船舶发电柴油机的管理与典型故障分析(推荐阅读)

时间:2019-05-13 04:53:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《船舶发电柴油机的管理与典型故障分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《船舶发电柴油机的管理与典型故障分析》。

第一篇:船舶发电柴油机的管理与典型故障分析

船舶发电柴油机的管理与典型故障分析

发布时间:2009-03-05 浏览次数:1837

摘要:对比雅马(YANMAR)、大发(DAIHATSU)和瓦锡兰(WARTSILA)3种典型型号船舶发电柴油机的技术特点;分析典型故障;提出管理建议,减少机械事故的发生。

关键词:辅机 比较 故障 分析

0 引言

目前,我国远洋船舶使用的发电柴油机主要是YANMAR、DAIHATSU和WARTSILA这3类型号。中远散货运输公司“晶莹海”、“安琪海”等轮的发电柴油机为YANMAR M200L,“泰谷海”“、泰山海”“泰安海”、等轮的发电柴油机为DAIHATSU 6DSD-22。WARTSILA 4L20型发电柴油机在90年代后期配船较多,如“许昌海”轮。三种发电柴油机的结构、功能、技术特点不尽相同,相应的使用和管理也有不同的特点和要求。笔者先后在“泰谷海”、“晶莹海”、“许昌海”等轮任职,经历多次典型故障的维修,对这3种发电柴油机有了一些体会。3种主流型号辅机的总体介绍

1.1 燃油系统

1.1.1 燃料

YANMAR M200L(“晶莹海”轮,1986年9月下水):原船设计可烧轻油和重油,配有燃油自动转换系统和燃油改质器。2003年7月,由于1、3号发电柴油机连杆轴承连续出现抱轴烧瓦,改用轻油。

DAIHATSU 6DSD-22(“泰谷海”轮,1988年6月下水):以烧轻油为主。

WARTSILA 4L20(“许昌海”轮,1997年9月下水):以烧重油为主,属经济型,配有应急轻油转换管路和重油循环加热模块。

1.1.2 油头、高压油泵和燃油泵

YANMAR M200L:由于加装了高压油管保护套,使更换油头的工作变得不方便。烧轻油时2000h拆验,油头的密封和雾化能保持良好。高压油泵一般无卡死现象,高压油泵漏油会漏至油泵外面,不会经滚轮凸轮进入油底壳。包括燃油泵、摇臂油泵、高压油泵、冷却油泵等组合泵的轴封漏泄易造成机油被污染。组合泵的泵轴容易被磨出凹痕,而新型泵轴无定位螺钉,容易窜动。轻重油经常转换,易出现杂质而使油封出现漏泄。供油定时的调整可通过升降高压油泵下面的调整螺丝单缸进行。烧重油时,辅机循环泵和供给泵运转,烧轻油时则单走一路,自轻油日用柜直供轻重油转换阀经滤器到组合油泵。

DAIHATSU 6DSD-22:油头附件较多,冷却油及燃油的进出油管均设在油头的上部,高压油管保护套的配装合理。油嘴的密封和雾化不太理想。摇臂泵单独设计轴带,燃油泵轴封如果漏泄则漏至机体外,肉眼可直接观察。摇臂油被燃油污染是常见故障,多为油头冷却油泄露。供油定时的调整可单缸进行,拆掉高压油泵通过加减顶杆上的垫片可以调整定时。

WARTSILA 4L20:整个设计紧凑,高压油管保护套设计合理。有的船曾出现过油头压得过紧而将油嘴下面缸头部分压入气缸内的故障,原因是油头热胀冷缩将缸头部分顶裂。换油头时,应先将油头放入,预热一段时间后,按说明书力矩要求上紧。高压油泵容易卡死,说明书对此的说明不详细,只介绍了正常的解体程序,卡死时则要整体拆解,工作量很大。燃油模块的加热器容易漏泄,可通过加热器的回汽放残考克检查。供油定时单缸无法进行调节,通过转动整个凸轮轴调整整体定时。

1.2 机油系统

YANMAR M200L:干式油底壳。带预润滑油泵,机油泵轴带,传动齿轮系统注油润滑。泵前有粗细滤器,并配有小离心滤器。油冷却器海水冷却,设有自动调温及手动转换。滑油自油泵通过主轴承下瓦盖进入主轴承,经曲轴的油腔到曲柄销,到连杆大端,经连杆到小端,每缸下部设有油泵嘴,在活塞运动过程中喷入活塞冷却;另外滑油经各个注油点对齿轮及凸轮润滑。

DAIHATSU 6DSD-22:干式油底壳。无预润滑油泵,起动前需摇动手摇泵。轴带机油泵,通过传动齿轮箱传动,齿轮箱单独补油润滑。配有CJC滤器。油冷器海水冷却。滑油自油泵到主轴承上瓦盖,经曲轴的油腔到由柄销,到连杆大端,经连杆到小端,到活塞;另外滑油经各个注油点对齿轮及凸轮润滑;一路去调速器。

WARTSILA 4L20:湿式油底壳。带预润滑油泵,机油泵浸入油中。机油滤器为纸质一次性使用,耗量大,特别在变负荷情况下(如船吊装卸货期间)。配有小离心滤器。低温淡水冷却。滑油自油泵到主轴承下瓦,经曲轴的油腔到曲柄销,到连杆大端,经连杆到小端,到活塞;一路到摇臂机构后,经注油点到凸轮;一路到透平增压器;另外经注油点对齿轮润滑。平衡轴浸入油中。

机油的污染程度在船上可以作简单分析:取机油滴在滤纸上,正常情况下油迹扩散均匀;如果含有水则速度快而且不均匀。通过闻可以判断是否混入燃油,燃油的气味明显异常。

1.3 冷却水系统

YANMAR M200L:淡水泵轴带,轴封外观可见,轴封漏水漏到机体外,不会进入机体内,冷却器自动调温。淡水冷却缸套、缸头及透平。空冷器海水冷却。

DAIHATSU 6DSD-22:淡水泵轴带,轴封外观可见,轴封漏水漏到机体外,不会进入机体内。淡水冷却缸套、缸头及透平。空冷器海水冷却。

WARTDSILA 4L20:淡水泵轴带,轴封外观可见,轴封漏水漏到机体外,不会进入机体内。

低温淡水冷却空冷器及机油冷却器,配自动调温系统,根据负荷调节,因为船上的负荷达不到85%,所以现在多改为手动调节。高温水冷却缸套、缸头及透平。

1.4 起动系统

YANMAR M200L:气动,配有空气分配器和缸头起动阀。

DAIHATSU 6DSD-22:气功,配有空气分配器和缸头起动阀。

WARTSIL A4L20:气动,配有起动马达。典型故障分析

2.1 YANMAR M200L

2004年1-5月“晶莹海”轮3、1号发电柴油机相继出现连杆轴承抱瓦烧轴故障。后经董氏镀铁修复,报告数据显示损坏曲柄销椭圆度很大。各缸连杆上瓦露铜严重。我在接班时(2004年11月)1号发电柴油机2缸已抱瓦,开始大修,并于开航前完成试车。3号发电柴油机因为船期的原因维持现状,第5缸曲柄销出现椭圆度较轻,短期使用100h换连杆轴瓦。后来船回青岛3号发电柴油机大修。

