接地材料的选择及其应用

时间:2019-05-13 05:40:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《接地材料的选择及其应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《接地材料的选择及其应用》。

第一篇:接地材料的选择及其应用

接地材料的选择及其应用

一、引言

接地网是接地系统的基础,由接地环(网)、接地极(体)和引下线组成。过去常接地环作为接地的主体,很少使用接地体。接地要求不高或地质条件相当优越的情况下,接地环的确有效,在通常情况下,接地环可以起到辅助接地的作用,主导作用是用接地体来完成的。

决定接地电阻大小的因素很多,我们以接地环作接地主体的情形来分析传统地网接地电阻的计算公式。

式中:

ρ(Ω.m)-----土壤电阻率;

d(m)------------钢材等效直径; S(m2)---------地网面积; H(m)------------埋设深度; L(m)------------接地极长度 ; A---------------形状系数。

式(1)表明,传统的接地方式在土壤电阻率已经确定的情况下,要想达到设计要求的电阻必须有足够的接地面积,要降低接地电阻只有扩大接地面积,每扩大4倍的接地面积,接地电阻会降低一倍。

式(2)、(3)表明,在上述的接地网中,要降低接地电阻的另一个方法是加大接地材料的尺寸,但耗材太大,效果并不理想。

单使用接地环要达到某个接地电阻值,与接地环包围的面积S和土壤电阻率有关。以一个城市常见的土壤电阻率200Ω.m为例,要做接地电阻1Ω的地网需占地10000m2。对于大型建筑物而言,本身占地很大,考虑到要求独立地的设备,一个地网是不够的。在高楼林立、寸土寸金的城市和地形复杂的山地,很难有满足大面积施工的场地和土质,即时地理条件许可,由于开挖量大、耗材多,费工费料,工程造价相当高。所以,需要运用更好的接地材料和施工设计方法。

二、接地材料

广泛使用的接地工程材料有各种金属材料、接地体、降阻剂和离子接地系统等。金属材料如扁钢,也常用铜材替代,主要用于接地环的建设,这是大多接地工程都选用的;接地体有金属接地体(角钢、铜棒和铜板)这类接地体寿命较短,接地电阻上升快,地网改造频繁,维护费用比较高;从传统金属接地极(体)中派生出的特殊结构的接地体(带电解质材料),使用效果比较好,一般称为离子或中空接地系统;另外就是非金属接地体,使用比较方便,几乎没有寿命的约束,各方面比较认可。

以下着重介绍降阻剂、非金属接地模块和离子接地系统。

1、降阻剂

降阻剂分为化学降阻剂和物理降阻剂。化学降阻剂自从发现有污染水源和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。现在较先进的降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:电化学防护,致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是施工工艺都已相当成熟。

2、非金属接地体

非金属接地体在通讯、广电等部门有广泛应用。它是由导电能力优越的非金属材料复合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法;机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或大冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体是不受腐蚀的接地体,其稳定性、环境适应性、使用寿命都是现有接地材料中最好的,不需要定期改造和维护。非金属接地体施工需要的地网面积比传统接地面积小很多,但是,在不同地质条件下,也需要保证足够的接地面积才可以达到良好的效果。

3、离子接地系统

离子接地系统是传统的金属接地改进而来,从工作原理到材料选用都有脱胎换骨的变化,形成各种形状的结构。这些接地系统的共同点是结构部分采用防腐性更好的金属,内填充电解物质及其载体组分的内填料,外包裹导点性能良好的不定性导电复合材料,一般称为外填料。接地系统常用的金属材料有不锈钢、铜包钢和纯铜材。不锈钢的防腐较钢材好,但是在埋地环境中依然会多多少少的锈蚀,以不锈钢为主体的接地系统不宜在腐蚀性严重的环境中使用。表面处理过的铜是很好的抗锈蚀材料。铜包钢是铜-钢复合材料,钢材表面覆盖铜,由套管法或电镀法生产,表面铜层的厚度从0.01mm到0.50mm,厚度越厚防腐效果越好。纯铜材料防腐性能最好,但是成本太高。由于接地系统大多向垂直方向伸展,所以接地面积很小,可以满足地形严重局限的工程需要。特别是,补偿类型的接地系统有加长的设计,笔者曾使用过加长至24米的接地系统,辅以深井法施工,可以达到非常好的效果。

