸坯的表面缺陷。
第五篇:连铸工艺范文
连铸工艺流程介绍
----冶金自动化系列专题
【导读】:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。本专题将详细介绍转炉(以及电炉)炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】
连铸的目的: 将钢水铸造成钢坯。
连铸的工艺流程:
将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。【查看全文】
连铸自动化控制工艺流程图
连铸自动化控制主要有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等控制技术。【查看全文】
连铸的主要工艺设备介绍:
钢包回转台
钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。【查看全文】
中间包
中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。【查看全文】
结晶器
在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。【查看全文】
拉矫机
在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。【查看全文】
电磁搅拌器
电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。【查看全文】
冷却喷嘴
冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。【查看全文】
火焰切割机
火焰切割机也叫氧气切割。根据切割钢板的厚度安装适当孔径的割嘴;【查看全文】
连铸系统也是一个比较复杂的系统,用到的自动化产品比较多,下面列举部分产品出来:
常用到的自动化设备:PLC、组态软件、变频器、工控机、工业以太网交换机等等。
连铸自动化控制工艺流程图
图片:
连铸自动化控制工艺流程图:
将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。
有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等主要控制技术。
图片:
水平连铸控制工艺流程图: 图片:
图片:
图片:
图片:
图片:
生产线实景图:
连铸工艺详解
连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。
连铸钢水的准备
一、连铸钢水的温度要求:
钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。
钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。
二、钢水在钢包中的温度控制:
根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。
实际生产中需采取在钢包内调整钢水温度的措施: 1)钢包吹氩调温
2)加废钢调温
3)在钢包中加热钢水技术
4)钢水包的保温
中间包钢水温度的控制
一、浇铸温度的确定
浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。
浇铸温度的确定可由下式表示(也称目标浇铸温度):
T=TL+△T。
二、液相线温度:
即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:
T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]}
三、钢水过热度的确定
钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。
钢种类别
过热度
非合金结构钢
10-20℃
铝镇静深冲钢
15-25℃
高碳、低合金钢
5-15℃
四、出钢温度的确定
钢水从出钢到进入中间包经历5个温降过程:
△T总=△T1+△T2+△T3+△T4+△T5 △T1出钢过程的温降;
△T2出完钢钢水在运输和静置期间的温降(1.0~1.5℃/min);
△T3钢包精炼过程的温降(6~10℃/min);
△T4精炼后钢水在静置和运往连铸平台的温降(5~1.2℃/min);
△T5钢水从钢包注入中间包的温降。
T出钢 = T浇+△T总
控制好出钢温度是保证目标浇铸温度的首要前提。具体的出钢温度要根据每个钢厂在自身温降规律调查的基础上,根据每个钢种所要经过的工艺路线来确定。
拉速的确定和控制
一、拉速控制作用:
拉速定义:拉坯速度是以每分钟从结晶器拉出的铸坯长度来表示。拉坯速度应和钢液的浇注速度相一致。拉速控制合理,不但可以保证连铸生产的顺利进行,而且可以提高连铸生产能力,改善铸坯的质量.现代连铸追求高拉速。