1号发电柴油机大修运行,透平工况不好,解体发现涡轮端很脏,喷嘴环有不同程度的烧蚀,装复后效果明显好转,排烟温度也降下来了。为查找故障原因,我们将运行中的发电柴油机换用重油。说明书中要求30%负荷下应换用轻油并尽量避免低负荷运转,实验所示70%负荷烧重油也无异常,说明书要求停车前换轻油运行30min。检查连杆轴瓦也无露铜,但是再次起车后,有游车现象发生,而此时烧的仍是轻油,起动时个别缸有爆燃现象,发出“啪啪”声,吃负荷后游车现象逐渐消失。判断燃油雾化不良,个别缸不发火或间歇发火,运转不稳,致使转速波动,冒黑烟。正是这个过程中爆燃使曲柄销受到冲击,轴瓦失去弹性,露铜发生。船上实际保护工作只是换轴瓦,长时间造成了曲柄销的椭圆度。停车时,燃油不能在管路中形成充分的循环,大部分油在主油路的回流调压管中回流,而油头的设计是非循环的,高压油泵也只有在运行中才有回流。当烧轻油时,以上现象基本消失,再次说明重油换用轻油过程中换油不彻底是根本原因。

笔者建议:

(1)恢复烧重油应拆检轻油重油转换阀,保证开闭良好;

(2)停车前用轻油多运行一段时间,起动前多冲车;

(3)经常拆检连杆瓦,观察是否露铜,及时换瓦,做到“宁耗瓦勿伤轴”。具体工作:拆掉油头,将曲柄销盘至适当位置,用专用工具自装油头处穿过缸头将活塞吊住,配合盘车,将连杆瓦取出;

(4)定时测量爆发压力,形成连续数据化观测,养成及时调整的习惯

2.2 DAIHATSU 6DSD-22

2003年11月“泰谷海”轮3、1号发电柴油机连续出现No.4缸主轴承损坏故障。1号发电柴油机第4道主轴承上瓦盖震裂开,轴瓦烧,3号发电柴油机第4道主轴承抱瓦,轴颈烧损。接班时(2004年12月),生产厂家陕西柴油机厂2名工程师到船,曲轴及机座和机架送董氏镀铁修理。6DSD型发电柴油机第4道主轴承出现此类故障已经不是第1次了。陕柴的工程师介绍机座轴承孔在制造时定位后一刀切过,设计上上瓦盖安装在机座上是没有齿型定位的,因此上瓦盖的安装很关键,上瓦盖与机座的间隙左右测量以3丝为宜,不能超过5丝,而在实际过程中这一数值比较难控制。机油自上瓦盖进入对主轴承润滑。通过后来的管理实践,我对此种发电柴油机有不同的认识。6DSD的转速为900rpm,发火顺序为1-2-4-6-5-3-1,单缸平衡。根据柴油机曲柄连杆机构的运动理论可知,这种发火顺序的设计本身存在着缺陷。作用在曲柄连杆机构中的不平衡力和力矩是引起柴油机振动的震力源。对多缸柴油机来说,柴油机的离心力和1次2次往复惯性力矩不平衡。6DSD采用各缸平衡法来平衡每个曲柄的离心力,但是曲柄的排列方式和发火顺序的设计导致处于中心位置的第4道主轴承工作条件恶劣,振动交替变化,挠曲变形,长期运转产生疲劳,轴瓦失去弹性,一旦碰到突加负荷时,主轴瓦的油膜被破坏,干磨发生,严重时会烧瓦抱轴,高速运动中振动和摩擦产生的热量最后会波及瓦盖和机座使之破坏。查看以前的记录基本上是损坏-修理-使用-损坏-再修理。厂家介绍此种机型已经停产,这不能不让人考虑到设计的弊端。而中散公司“沱海”、“漫海”等轮装配的6PSHTC-26H型发电柴油机从未发生此类故障,其发火顺序为1-5-3-6-2-4-1。船上监控的手段有限,能做的是控制好机油的质量,勤检查,早发现故障的苗头。笔者建议:

(1)及时清洗机油滤器,发现异物如脱铅等应停用检查,力争将事故损失降到最小;

(2)及时检验,更换机油,保证CJC滤器运转;

(3)每次周期检查要测量开档并分析,形成联续的数据化观察;

(4)用塞尺测量上瓦盖与机座之间的间隙看是否超标。

思考:此型发电柴油机的凸轮轴各凸轮可以单独调整,那么是否可以改变一下发火顺序呢?这需要在实验台上做论证。

2.3 WARTSIL A4L20

由于装配了新型的BBC公司的TPS48型透平,改变了过去那种隔三差五解体透平的状况,但是因为烧重油的原因,周期解体时喷嘴环仍有烧蚀现象。

机油污染多数是由于燃烧高压油所致。检验办法是停掉预润滑油泵,将各个凸轮擦干净,盘车。如果高压油泵漏泄则会从燃油滚轮处有燃油滴下,气味不同于机油。另外更换油头时,密封环要换新。说明书介绍吊缸时要对缸套进行珩磨,缸套内表面不要求光滑,作为阻挡燃烧产物进入底壳的第一道关,这是不同于其他型号发电柴油机的。

以前出现的大故障如“伸腿事故”多数是由于连杆螺栓的安装问题,或者是连杆螺栓质量有

问题。公司多次发布通报及技术指导,现在这种事故很少见了。需要提醒的是中文版本说明书同英文版本说明书连杆螺栓的上紧力矩不一致,建议以英文版本为主。高压油泵卡死是我遇到的常见故障,说明书不赞成卸载后的空转运行,但是卸载后马上停车,高压油泵卡死的机率很大,“许昌海”轮几次卡死情况均是这样。后来我们将空载运行延长5min,卡死现象减少了,判断是高压油泵柱塞热胀冷缩的缘故。

笔者建议:

(1)周期检查时,每次测量连杆螺栓的伸长量,形成连续的量化检测,发现异常及时用液压工具检查;

(2)勤洗小离心滤器,船在吊装卸货期间坚持每天清洗,可以延长机油纸滤器的使用寿命;

(3)虽然可以遥控起车,除非情况特殊,最好起动前冲活车;

(4)由于不能单缸调整定时,当排烟温度相差大时,及时调整油门,测量爆发压力,换油头。

小结

上述故障伤到曲轴,维修量大,费用高。只有结合不同型号辅机的特点,正确的管理和维护,才能有效的减少机械事故的发生。

作者:王连海 来源:天津航海

第二篇:船舶主发电机典型故障的分析与排除

船舶主发电机典型故障的分析与排除

摘要:主发电机作为船舶主要的设备之一,管理系统高度自动化,但由于设备本身的故障或因误操作等原因,故障率比较高,如何及时准确的排除故障,确保船舶的安全运行,已成为广泛关注的焦点之一。文章针对L23/30H型主发电机的典型故障的排除进行了分析。

船舶主发电机是船舶电力系统的心脏,在船舶航行和靠岸时主发电机的正常工作对船舶的安全至关重要。所以对主发电机出现的各种故障做出及时、准确地检测和诊断是船舶安全营运的关键。文章对L23/30H型主发电机中出现频率最高的几个重要故障的诊断和处理方案进行了分析介绍。1 主发电机无法启动