三、接地材料应用

通常的防雷接地的接地电阻是10Ω,实际上有弱电设备的感应防雷都要求4Ω或1Ω的接地电阻。常常有个误区,认为作到10Ω、4Ω或1Ω的接地电阻就满足了设计要求,而没有考虑季节因数。因为,土壤电阻率是随季节变化的,规范所要求的接地电阻实际上是接地电阻的最大许可值,为了满足这个要求,地网的接地电阻要达到: R=Rmax/ω 式中

Rmax----接地电阻最大值,就是我们说的10Ω、4Ω或1Ω的接地电阻 ω-----是季节因数,根据地区和工程性质取值,常用值为1.45 所以,我们所说的接地电阻实际是: R=6.9Ω--------Rmax=10Ω R=2.75Ω------Rmax=4Ω R=0.65Ω-------Rmax=1Ω

这样,地网才是合乎规范要求的---在土壤电阻率最高的时候(常为冬季)也满足设计要求。接地工程本身的特点决定了周围环境对工程效果的决定性影响,脱离了工程所在地的具体情况来设计接地工程是不可行的。设计的优劣取决于对当地土壤环境等诸多因数的综合考虑。土壤电阻率、土层结构、含水情况、季节因数、气候以及可施工面积等等因数决定了接地网形状、大小、工艺材料的选择。

1、降阻剂

地网设计中的重要参数之一就是岩土的土壤电阻率,此外,还要考虑开挖(钻进)难度、破碎还是整体岩石、持水能力等因数。

有的岩土电阻率高,但是在整体岩石之间常有较好的土壤间隙层,在这样的环境中,避开整体岩石,在间隙中开挖填灌降阻剂效果很好。阿坝卡吉岭通讯基站,土壤电阻率4500Ω.m,原联合地网接地电阻率68Ω,上述施工后接地电阻降为9.4Ω。

2、非金属接地模块

一般来说,湿润的土壤导电性较好,但是,实际工程中我们发现,当含水量超过饱和以后,接地效果反而不好。当接地体深入到地下潮湿层时,降阻效果会好得多。例如,云尾移动通讯站,土壤电阻率测量值1200Ω,使用240只接地模块,接地电阻值达到1Ω以下;同样的,柯壶口变电所也是1200Ω的土壤电阻率,地表是破碎沙石层,但是开挖150mm发现潮湿土层,埋设接地块80只,原预计达到4Ω的地网,结果达到了1.2Ω。

3、离子(中空)接地系统

施工环境常常受到各种条件的制约,按照理想的模式考虑大面积的地网有时是不现实的。

有专家认为,接地面积一定后,如果接地极长度不超过地网1/20,要想突破局限是不可能的,即使做成整块铜板也没有用的。实践中也应证了这一理论。所以,当地形局限时,我们可以考虑地网的纵深方向,使用离子接地系统或深井施工工艺。西昌某航天观测站,土壤电阻率1100Ω.m,设备需要4Ω信号-屏蔽独立地,考虑季节因素,应作到2.75Ω,而可供施工的面积只有8平方的狭长位置,采用加长(20m)离子接地系统3套安装后,达到2.5Ω的接地电阻。

四、施工工艺

正确的施工工艺才能达到良好的设计效果,看起来不重要的实施细节常常导致严重的后果。因为接地工程是隐蔽工程,当施工完成后,错误不一定马上可以检测到,即使发现问题补救也是很麻烦的,尤其是防腐细节。

使用接地快时,埋设应尽量选择适合的土层进行,预先开挖80-100cm的土坑(平埋),底部尽量平整,使埋设的接地块受力均匀。接地块水平设置,用连接线使连接头与接地网连接,用螺栓连接后热焊接或热融接,焊接完成以后应去处焊渣等,再用防腐沥青或防锈漆进行焊接表面的防锈处理,回填需要分层夯实,保证土壤的密实和接地块与土壤的接触紧密,底部回填40-50cm后,应适量加水,保证土壤的湿润,令接地块充分吸湿。使用降阻剂时,为了防腐,包裹厚度应在30mm以上。接地用的钢材一般有50mm×50mm×4mm或50mm×50mm×5mm角钢;40mm×4mm或40mm×5mm的扁钢;ф 50mm、h>3mm的钢管。若包裹厚度为30mm,地网开挖直径尺寸应在130mm。对水平扁钢来说,由于地面开挖高低不平,扁钢本身弯曲不直,在施工中许多部位刚刚被降阻剂盖住。这样,钢材实际上处在两个介质的交界处,大大地加快了腐蚀程度,因此地网开挖尺寸也应该加大。我们认为垂直极灌降阻剂直径以130—200mm为好,水平沟以150mm×100mm为好(扁钢竖放)。这样做的开挖工程量和降阻剂用量都会增加,但从整体降阻、防腐效果看是合理的。离子接地系统埋深一般为3000-4000mm,当加长时相应加深,有条件的用钻机施工。孔径保证100-250mm(根据接地系统的形式选择)。施工中应保证导电辅料包裹密实,消除空管和气泡。