二、拉速确定原则:
确保铸坯出结晶器时的能承受钢水的静压力而不破裂,对于参数一定的结晶器,拉速高时,坯壳薄;反之拉速低时则形成的坯壳厚。一般,拉速应确保出结晶器的坯壳厚度为12-14mm。
影响因素:钢种、钢水过热度、铸坯厚度等。
1)机身长度的限制
根据凝固的平方根定律,铸坯完全凝固时达到的厚度: 又机身长度:
得到拉速:
2)拉坯力的限制
拉速提高,铸坯中的未凝固长度变长,各相应位置上凝固壳厚度变薄,铸坯表面温度升高,铸坯在辊间的鼓肚量增多。拉坯时负荷增加。超过拉拔转矩就不能拉坯,所以限制了拉速的提高。3)结晶器导热能力的限制
根据结晶器散热量计算出,最高浇注速度:
板坯为2.5米/分
方坯为3-4米/分
4)拉坯速度对铸坯质量的影响
(1)降低拉速可以阻止或减少铸坯内部裂纹和中心偏析
(2)提高拉速可以防止铸坯表面产生纵裂和横裂
(3)为防止矫直裂纹,拉速应使铸坯通过矫直点时表面温度避开钢的热脆区。
5)钢水过热度的影响
一般连铸规定允许最大的钢水过热度,在允许过热度下拉速随着过热度的降低而提高,如图1所示。
6)钢种影响:就含碳量而言,拉坯速度按低碳钢、中碳钢、高碳钢的顺序由高到低。就钢中合金含量而言,拉速按普碳钢、优质碳素钢、合金钢顺序降低。
图1 拉速与温度对应表
第四节 铸坯冷却的控制
钢水在结晶器内的冷却即一冷确定,其冷却效果可以由通过结晶器壁传出的热流的大小来度量,如图2所示。
图2 钢水在结晶器内的冷却
1)一冷作用:一冷就是结晶器通水冷却。其作用是确保铸坯在结晶器内形成一定的初生坯壳。
2)一冷确定原则:一冷通水是根据经验,确定以在一定工艺条件下钢水在结晶器内能够形成足够的坯壳厚度和确保结晶器安全运行的前提。通常结晶器周边供水2L/mm·min。进出水温差不超过8℃,出水温度控制在45-500℃为宜,水压控制在0.4-0.6Mpa。
3)二冷作用:二次冷却是指出结晶器的铸坯在连铸机二冷段进行的冷却过程.其目的是对带有液芯的铸坯实施喷水冷却,使其完全凝固,以达到在拉坯过程中均匀冷却.4)二冷强度确定原则:二冷通常结合铸坯传热与铸坯冶金质量两个方面来考虑.铸坯刚离开结晶器,要采用大量水冷却以迅速增加坯壳厚度,随着铸坯在二冷区移动,坯壳厚度增加,喷水量逐渐降低.因此,二冷区可分若干冷却段,每个冷却段单独进行水量控制.同时考虑钢种对裂纹敏感性而有针对性的调整二冷喷水量.5)二冷水量与水压:对普碳钢低合金钢,冷却强度为:1.0-1.2L/Kg钢。对低碳钢、高碳钢,冷却强度为:0.6-0.8L/Kg钢。对热裂纹敏感性强的钢种,冷却强度为:0.4-0.6L/Kg钢,水压为0.1-0.5MPa,如图3所示。
图3 凝固系数与二冷水量关系
连铸过程检测与自动控制
一、连铸过程自动检测
(一)中间包钢液温度测定
1)中间包钢液温度的点测
用快速测温头及数字显示二次仪测量温度,如图4所示。
图4 二次温度测量仪
2)中间包钢液温度的连续测定
采用连续测温热电偶对中间包钢液温度进行连续测量,如图5所示。
图5 连续测温热电偶
(二)结晶器液面控制
1)放射性同位素测量法如图6所示:
图6 放射性同位素测量法
2)红外线结晶器液面测量法如图7所示:
图7 红外线结晶器液面测量法
3)热电偶结晶器液面测量法如图8所示:
图8 热电偶结晶器液面测量法
4)激光结晶器液面测量法如图9所示:
图9 激光结晶器液面测量法
(三)连铸机漏钢预报装置如图10所示:
图10 连铸机漏钢预报装置
(四)连铸二次冷却水控制如图11所示:
图11 连铸二次冷却水控制
(五)铸坯表面缺陷在线检测
1)工业电视摄象法如图12所示:
图12 工业电视摄象法
2)涡流检测法如图13所示:
图13 涡流检测法
二、连铸坯表面质量及控制
(一)连铸过程质量控制
1)提高钢纯净度的措施
(1)无渣出钢
(2)选择合适的精炼处理方式
(3)采用无氧化浇注技术
(4)充分发挥中间罐冶金净化器的作用
(5)选用优质耐火材料
(6)充分发挥结晶器的作用
(7)采用电磁搅拌技术,控制注流运动
(二)连铸坯表面质量及控制
连铸坯表面质量的好坏决定了铸坯在热加工之前是否需要精整,也是影响金属收得率和成本的重要因素,还是铸坯热送和直接轧制的前提条件。
连铸坯表面缺陷形成的原因较为复杂,但总体来讲,主要是受结晶器内钢液凝固所控制,如图14所示。
图14 连铸坯表面缺陷示意图
(三)连铸坯内部质量及控制
铸坯的内部质量是指铸坯是否具有正确的凝固结构、偏析程度、内部裂纹、夹杂物含量及分布状况等。
凝固结构是铸坯的低倍组织,即钢液凝固过程中形成等轴晶和柱状晶的比例。铸坯的内部质量与二冷区的冷却及支撑系统密切相关,如图15,图16所示。
图15 铸坯内部缺陷示意图
图16 “V”形偏析
1)减少铸坯内部裂纹的措施
(1)采用压缩浇铸技术,或者应用多点矫直技术
(2)二冷区采用合适夹辊辊距,支撑辊准确对弧
(3)二冷水分配适当,保持铸坯表面温度均匀
(4)合适拉辊压下量,最好采用液压控制机构
2)夹杂物的控制
从炼钢