现场检查结果:船舶进行大功率负载启动试验时,第一备用2号主发电机无法启动(集控室报警监测系统显示2号主发电机启动失败),第二备用1号主发电机启动运行。此时集控室船舶电站管理系统处于自动管理状态, 3号主发电机处于运行状态,负荷为645 kW, 1号及2号主发电机备车指示灯亮, 2号主发电机处于第一备用状态, 1号主发电机处于第二备用状态。主发电机现场控制箱显示2号主发电机处于遥控状态,燃油压力为0.8MPa,燃油进机温度105℃,低温水系统压力为0.12MPa,高温水系统压力为0.12MPa,滑油预润泵运行,滑油预润压力为0.06MPa,滑油进主轴承的压力为0.025MPa,辅机空气瓶压力为2.8MPa,主发电机启动空气减压阀后的压力是0.8MPa。打开所有示功阀用盘车杆对主发电机进行盘车检查,确认主发电机没有其它问题后,在机旁操作启动,发现主发电机的启动阻力很大,启动马达带不动,后改用应急启动方式启动2号主发电机, 2号主发电机可以启动,同时主发电机运行后一切工作正常。

故障分析:根据现场情况分析,主发电机启动的各项条件都具备,而从机旁操作启动的情况可以初步判断是启动马达的风叶磨损或叶片断裂。因为主发电机启动是通过启动空气进入启动马达后,启动马达的叶轮在启动空气的作用下,使启动马达的传动齿轮与发电机的飞轮啮合从而带动发电机启动。若叶轮的叶片磨损或叶片断裂,启动马达的叶轮所产生的力就不足以带动发电机启动。所以进一步分析确认是启动马达叶轮的叶片磨损或叶片断裂。

故障排除方案:拆下启动马达解体检查。故障排除结果:拆下启动马达解体检查后发现启动马达的所有叶轮片都从根部断裂,并且粉末状的颗粒比较多。分析认为主要是启动马达的叶轮在高速旋转的情况下被管路中的异物击到,致使其中的一片叶轮断裂,断裂下来的叶轮片再进一步引起其它叶轮的损坏。更换一台新的启动马达后, 2号主发电机启动工作正常。运行工作正常,故障排除。

预防措施:船舶主发电机在启动前应加强管路清洁度的控制,在主发电机第一次启动前应进行启动空气管路的吹除工作,同时在管路的吹除工作中应用橡皮锤敲击管路,以保证附着在管路内的杂质去除。同时注意机舱的通风,减少空气中的粉尘,降低粉尘通过空压机进入启动马达从而引发启动马达故障的可能性。2 主发电机运行时烟囱排气管冒黑烟

现场检查结果:主发电机运行,负荷为545kW,调整器油量开关至最大油量,各缸排温都在300~310℃左右,排气总管温度为300℃,经空气冷却器冷却后的空气温度为45℃,各缸冷却水出口温度都在73~76℃左右,低温水系统压力0.12MPa,高温水系统压力0.3MPa,滑油进滤器前压力为0.4MPa,滑油过滤后压力为0.34MPa,烟囱排气管冒黑烟。

故障分析:导致排气管冒黑烟的因素有很多种,而对各项参数均正常的主发电机排气管冒黑烟,可以初步判断为:①增压器的滤网太脏,使流阻增大,增压能力降低,引起燃烧室内的空气不足

进而产生后燃烧不良。②气阀间隙大小不正确。在柴油机冷车状态下,机械式气阀传动机构中的摇臂端与气阀阀杆之间要留有一定的间隙,为柴油机运转时气阀机构受热后膨胀留有余地。若气阀间隙过小将造成气阀受热后关闭不严,而漏气会使燃烧室内空气不足,产生后燃冒黑烟现象,若气阀间隙过大,则造成气阀迟开早关,使废气残留在燃烧室内造成空气质量不好,进而产生后燃烧不良的冒黑烟现象。③喷油嘴喷油压力过低或喷油孔阻塞滴油,而造成燃油雾化油滴的平均直径过大和雾化均匀度不好,无法与燃烧室内的空气完全混合从而造成燃烧过程粗暴、冒黑烟、积碳。④在额定负荷下运转,若各缸的功率分配不均匀,个别汽缸中喷入的燃油未燃烧而不做功,使其余汽缸的负荷过载而冒黑烟。⑤活塞环装配间隙过大或弹力不够,润滑油大量地进入汽缸燃烧室内,活塞环粘住或折断也会发生类似情况。⑥喷油开始时间太迟(即喷油提前角太小),使喷入汽缸内的部分燃油未燃烧干净就与废气一起排入排气管中,而受高温影响后才进行燃烧(后燃现象),因而不仅仅使废气呈现深黑色而且此时的排气温度也会超出额定温度。

故障排除方案:①清洗或更换增压器的滤网。

②用塞尺检查气阀间隙大小并调整至规定的要求。

③将喷油嘴从汽缸盖上卸下,拆下所有喷油嘴,在喷油嘴校验台上校验其喷油压力,如果发现喷油嘴有滴油或孔阻塞现象,则把喷油嘴拆开,检查针阀与针阀体锥面阀座有无变形损坏,可重新研磨或换新。对于裂缝,则可用磁粉探伤方法检查,发现有裂缝者,就必须更换。对于喷油器的阻塞则可用专用的通针对阻塞的喷油器的喷油孔进行清理。④对各缸的负荷进行测量,如果各缸负荷超出允许的偏差则进行相应的调整。⑤吊出活塞,检查活塞环,有不符合要求的应该换新。⑥检查喷油正时并调整。

故障排除结果:根据故障排除方案①和②处理后,主发电机运行,主发电机排烟管还是冒黑烟,再进一步根据故障排除方案③处理后,再重启主发电机运行,主发电机排烟烟色正常,主发电机运行,负荷从255 kW(约25%负荷)加至485 kW(约50%负荷),再加至750 kW(约75%负荷)再加至950 kW(约100%负荷),每个负荷段运行30 min,并测出每个负荷段的各缸的爆压基本一致,并且排气总管温度也降为280℃,主发电机排烟烟色都正常,故障排除。

预防措施:主发电机的日常管系必须经过合格检查,主发电机的用油必须是经过分油机分油,所使用燃油温度必须达到相应的要求,确保主发电机用油清洁度、黏度、温度达到相应的要求,在条件允许的情况下尽量使用高品质的燃油或柴油,同时增压器的滤网也应该经常清洗,保持进气畅通。主发电机启动后转速不稳定

现场检查结果:主发电机启动前,机旁控制箱上的机旁启动按钮指示灯亮,滑油预润泵运行,滑油预润压力为0.07 MPa,进主轴承滑油预润压力为0.025MPa,柴油压力0.4 MPa,压力无波动现象,低温水系统压力0.12 MPa,高温水系统压力0.3MPa,调速器油量旋钮调至满格10的位置,主发电机启动后,出现转速忽高忽低不稳定现象。

故障分析:从参数指标来看,各项参数均正常,初步判断,主发电机启动后转速忽高忽低,有两种可能。一是燃油管路漏气造成燃油压力不稳定;二是调速器出现故障。但现场柴油压力为0.4MPa并无波动现象,可以基本排除,因此可确认是调速器出故障。

故障排除方案:检查调速器的油位、各缸油门尺条清洁、阀杆卡阻等情况,检查调速器内部的传动及伺服马达的运行,检查调速器的反馈系统等是否发生故障。

故障排除结果:排除中发现调速器的油位太高,整个调速器的上盖布满水珠,停车电磁阀的阀杆有卡阻现象。排除方法如下:①对停车电磁阀的阀杆进行修复,并将调速器内旧油经放油旋塞放掉,重新加注调速器机油;②把调速器的油位加至正常位置,先将柴油机低速启动运行,然后将补偿针阀旋出几圈,使柴油机产生严重的转速波动,迫使油道内的空气从出油孔中排出,这种大幅度游车至少保持2 min,再慢慢关闭补偿针阀,直到游车完全消除为止。重启主发电机,主发电机启动后,转速720 r/min,转速稳定,没有再出现转速忽高忽低的现象,负荷从255 kW(约25%负荷)加至485 kW(约50%负荷)再加至750 kW(约75%负荷)再加至950 kW(约100%负荷),每个负荷段运行30 min,没有再出现转速忽高忽低的现象,故障排除。

预防措施:在监视及巡检过程中,应注意调速器的油位必须保持在油位玻璃表的刻度线之间,不可过高或过低,如果油位液面下降过快,说明调速器有漏油或渗油处,应立即查找和处理,如果过高应注意调速器内部油道的驱气。同时,注意调速器注油口的密封,应防止滑油被污染,保证滑油的清洁,并注意调速器的油温不能太高。经常性的检查各缸的燃油尺条是否清洁并及时加注滑油。4 结束语

虽然现代化的船舶主发电机运行管理高度的自动化,但为了设备的安全运行,加大监视及巡检力度,及时发现异常,并在第一时间采取有效措施把故障消除在最初阶段,为船舶安全经济可靠的运行提供有力的保证。处理主发电机故障的过程中的主要方法和措施可供类似的故障处理使用。

第三篇:继电保护典型故障分析

继电保护典型故障分析

摘 要 继电保护对电力系统的安全正常运行具有重要的作用,它能保证电力系统的安全性,还能针对电力系统中不正常的运行状况进行报警,监控整个电力系统。目前我国电力系统继电保护工作还是会存在一些问题,容易出现各种故障,造成电力系统无法正常运行。本文即分析了继电保护的典型故障,并详细阐述了继电保护典型故障的防治策略。

【关键词】继电保护 典型故障 元器件 接线错误 短接法 电力系统继电保护概述

1.1 电力系统继电保护装置的构成要素

电力系统机电保护装置的构成一般包括输入部分、测量部分、逻辑判断部分和输出执行部分。

1.1.1 输入部分

该部分通过隔离、低通滤波等前置处理方式对电力系统出现的问题和故障进行前置处理。

1.1.2 测量部分

该部分主要负责将测量信号转换为逻辑信号,进而通过逻辑判断按照一定的逻辑关系组合运算,最后确定出执行动作,并由输出执行部分最终完成。

1.2 继电保护装置的特征分析

1.2.1 选择性特征

选择性特征是继电保护装置智能化的表现,在电力系统出现故障时,继电保护装置能够做到有选择性的对出现故障的部分进行处理,另一方面保证无故障部分的正常运行,这样便可以保证整个电力系统的稳定及电力供应的连续。

1.2.2 快速性特征

快速性特征是继电保护装置高效率的体现,在电力系统出现故障时,继电保护装置能够在第一时间切断故障系统,从而减轻故障设备和线路的损坏程度。

1.2.3 可靠性

可靠性是指电力系统继电保护装置在处理问题和故障时要科学可靠,减少不必要的损失。继电保护的常见故障

2.1 设备故障

继电保护装置是电力系统中不可或缺的一部分,是保护电力系统的基础和前提。一般设备有装置元器件的损坏、回路绝缘的损坏以及电路本身抗干扰性能的损坏,具体的表现为整定计算错误,这主要是由于元器件的参数值和电力系统运行的参数值与实际电流传输的参数值相差甚远,从而造成整定计无法正常工作。还有,设备很容易受到外界因素的影响,如温度和湿度。由于设备具有不稳定性,很容易由于温度和湿度的变化而造成定值的自动漂移,有时候也可能是因为设备零部件的老化和损坏造成的。

2.2 人为操作

人为原因一般就是工作不够细心,对系统内各项设备数值的读数观察不够仔细,导致读错设备整定器上的计算数值,导致继电保护故障,且对故障的检查技术水平不够,无法及时准确地发现故障段,从而造成大面积的电路故障问题,导致系统无法正常供电。

当工作电源出现问题时,电力系统保护出口处的动作过大,造成电路内波纹系数过高,输出的功率就不够,电压便会不稳定,当电压降低或者电流过大时,如果保护行为不恰当极容易出现一系列的继电保护故障。继电保护典型故障的防治策略

3.1 元件替换法

元件替换法,顾名思义,就是用正常的元件将出现故障的元件替换下来,这样能够将故障范围迅速缩小,提高维修人员的维修效率,因此是机电保护装置故障处理中经常用到的方法。

3.2 参照法

参照法是指通过对不同设备的技术参数的对照,找出不正常设备的故障点。此法主要用于检查认为接线错误,定值校验过程中发现测试值与预想值有较大出入又无法断定原因之类的故障。另外需要注意的是,在继电器订制校验时,若发现某一直继电器的测试值与整定值相差很多,那么此时要用同只表计去测量其他相同回路的同类继电器进行进一步的比较,错误的做法是在发现数值不同时,轻易调整继电器的刻度表。

3.3 短接法

短接法是缩小故障范围常用的一种方法,是将回路某一段或一部分用短接线接入为短接,进而判断出故障是存在短接线的范围还是范围外。短接法对判断电磁锁失灵、电流回路开路等故障具有明显的优势。

3.4 继电保护典型故障的预防措施

3.4.1 构建完善的电力管理体系是基础

构建完善的电力管理体系是预防电力系统继电保护故障的基础,构建该体系需要做好以下工作:

首先要逐步形成科学有序的管理体系,这其中,一支高素质的管理队伍是不可或缺的,这需要电力企业加强对管理人员和工作人员的培训,使其掌握电力系统管理的知识技能。另外管理体系内的各个部分要职权分明、责任落实,这样才能保证管理体系的井然有序和正常运作。

其次,完善的监测评价体系也是十分必要的。监测评价体系具有监督指导的作用,通过建立该体系,在全电力系统中形成严谨的工作氛围,有利于很大程度上提高电力工作的质量,进而能够及时正确的发现继电故障,将故障消灭在萌芽状态,从而保障电力系统的有序运行。

3.4.2 加强电力系统的技术管理是核心

技术管理作为降低继电保护故障率的核心,具有十分重要的意义。可以通过采用先进的技术来提高电力系统的智能化水平,从而有效减少继电保护故障的发生。

第一,提高电力系统的自动化水平。在设计和开发电力系统时,要加强新技术的开发和应用,包括自动控制技术和智能技术。这样电力系统出现故障时,智能化技术便能有效避免继电保护障碍的发生。

第二,运用新技术来增加电力系统设备的承受能力。比如,继电保护中使用CPU容错技术。由于CPU容错技术具有一定的恢复能力,所以它能够在更大程度和范围内降低电力系统硬件问题带来的影响,从而起到保护继电保护装置的作用。

3.4.3 提高电力工作人员的素质

电力工作人员素质是影响电力系统管理水平的重要因素。因此,电力企业要加强对电力工作人员业务素质的培训教育,提高其责任意识和安全意识,并通过一些业务培训,提高其实际操作能力,促使电力企业员工能够更好的处理电力系统中出现的各种问题。

参考文献

[1]蒋陆萍,胡峰.冷建群.继电保护故障快速查找的几种典型方法及应用[J].电力系统保护与控制,2009(18).[2]刘亚玉.分析备自投装置的启用与运行接线方式的关系[J].继电器,2007(19).[3]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006(04).作者单位

国网甘肃省电力公司检修公司 甘肃省酒泉市 735000

第四篇:开关柜典型故障分析

高压开关柜典型故障分析

电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行维护等方面均存在不同程度的问题,因而开关柜事故率比较高,危及人身、电网和设备安全,影响供电可靠性。