精炼 连铸生产洁净钢,主要控制对策是:
(1)控制炼钢炉下渣量
● 挡渣法(偏心炉底出钢、气动法、挡渣球)
● 扒渣法:目标是钢包渣层厚<50mm,下渣2Kg/t
(2)钢包渣氧化性控制
● 出钢渣中高(FeO+MnO)是渣子氧势量度。(FeO+MnO)↑板胚T[O]↑
(3)钢包精炼渣成分控制
不管采用何种精炼方法(如RH、LF、VD),合理搅拌强度和合理精炼渣组成是获得洁净钢水的基础。
合适的钢包渣成分:CaO/ Al2O3=1.5~1.8,CaO/ SiO2=8~13,(FeO+MnO)<5%。高碱度、低熔点、低氧化铁、富CaO钙铝酸盐的精炼渣,能有效吸收大颗粒夹杂物,降低总氧。
(4)保护浇注
● 钢水保护是防止钢水再污染生产洁净钢重要操作
● 保护浇注好坏判断指标:-△[N]=[N]钢包-[N]中包;-△[Al]s=[Al]钢包-[Al]中包
● 保护方法:①中包密封充Ar;②钢包
中间包长水口,△[N]=1.5PPm甚至为零;③中间包
结晶器浸入式水口
(5)中间包控流装置
● 中间包不是简单的过渡容器,而是一个冶金反应容器,作为钢水进入结晶器之前进一步净化钢水
● 中间包促进夹杂物上浮其方法:
a.增加钢水在中间包平均停留时间t:t=w/(a×b×ρ×v)。中间包向大容量深熔池方向发展。
b.改变钢水在中间包流动路径和方向,促进夹杂物上浮。
(6)中间包复盖剂
中间包是钢水去除夹杂物理想场所。钢水面上复盖剂要有效吸收夹杂物。
● 碳化稻壳;
● 中性渣:(CaO/SiO2=0.9~1.0)
● 碱性渣:(CaO+MgO/SiO2≥3)
● 双层渣
渣中(SiO2)增加,钢水中T[O]增加。生产洁净钢应用碱性复盖剂。
(7)碱性包衬
钢水与中间包长期接触,钢水与包衬的热力学性能必须是稳定的,这是生产洁净钢的一个重要条件。包衬材质中SiO2增加,铸坯中总氧T[O]是增加,因此生产洁净钢应用碱性包衬。
对低碳Al-K钢,中间包衬用Mg-Ca质涂料(Al2O3→0),包衬反应层中Al2O3可达21%,说明能有效吸附夹杂物。
(8)钢种微细夹杂物去除
● 大颗粒夹杂(>50μm)去除,采用中间包控流技术
● 小颗粒夹杂(<50μm)去除:
-中间包钙质过滤器
-中间包电磁旋转
(9)防止浇注过程下渣和卷渣
● 加入示踪剂追踪铸坯中夹杂物来源
● 结晶器渣中示踪剂变化
● 铸坯中夹杂物来源,初步估算外来夹杂物占41.6%二次氧化占 39%,脱氧产物为20%
(10)防止Ar气泡吸附夹杂物
对Al-K钢,采用浸入式水口吹Ar防止水口堵塞,但吹Ar会造成:
● 水口堵塞物破碎进入铸胚,大颗粒Al2O3轧制延伸会形成表面成条状缺陷
● <1mmAr气泡上浮困难,它是Al2O3和渣粒的聚合地,当气泡尺寸>200μm易在冷轧板表面形成条状缺陷。
为解决水口堵塞问题,可采用:
-钙处理改善钢水可浇性
-钙质水口
-无C质水口
目前还是广泛采用吹Ar来防止堵塞。生产洁净钢总的原则是:钢水进入结晶器之前尽可能排除Al2O3。
(11)结晶器钢水流动控制
三、连铸坯形状缺陷及控制
(一)鼓肚变形
带液心的铸坯在运行过程中,于两支撑辊之间,高温坯壳中钢液静压力作用下,发生鼓胀成凸面的现象,称之为鼓肚变形。板坯宽面中心凸起的厚度与边缘厚度之差叫鼓肚量,用以衡量铸坯彭肚变形程度。
减少鼓肚应采取措施 :
(1)降低连铸机的高度
(2)二冷区采用小辊距密排列;铸机从上到下辊距应由密到疏布置
(3)支撑辊要严格对中
(4)加大二冷区冷却强度
(5)防止支撑辊的变形,板坯的支撑辊最好选用多节辊
图17 铸坯鼓肚示意图
(二)菱形变形
菱形变形也叫脱方。是大、小方坯的缺陷。是指铸坯的一对角小于90°,另一对角大于90°;两对角线长度之差称为脱方量。
应对菱变的措施 :
(1)选用合适锥度的结晶器
(2)结晶器最好用软水冷却
(3)保持结晶器内腔正方形,以使凝固坯壳为规正正的形状
(4)结晶器以下的600mm距离要严格对弧;并确保二冷区的均匀冷却
(5)控制好钢液成分
(三)圆铸坯变形
圆坯变形成椭圆形或不规则多边形。圆坯直径越大,变成随圆的倾向越严重。形成椭圆变形的原因有:
(1)圆形结晶器内腔变形
(2)二冷区冷却不均匀
(3)连铸机下部对弧不准
(4)拉矫辊的夹紧力调整不当,过分压下
可采取相应措施:
(1)及时更换变形的结晶器
(2)连铸机要严格对弧
(3)二冷区均匀冷却
(4)可适当降低拉速
(四)夹杂物的控制
提高钢纯净度的措施:
(1)无渣出钢
(2)选择合适的精炼处理方式
(3)采用无氧化浇注技术
(4)充分发挥中间罐冶金净化器的作用
(5)选用优质耐火材料
(6)充分发挥结晶器的作用
(7)采用电磁搅拌技术,控制注流运动
(五)间包冶金
当前对钢产品质量的要求变得更加严格。中间包不仅仅只是生产中的一个容器,而且在纯净钢的生产中发挥着重要作用。
70年代认识到改变中间包形状和加大中间包容积可以达到延长钢液的停留时间,提高夹杂物去除率的目的;安装挡渣墙,控制钢液的流动,实现夹杂物有效碰撞、长大和上浮。80年代发明了多孔导流挡墙和中间包过滤器。
在防止钢水被污染的技术开发中,最近已有实质性的进展。借助先进的中间包设计和操作如中间包加热,热周转操作,惰性气氛喷吹,预熔型中间包渣,活性钙内壁,中间包喂丝,以及中间包夹杂物行为的数学模拟等,中间包在纯净钢生产中的作用体现得越来越重要。
在现代连铸的应用和发展过程中,中间包的作用显得越来越重要,其内涵在被不断扩大,从而形成一个独特的领域——中间包冶金。
中间包冶金的最新技术:
(1)H型中间包
(2)离心流中间包
(3)中间包吹氩
(4)去夹杂的陶瓷过滤器
(5)电磁流控制
图18 H型中间包 [连铸设备]钢包回转台
钢包回转台
钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。
钢包回转台的作用是将位于受包位置的满载钢包回转至浇钢位置,准备进行浇注,同时将浇完钢水的空包转至受包位置,准备运走。钢包回转台大致有3种类型:
单臂钢包回转台:由底座、立柱、上转臂、上转臂驱动装置、下转臂、下转臂驱动装置组成。蝶形钢包回转台:由底座、升降液压缸、回转架、钢包支座、回转臂、平行连杆、驱动装置、防护板组成。
钢包回转台是连铸机的关键设备之一,起着连接上下两道工序的重要作用。钢包回转台的回转情况基本上包括两侧无钢包、单侧有钢包、两侧有钢包三种情况,而单个钢包重量已超过140吨。三种情况下,钢包回转台受力有很大不同,但无论在何种情况下,都要保证钢包回转台的旋转平稳,定位准确,起停时要尽可能减小对机械部分的冲击,为减少中间包液面波动和温降,要缩短旋转时间。因此,我们在变频器的容量选择上,留有余地,即比电机功率加大一级。同时利用变频器的s曲线加速功能,通过调整s曲线保证加、减速曲线平滑快速,减少对减速机的冲击,再通过PLC判断变速限位、停止限位实现旋转过程中高、低速自动变换及到位停车,同时满足了对旋转时间和平稳运行的要求。
[连铸设备]中间包
中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。
连铸机钢水包和结晶器之间钢水过渡的装置,用来稳定钢流,减小钢流对坯壳的冲刷,以利于非金属夹杂物上浮,从而提高铸坯质量。
[连铸设备]结晶器
在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。
结晶器包括:
直型结晶器、弧形结晶器 curved mold:用于弧型和超低头型(椭圆型)连铸机上。
组合式结晶器 composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。
多级结晶器 multi stage mold
调宽结晶器 adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。
结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。
另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频器过压故障的可能性。
[连铸设备]拉矫机
拉矫机
在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。
三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。
拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f:
计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。
[连铸设备]电磁搅拌器
电磁搅拌器 electromagnetic stirring, EMS:连续铸钢时,利用电磁力控制钢液凝固过程,改善铸坯质量的工艺。也称EMS技术。
电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。
电磁搅拌器的安装位置和搅拌器模式
根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式
结晶器电磁搅拌:Mold Electromagnetic stirring: MEMS 搅拌器安装在结晶器铜管外面 二冷区电磁搅拌:Strand Electromagnetic Stirring: SEMS 搅拌器安装在铸坯外面 凝固末端电磁搅拌:Final Electromagnetic stirring:FEMS 用于方坯连铸 搅拌器安装在铸坯外面
电磁搅拌器的冶金效果
搅拌位置
冶金效果
适用钢种
MEMS
增加等轴晶率
低合金钢
减少表面和皮下的气孔和针孔
弹簧钢
减少表面和皮下的夹杂物
冷轧钢
坯壳均匀化
中高碳钢等
稍稍改善中心偏析
SEMS
扩大等轴晶率
不锈钢
减少内裂
改善中心偏析
工具钢
减少中心疏松
FEMS
细化等轴晶
弹簧钢
有效地改善中心偏析
轴承钢