一、下面列举几种类型的开关柜事故(故障)案例:

(一)开关柜防爆性能不足或防误性能不完善,危及人身安全; 由于开关柜防爆性能不足或防误性能不完善,近几年省内外发生多起人身伤害事件,以下列举四起事故:

1.2006年2月 24日,某 220kV变电站 10kV高压开关柜(GGX2型)由于馈线故障,开关发生拒动,运行人员在处理开关拒动过程中,当拉开开关,确认开关位置指示处于分闸位置后,操作拉开隔离刀闸时,发生弧光短路,造成 2人重伤 1人轻伤。事故后现场检查发现:该开关操作机构 A、B相拐臂与绝缘拉杆连接处松脱,造成 A、B相主触头未分开,在操作拉开隔离刀闸时发生弧光短路。由于906柜压力释放通道设计不合理,下柜前门强度不足,弧光短路时被电弧气浪冲开,造成现场人员被电弧灼伤。开关柜的上述问题是人员被电弧灼伤的直接原因。

2.7月 1日,某单位发生一起因变电运行人员擅自打开10千伏开关柜柜门,误碰带电部位造成的人身触电死亡事故。设备缺陷是事故发生的又一间接原因。由于 6522A相刀闸动触头绝缘护套老化,松动后偏移,刀闸断开时护套卡入动触头与刀闸接地侧的静触头之间,造成刀闸合闸时卡涩合不上。且该 GG-1A型高压开关柜系 60年代设计的老旧产品,96年生产,97年投运;原安装有机械程序防误锁,于 2002年改造为微机防误装置,由于此型号的高压开关柜原设计不完善,不能实现线路有电强制闭锁。

3.2009年9月30日,某220kV变电站发生一起10kV开关柜内部三相短路,电弧产生高温高压气浪冲开柜门,造成2名在开关柜外进行现场检查的运行值班员被电弧灼伤,其中1人于10月1日死亡。

4.2010年8月19日,8月19日,某单位在更换某220kV变电站10kV I段母线PT过程中,工作班成员触碰到带电的母线避雷器上部接线桩头,造成2人死亡、1人严重烧伤。

初步分析,事故主要原因为厂家设备一次接线错误。根据国家电网公司典设和设备订货技术协议书,10千伏母线电压互感器和避雷器均装设在10千伏母线设备间隔中,上述设备的一次接线应接在母线设备间隔小车之后(见附图1)。而开关柜厂家在实际接线中,仅将10千伏母线电压互感器接在母线设备间隔小车之后,将10千伏避雷器直接连接在10千伏母线上,导致拉开10千伏母线电压互感器9511小车后,10千伏避雷器仍然带电(见附图2)。

变电站运行人员按照工作票要求,拉出10千伏Ⅰ段母线设备间隔9511小车至检修位臵,断开电压互感器二次空开,在Ⅰ段母线电压互感器柜悬挂“在此工作”标示牌,在左右相邻柜门前后各挂红布幔和“止步,高压危险”警示牌后,向调度汇报。变电站运行人员与工作负责人一同到现场对10千伏Ⅰ段电压互感器进行验电,由于电压互感器位臵在9511柜后,必须由施工人员卸下柜后档板才能进行验电,在验明电压互感器确无电压之后,运行人员许可施工人员工作。由于电压互感器与避雷器共同安装在10千伏Ⅰ段母线设备柜内(见附图3),施工人员在工作过程中,触碰到带电的避雷器上部接线桩头,造成人员触电伤亡。

图1:

附图2

附图3:

(二)开关内设备接(触)头过热性故障

封闭式开关柜在运行中不能打开,因此难以测量运行中柜内接(触)头的实际温度,如不及时发现并处理接(触)头过热性缺陷,严重威胁电力安全生产。固定式开关柜每个进出线间隔共有负荷电流流过的33或39个接(触头),小车移动式开关柜每个进出线间隔共有负荷电流流过的24个(或更多)接(触头)。这些接(触)头直接流过负荷电流,当负荷较大时存在隐患的接(触)头就会严重发热。由于发热点在密封柜内,运行中的柜门禁止打开,值班人员无法通过正常的监视手段发现发热缺陷。一旦触头发热严重必然造成事故发生,影响系统安全运行。下边四起故障分析。

1.2007年2月3日23时59分,某变电站10kV电容器组III644开关跳闸,保护装置显示“过流I段动作”。现场检查发现,10kV配电室有浓烟,10kV电容器组III开关柜下部有着火现象。第二天检查情况:10kV电容器组III 644开关柜内B相CT和铝排连接处松动引起发热导致该处烧断和热缩材料燃烧,A、C相也有放电痕迹。

2.2009年8月16日晚,某变电站发生10kV开关柜故障,烧损多面开关柜。

10kV农专Ⅰ线柜(开关、CT、静触头及套管、母排及相接铜排、母排套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;出线电缆头轻微灼伤);

A相 B相 C相

开关 电缆头及CT 母线

10kV下白货柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);

母排 保护及二次控缆

10kV医院Ⅰ柜(母排、母排套管、静触头及套管、保护测控装置、屏顶小母线、电度表、二次控缆烧损;相接铜排、开关、CT、出线电缆头轻微灼伤);

保护及二次控缆 母排

故障原因分析:10kV农专Ⅰ线开关柜由于隔离插头接触不良,开关长期在满负荷运行,触头发热引起梅花触头的弹簧退火变形,失去弹性,造成该隔离插头接触电阻变大,运行中发热烧熔,烧损触头周围的绝缘件,最终绝缘击穿,造成触头相间短路故障。

2.2010年8月12日某变电站#1主变低压侧631开关因发热造成开关柜内部三相短路烧毁。

初步分析是:1#主变 10kV侧 631手车开关柜内断路器 A相母线侧梅花插头(上侧)与静触头间接触不良发热,最终发展成梅花插头对静触头电弧放电,导致真空断路器铜触指严重烧损,散热件熔化,穿墙套管烧毁并产生大量的含有金属离子、碳合物的烟气,造成母线三相对地短路(见附图)。

1#变母排开关开关柜接线图

断路器A相触指被电弧烧损。

3.2006年3月8日,某单位在处理某变电站#1主变10kV侧61A3刀闸缺陷时发现:⑴、61A3刀闸断不开,外观检查静触指存在局部过热痕迹。⑵、#1主变10kV侧61A1刀闸下断口A相丢掉两只静触指,静触头夹紧弹簧有过热的痕迹,C相静触头夹紧弹簧有过热的痕迹(有三只弹簧熔在一起),C相支柱绝缘子上有被热气薰的痕迹。⑶、10kV分段回路6001刀闸下断口C相丢掉一只静触指,静触头夹紧弹簧有过热的痕迹(有一只弹簧熔在一起),上断口也存在类似的问题。

该变电站该段母线的开关柜型号为GGX2,61A1、61A3刀闸和10kV分段回路6001刀闸均为户内高压旋转式隔离开关,型号均为GN30-10,4S热稳定电流均为40kA,额定电流:3150A(61A1、61A3刀闸)、2000A(6001刀闸)。

动静触头过热的原因分析:这种刀闸合闸时,静触指与静触座间有间隙,接触的点、面少,在通过大电流时,固定静触指与夹紧弹簧的螺栓和夹紧弹簧参与分流、导电,造成有些螺栓烧断(静触指丢落的原因)和夹紧弹簧过热退火,也造成动、静触头接触不是很好,造成动静触头局部过热、熔焊。

161A1刀闸C相触头的过热情况

图2 61A1刀闸A相触头的过热情况

图3 10kV分段回路6001刀闸的过热情况

图4 丢落的静触指和烧断的固定静触指、夹紧弹簧的螺栓

(三)小动物进入开关柜引起短路故障

2006年9月14日,某单位某变电站#1主变后备保护动作,跳三侧开关。检查发现,10kV开关室烟雾弥漫,10kVI、II段母线联络柜内6001刀闸与10kV母联600开关之间连接线发生相间短路,10kVI、II段母线联络柜下柜门被冲开,下柜门上的观察窗与、断路器前柜门上电磁锁被高温熔化,后柜门下方被电弧烧个洞。10kVI、II段母线联络柜底部有只毛烧光的死老鼠,隔壁柜(备用柜)底部电缆孔洞未封堵(该开关柜原为运行间隔,配网调整间隔,该柜内电缆调到其它开关柜,电缆抽走后孔洞未封堵),10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔未封堵。

故障原因分析:老鼠从隔壁柜电缆孔进入,再经10kVI、II段母线联络柜与隔壁柜间的接地铜排穿孔爬到10kVI、II段母线联络柜,老鼠活动时引起短路。

(四)开关柜内组件绝缘爬距或绝缘距离不足引起开关柜故障 早期投运的开关柜支持瓷瓶及电流互感器等的外绝缘爬距较小,当运行中绝缘表面出现凝露或有污秽时,系统中出现不高的过电压或运行电压下发生绝缘件沿面闪络。还存在对地和相间距离不够,在系统单相接地谐振或雷电等过电压情况下,直接造成对地或相间击穿。

《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)高压开关柜中各组件及其支持绝缘件的外绝缘爬电比距(即高压电器组件外绝缘的爬电距离与额定电压之比)相应值的应用范围应不小于 18mm/kV。单纯以空气作为绝缘介质的开关柜,柜内各相导体的相间与对地距离、手车开关隔离触头与静触头绝缘护罩的净空气距离、相间隔板与绝缘隔板的净空气距离:12kV为125mm,40.5kV为300mm。

《户内交流高压开关柜订货技术条件》(DL 404-1997)规定:在金属封闭式高压开关柜中,凡采用非金属制成的隔板来加强相间或相对地间绝缘时,7.2~12kV高压带电裸导体与该绝缘板间还应保持不小于30mm的空气间隙;40.5kV,保持不小于60mm的空气间隙,且为阻燃材料制成。

2008年9月6日,某变电站#1主变差动速断动作跳闸。从现场检查分析认为:#1主变中压侧33A开关柜过压保护器的A、B相跳线(从固定铝排引至过压保护器的连接铜线)过长,跳线弯曲弧度较大,A、B相跳线同时侧向绝缘隔板,其跳线与绝缘隔板的电气距离(最小处)仅5cm左右。A、B相跳线之间的绝缘仅通过绝缘隔板隔离,长时间运行中造成A、B相跳线对绝缘隔板放电,绝缘档板被碳化后,绝缘破坏并击穿,引起A、B相短路。

A相

B相

(五)开关柜组件质量(如过电压保护器、传感器等)劣引起开关柜故障

1.9月30日8时31分,某变电站10kV中亭I线633开关因过流Ⅰ段保护动作跳闸。现场检查10kV中亭I线633开关柜内过电压保护器A、B相爆炸,该开关柜前柜门下柜门被冲开,前柜门中柜门(断路器前门)轻微变形,柜内其他设备未损伤。

2.2004年11月10日,某110kV变电站因10kV开关短路引发10kV母线故障,造成该变电站全停及10kV部分设备严重损坏。

现场检查情况:最严重的母联刀闸柜的带电显示器传感器(福州高新高压电器有限公司产品)烧损情况:发现A、B相已烧成灰,C相略好;结合刀闸触头烧损情况:C相触头基本完好、A相略有烧损、B相最为严重。推测故障是从B相带电显示器引发,导致电弧相间短路。

为了进一步验证造成本次事故的原因,对开关柜内未损坏的带电显示器传感器,抽两只传感器进行解剖,发现内部芯棒填充剂软化,存在绝缘薄弱点。由于10kV系统出现失地引起过电压,使传感器内部局部放电,逐步发展为贯穿性击穿,造成相间短路。

此外,开关柜故障的原因还有检修预试时在开关柜遗留工具或短接线接地线、误操作等。开关柜故障往往会出现“火烧连营”事故,多面开关柜被电弧烧毁,“惨”不忍睹。造成事故扩大的原因主要有三点:首先,由于开关柜母线室是连通的,当一个间隔故障时,电弧侵犯邻柜造成“火烧连营”;其次,继电保护整定配合不尽合理,保护动作时间过长或保护有缺陷不动作靠上一级保护动作隔离故障,故障时间长造成电弧损害加重;最后一个原因则是高压电弧故障时引起保护损坏或直流电源故障,造成保护失灵,短路长时间不消失,整个高压室几乎所有的开关柜均烧毁,最后连主变lOkV低压架空母线都被弧光烧断,直至越级跳闸,往往连主变也被长时间短路所损坏。

二、防范措施:

(一)加快老旧开关柜(如GG1A、GGX2、XGN型等)改造或完善化大修。各单位要按《关于印发2008-2010年县供电企业电气设备技改、大修指导性意见的通知》(生变〔2007〕145号)加大老旧开关柜技改力度,运行时间短、达不到技改的条件的开关柜要按省公司完善化方案开展完善化大修。

开关柜内绝缘可靠性低的酚醛环氧类绝缘子和爬距不足的绝缘子安排更换为符合要求的瓷绝缘子。母线加阻燃热缩绝缘套,绝缘套本身应耐受20 U,的交流耐压,目的是防止小动物爬人柜内造成短路,也可防止因烟气、游离气体进人时空气间隙绝缘降低造成的弧光短路。

(二)做好开关柜订货、出厂前验收、安装与验收管理工作 根据国际、电力行业标准和《预防交流高压开关事故措施》(国家电网公司生〔2004〕641号)、《预防12kV-40.5kV交流高压开关柜事故补充措施》(国家电网生〔2010〕811号)、《福建省电力有限公司户内交流金属封闭高压开关柜订货技术规范》(闽电生产〔2008〕480号)等文件,做好开关柜招标文件、订货技术协议的审查工作,开关柜出厂前赴厂验收,开关柜安装调试过程安排专业人员开展技术监督工作,组织做好开关柜投产前的验收工作。

把好10kV开关柜的选型及采购关。选型要注意开关设备有关参数是否满足现场运行条件。对开关柜所配的元件应严格把关,尽量选用运行情况良好的产品;并要求验收时,开关设备配置要有各元件试验报告,特别是带电显示器的传感器的局放试验报告,杜绝不良设备入网。

(三)加强巡视运行管理

1.加强巡视中的安全管理,巡视或操作时应严格按照安规和标准作业文本(含标准巡视卡)或 PDA以及操作票的要求进行,巡视或操作时着装应规范,并注意站位。

2.开关柜操作前应确认柜内断路器和隔离开关的实际状态,进行倒闸操作时,应严格监视设备的动作情况,如发现机构卡涩、动触头不能插入静触头、合闸不到位等,应停止操作,待缺陷按规定程序消除后再行操作。3.对防误、防爆等功能不符合规范要求的开关柜,应逐一列出清单,做好危险点分析和预控措施,纳入红线设备管理,并根据红线设备要求在开关柜面板上张贴标识,有计划地安排改造。