有效地改善中心缩孔和疏松
特殊高碳钢
[连铸工艺]火焰切割的工艺
厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:
(1)根据切割钢板的厚度安装适当孔径的割嘴;
(2)将氧气和燃气压力调至规定值;
(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;
(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;
(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;
(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;
(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
定尺切割
定尺方式有碰球定尺和非在线定尺切割:
(1)碰球定尺
即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。
(2)非在线定尺切割
利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。
氧气切割的基本原理及过程。
氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。气割过程有三个阶段:
⑴预热 气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。
⑵燃烧 喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。
⑶吹渣 金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。
氧气切割的三条件:
金属材料要进行氧气切割应满足以下三个条件:
1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。
2)金属的燃点应比熔点低。
3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。
符合上述气割条件的金属有纯铁、低碳钢、中碳钢、低合金钢以及钛。其它常用的金属材料如铸铁、不锈钢、铝和铜等由于不满足此三条件,所以不能应用氧气切割,这些材料目前常用的切割方法是等离子弧切割。
[连铸设备]冷却喷嘴
连铸二次冷却的目的是对离开结晶器后的铸坯进行连续冷却 ,使之逐渐凝固 ,到切割机前完全凝固。凝固过程受铸坯的导热性、喷雾介质的冷却效果、以及铸坯质量等的限制。凝固过程应控制铸坯表面温度在浇注方向均匀下降。所以连铸坯二次冷却喷嘴的冷态特性 ,对连铸生产和保证连铸坯质量是非常重要的。对喷嘴生产厂家生产的喷嘴喷头的材质 ,要求有足够的强度 ,否则在运输、安装和检修中一旦有磕碰、紧固等现象 ,会造成喷嘴的水流量、喷射角度和水流密度分布变化 ,对连铸生产有不良影响。
冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。
连铸二冷喷嘴的类型、喷雾方法对铸坯冷却的影响 ,各类喷嘴冷却的优缺点 ,以及环型喷嘴嘴头的材质在检修中出现的问题。对包钢引进大方坯和大圆坯的汽雾喷嘴和国产喷嘴的冷态特性进行测试研究 ,测试结果表明 ,国产喷嘴的水流密度分布在中心的左右 ,分布均匀 ,对大方坯和大圆坯的横向均匀降温有益 ,但是国产喷嘴的喷射角度在测试的五种喷嘴中 ,有四种喷嘴符合国家黑色冶金对喷嘴喷射角度的要求 ,只有D40 197-1喷嘴在高压测试时超国家要求的 +4° ,有少量国产喷嘴在同压力条件下的流量误差在 1%~ 10 %之间。
[连铸设备]火焰切割机
图片:
厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:
(1)根据切割钢板的厚度安装适当孔径的割嘴;
(2)将氧气和燃气压力调至规定值;
(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;
(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;
(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;
(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;
(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
[连铸设备]钢包烘烤器
钢包在新砌后和盛装钢水前一般都需要烘烤,用来烘烤钢包的装置就称为钢包烘烤器,又称烤包器。
钢包烘烤器有在线烘烤器和离线烘烤器两大类,离线烘烤器有立式烘烤器和卧式烘烤器两种,另外还有专门烘烤中间包的中间包烘烤器。