4.巡视中应注意开关柜的门和面板是否锁紧,对螺栓丢失、损坏的,应及时上报缺陷处理。

5.严格按照《福建省电力有限公司高压带电显示装置管理规定》的要求,做好开关柜带电显示装置的巡视和维护工作,确保带电显示装置工作正常。

6.对重负荷的开关柜,应重点巡查。无法开展柜内测温的开关柜,可检查柜体温度是否异常。

7.加强保护定值及压板投退管理,避免由于定值或压板投退错误造成事故扩大。

8.在开关柜配电室配置通风、防潮设备和湿度计,并在梅雨、多雨季节或运行需要时启动。

(四)加强检修维护管理

1.开关柜检修重点对触头接触情况(有无过热变色的痕迹)、柜内电气主回路连接螺栓紧固、传动部件轴销的固定情况、机构辅助开关接触、操作机构手车轨道及闭锁装置部件是否有机械变形或损坏等情况等进行检查。对于变电站电容器组等操作频繁的高压开关柜要适当缩短巡视检查和维护周期。

2.已运行的开关柜结合停电检查,开关柜底部以及柜与柜间孔洞是否封堵,有无小动物进入的可能。3.检修试验结束后,应重点检查开关柜有无遗留工具、物件以及试验用的短接线、接地线。

4.由于GGX2、XGN等型号开关柜选用运行中易造成发热的旋转隔离开关(如GN30-12型隔离开关),应结合停电检查隔离开关触头(含弹簧)有无过热或烧损,重点为大电流开关柜(如主变进线柜、分段开关柜等)。

5.对重负荷且无法开展测温的开关柜尽快安排停电检查,可选一、二座变电站尝试安装开关柜在线测温装置。

6.结合停电检查开关柜各相带电体之间、相对地之间空气距离是否符合规范要求(如35kV开关柜的为300mm,10kV开关柜的为125mm)。

7.结合停电检查开关柜的机械联锁,是否满足“五防”要求。检查开关柜内手车活门打开、关闭是否灵活正常。

(五)10、35kV出线多的变电站安排10、35kV系统电容电流测量,10kV电缆线路电容电流达30A和35kV系统电容电流达10A需安排安装消弧线圈。10—35kV母线PT安装消谐装置。

第五篇:直流系统典型故障分析与对策

直流系统典型故障分析与对策

设备工程部 张建全

【摘要】本文介绍了直流系统的常见配置、绝缘监察装置的原理和数学模型,针对发电厂直流系统的接地、交流窜入直流、寄生回路等典型故障,分析了不同故障产生的原因及分析方法,总结了应对直流系统典型故障的对策,以期为设计、检修及维护人员的直流改造、设备验收、故障消除等工作提供一定的参考。

【关键词】直流系统 直流接地 交流串入直流 寄生回路 引言

直流系统作为电力系统的重要组成部分,为一些重要负荷、继电保护及自动装置、交流不停电电源(UPS)、远动通讯装置、控制及信号回路提供稳定可靠地工作电源。发电厂直流系统所接设备多、回路复杂,常因回路设计不完善、误接线、元件生产工艺落后以及在长期运行中环境的改变、气候的变化引起的电缆及接头老化等问题,不可避免的会出现直流接地、交流串入直流、不同直流系统间形成寄生回路等故障,这些故障不仅会造成直流电源的短路、引起熔断器熔断或电源开关断开,使电力设备失去控制电源;甚至会引起信号装置、继电保护及自动装置、断路器的误动或拒动,引发电力系统故障乃至事故,从而对发电厂、电网的安全稳定运行构成威胁。因此关于直流系统的可靠性与安全性以及如何迅速有效的解决故障等问题,得到了研究、设计、检修及维护人员的广泛关注。2 直流系统的配置、绝缘监察原理和数学模型 2.1 直流系统的常见配置

直流系统的常见配置如图1所示。直流系统由两个子系统构成,每个子系统都有独立的充电机、蓄电池组和绝缘监察装置。两个直流子系统通过直流分电屏分别提供两组直流母线KM1(控制母线电源1)、BM1(保护母线电源1)和KM2(控制母线电源2)、BM2(保护母线电源2)。将保护装置的直流电源与操作控制的直流电源分开,以保证双重化配置的两套保护的直流电源、两个控制回路的控制电源相互独立[1]。

图1 直流系统的配置

2.2 绝缘监察装置的原理和数学模型

直流绝缘监察装置的原理如图2所示,虚线内为主机内部分,主机检测正、负母线对地电压,通过对地电压计算出正负母线对地绝缘电阻,当绝缘电阻低于设定值时,装置报警。

图2 直流绝缘监察装置原理

其中,R+为直流正母线对地电阻值,R-为直流负母线对地电阻值,V1为直流正母线对地电压值,V2为直流负母线对地电压值,R1、R2为装置内设定电阻,R1=R2,数学模型如下:

当K1闭合,K2打开,测得一组V1,V2实际数值,得出方程(1)

V1/V2=(R1//R+)/R-(1)

当K1断开,K2闭合,测得一组V1’,V2’实际数值,得出方程(2)

V1’/V2’=R+/(R2//R-)(2)联立方程(1)、(2)即可求得正、负母线的对地电阻值R+、R-,当计算值R+、R-低于设定值时,装置报出正、负接地告警信号。3 直流系统典型故障及分析 3.1 直流系统接地

直流系统接地故障因其发生率高、危害性大而成为发电厂电气维护工作中的一个顽疾。在丰润热电公司两台机组运行5年发现的电气二次缺陷中,直流系统接地故障占有很大的比例。仅2011年涉及直流接地故障就有5次之多。

当直流系统发生一点金属性接地时,因其不能形成回路,不会产生短路电流,故不会影响设备继续运行,但是必须及时消除。否则,再发生另一点金属性接地,就有可能构成接地短路,造成继电保护、信号、自动装置误动或拒动;造成直流保险熔断,使继电保护及自动装置、控制回路失去电源,从而引发电力系统严重故障乃至事故[2]。

3.1.1直流正极两点接地导致误动

直流正极两点接地有使继电保护及自动装置、断路器线圈误动的可能,如图3所示,若A、B两点接地,则KA1、KA2的接点被短接,KM将误动跳闸。若A、C两点接地,则KM接点被短接从而引起相关开关误跳闸。同理,正极两点接地还可能造成误合闸,误报信号。

图3 直流系统接地情况图

3.1.2直流负极两点接地导致拒动

直流负极两点接地有使继电保护及自动装置、断路器线圈拒动的可能,如图3所示,若B、E两点地,则KM线圈被短接,保护动作时KM线圈不动作,开关不会跳闸。若D、E两点接地,则LT线圈被短接,保护动作及操作时开关拒跳。同理,负极两点接地开关也可能合不上闸,信号不能报出。3.1.3正负极两点接地引起熔丝熔断

当直流正负极两端两点接地时,如图3所示,当A、E两点接地时,将引起熔丝熔断。当B、E和C、E两点接地,保护又动作时,不但断路器拒跳,而且熔丝会熔断、可能烧坏继电器的触点[3]。3.2 交流串入及耦合电容对直流系统的影响

在电厂、变电站现场除了直流回路外,还存在着大量而广泛的交流回路,例如照明及墙壁电源、低压电动机交流控制、电压互感器以及电流互感器二次回路等。由于他们的一端是连接大地的,这些回路与直流回路串电时,不仅导致直流系统接地[4],甚至引起保护及自动装置的误动作。

2010年6月丰润热电公司1号机机炉PC A段进线等三个进线开关跳闸,跳闸前DCS系统检测到直流负母线发生过接地故障。经检查发现某端子箱内交、直流相邻端子有短接烧黑痕迹,确定因此发生了220V交流电串入直流负端。直流负端串入交流电压后,DIC对DI的电位某些时刻超过动作电压值,同时因为DI端存在的耦合电容导致DI端的电位不能发生突变(电容特性),导致DI的两端存在大于动作值的电位差,测控装置检测到DI动作,开关发生跳闸。

图4 模拟实验原理图

我们对相关测控装置进行了交流串入直流的模拟实验,原理如图4所示,K1、K2、R1、R2为绝缘检查装置内部元件,监察原理如2.2所述,在控制回路负端加入交流220V电压,当耦合电容达到0.4μF时,光耦发生了偏转。

从而可以得出结论:因控制线路教长而存在耦合电容,当耦合电容达到一定量时,若发生直流负极接地或负极串入交流电源信号时将导致光耦电路产生电平变位。同理若直流正极或外部分闸接点下口线路发生交流串入,风险等同。3.2 寄生回路造成接地假象

2013年8月,丰润热电公司I、II段两独立直流系统的绝缘监察装置同时报警,I段母线发负接地信号,I号绝缘监察装置显示正母线对地电压为230V,负母线对地电压0V;II段母线发正接地信号,II号绝缘监察装置显示正母线对地电压为0V,负母线对地电压-230V。同时启备变B套保护装置告警。经查在B套保护装置的操作箱内“显示与复归”板件端子焊点处有短路烧黑痕迹。其板件原理图如图5所示,板件元件布置情况如图6所示。

图5 显示与复归原理图

图6 板件实际布置图

因板件焊点9J1ac4和焊点9J1ac5在板件上的距离接近,制造工艺不良,再加上环境变化及积尘的影响导致了两个焊点间的短路。从而形成寄生回路将II段直流正电与I段直流负电短接。两段直流短接后形成了一个端电压为460V的电池组,中点对地电压为零,又因为每组直流系统的绝缘监察装置均有一个接地点(原理见2.2),短路后直流系统中存在两个接地点。所以II段直流系统的绝缘监察装置判断为正极接地,I段直流系统的绝缘监察装置判断为负极接地。4 直流系统典型故障相应对策

鉴于直流系统的重要性、故障造成的危害性以及现场环境的复杂性,如何将风险降至最低,如何将缺陷消除于萌芽,如何迅速有效的解决故障成为继电保护设计、制造和检修维护人员紧迫问题。为此,本文针对上述直流系统典型故障进行分析并总结相应对策,已期能够为相关人员提供一定的参考。

(1)对于运行环境复杂、环境恶略的场所的直流电缆,在设计、建设施工期间的电缆选型应考虑足够的备用芯,检修维护人员可利用设备停修的机会,对直流回路进行绝缘测试做好记录,并进行劣化分析。对于绝缘水平低,或出现接地芯线时可及时更换。当直流系统发生一点接地故障时,虽不至引起危害,但必须及时消除,以免发生两点接地给系统造成影响。对于直流系统接地故障的查找方法和注意事项可参见相关规程,本文不再赘述。

(2)为避免交流串入直流的影响,应在端子箱或屏柜端子处将交流端子做明显的标识,并与直流端子以明显距离隔开。同时直流回路继电器与交流继电器、接触器、小开关等设备保持相当的距离,以免交流回路的电压切换中产生电弧将交流电压引入直流回路[2]。为避免直流长线路耦合电容的影响,可在控制回路,特别是跳合闸出口回路加装大功率的重动继电器。

(3)对于设备数量多、回路复杂的发电厂直流系统,由于输煤、除灰、废水等辅助系统的工况和环境恶略,建议将这些辅助系统的直流电源与主系统的直流电源分开布置,以提高主系统运行的可靠性。

(4)为防止出现寄生回路并造成影响,除了在直流回路的设计、改造、施工、验收中严格审核把关外,还可以在定期检验过程中以测量两组独立的直流系统之间的绝缘的方法进行检验。对于板件内回路应尽可能采用弱电源设计,且两组不同的直流回路之间应留有足够的绝缘距离,提高制造工艺,以防焊点接近虚接而形成寄生回路。

(5)加强日常巡检及特巡力度、保持电缆沟排水通畅,定期清扫灰、粉尘、检查接线端子发热情况,二次回路退出运行或多余的电缆头应包扎好,工作完毕注意清理现场勿将金属零件遗留屏内,保持好设备的运行环境。

参考文献

[1]甘景福 直流系统间的寄生回路造成的直流接地假象 华北电力技术 2004.2 41-42; [2]谭重伟,梅俊,欧阳德刚 500kV变电站直流系统故障分析与应对措施 湖北电力2006,30(6),9-11;

[3]毛锦庆,等。电力系统继电保护实用技术问答 中国电力出版社,1999;

[4]余育金 变电站直流系统接地故障分析、查找及处理 广西电业 2007.1(82)90-91;

下载船舶发电柴油机的管理与典型故障分析(推荐阅读)word格式文档
下载船舶发电柴油机的管理与典型故障分析(推荐阅读).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电力系统继电保护典型故障分析

    电力系统继电保护典型故障分析 案例11 施土留下隐患,值班员误碰电缆断面线路跳闸 事故简况:1989年2月16日,绥化电业局220kV绥化一次变电所值班员清扫卫生中,见习值班员齐××在......

    柴油机转速失控的故障分析及改进措施(精选五篇)

    柴油机转速失控的故障分析及改进措施 1 前言 阳泉运用车间配属 14 台东风 4 型内燃机车,担当石太线 7 对客车牵 引任务, 由于长大坡道多、 机车长时间高负荷工作, 动力室振动较......

    电梯典型故障分析及处理方案

    电梯典型故障分析及处理方案 摘要:当今社会发展迅速,高层建筑早已走上时代舞台,而高层建筑离不开电梯的使用,为了确保电梯的安全、有效运行,完善高层建筑功能,本文总结分析了时下......

    电梯典型故障分析及处理方案

    电梯典型故障分析及处理方案 摘要:伴随我国社会经济与科学技术水平的不断发展,城市化大力推进,人们的生活水平货的普遍提高。随着大量人口向城市的不断涌入,高层建筑也越来越普......

    燃气轮机运行典型故障分析及其处理

    燃气轮机运行故障及典型事故的处理 1 燃气轮机事故的概念及处理原则 111 事故概念 燃气轮机事故指直接威胁到机组安全运行或设备发生损坏的各种异常状态。凡正常运行工况......

    故障处理及典型案例分析讲义..

    故障处理及典型案例分析讲义 事故处理的一般原则 调度机构值班调度员是其调度管辖范围内电网事故处理的指挥者,对事故处理的正确性和迅速性负责,在处理事故时应做到: 1、尽速......

    典型船舶保安案例分析(大全五篇)

    ★典型船舶保安案例分析 案例一: “TWX”轮在船舶失去动力的情况下成功击退海盗 一、成功击退海盗的战斗经过 “TWX”轮执行第9航次从上海开往乌克兰等国的生产任务,当船舶......

    汽车典型ABS的结构原理与故障分析

    汽车典型ABS的研究 Representative ABS of automobile research (申请学位) 专业:汽车制造预装调技术 学生: 指导教师: 副教授 长春汽车工业高等专科学校 二○一○年 月 1 独创......