五、综述

接地材料是接地的工作主体,材料的选择很重要。不同的接地材料各有优势和局限。工程实践中要因地制宜地合理选用接地材料,用较低的代价达到工程设计要求。

第二篇:变电站接地网材料的选择

变电站接地网材料的选择

编辑:万佳防雷-小黄

电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。

一、变电站接地网作用概述

接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。

二、变电站接地网常用材料比较

目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。

1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。

2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。

3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。

现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的外加剂成分等方法。降阻剂的使用,应掌握其施工技术,以达到最佳的效果,物理降阻剂有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。

4、离子接地系统。离子接地系统是传统的金属接地改进而来,从工作原理到材料选用都脱胎换骨的变化,形成各种形状的结构。这些接地系统的共同点是结构部分采用防腐性更好的金属,内填充电解物质及其载体组分的内填料,外包裹导电性能良好的不定性导电复合材料,一般称为外填料。接地系统的金属材料已经出现的有不锈钢、铜包钢和纯钢材的。不锈钢的防腐较钢材好,但是在埋地环境中依然会多多少少的锈蚀,以不锈钢为主体的接地系统不宜在腐蚀性严重的 环境中使用。表面处理过的铜是很好的抗锈蚀材料,铜包钢是铜-钢复合材料,钢材表面覆盖铜,可以节约大量的贵金属-钢材。套管法活电镀法生产,表面铜层的厚度为0.01mm到0.50mm,厚度越厚防腐效果越好。纯铜材料防腐性能最好,但是要耗用大量的贵金属,在性能要求较高的工程中使用。由于接地系统大多向垂直方向伸展,所以接地面积大多要求很小,可以满足地形严重局限的工程需要。

三、接地材料的具体选用

不同的行业,不同的地域使用的接地材料也不尽相同,不同的接地材料有着不同的特点,根据其特点结合环境使用是接地工程前期应该考虑的问题。

目前市场上使用率最高的接地材料还是金属材料,主要有铜板、角钢和扁钢等,但是由于接地环境的不同和用户需求也不尽相同。在有些环境和情况下是不适合使用金属接地材料的,例如在高腐蚀土壤中金属接地材料在很短的时间久被腐蚀而丧失接地的功能。同时,从造价方面来考虑,使用金属材料的传统接地,在工程造价上可能不会太高的,但是它的使用寿命短,使用非金属接地体要比金属材料的传统接地高一些,但其使用寿命要比传统接地的寿命高出好几倍,根据其寿命传统接地平均每年造价不低于3-4千元,而非金属接地体根据其寿命平均每年造价不高于3-4百元,这还不包括因地网不合格改造的工程费用,这些都是应该在选择接地材料时加以考虑的。

此外根据环境不同采用不同的材料作为接地体也是延长有效接地寿命的方法。离子接地棒适合在城市不具备施工空间的地方使用,例如城市建筑群等,而对于山地条件则比较适合使用非金属接地棒,由于在山地离子棒自身的吸水性并不能满足自身稳定接地电阻的需要常常要增加盐类,而岩石环境又是失水环境,所以这种环境下就应该选用吸水性好的具有较高强度 的非金属接地棒作为接地体,同时在野外也要考虑使用离子接地棒的可能丢失问题,在一般土壤环境比较适合使用压制的非金属接地体和金属接地体。

四、结束语

在变电站建设中,把接地做好是很关键的一件事,这也是复杂的系统工程,在不同的条件下选用适合的接地材料,在有限的资金情况下,做好一个合格的地网不仅要考虑资金的因素更要考虑性能因素。在现代随着微电子技术的迅猛发展,它对环境要求也越来越高,有一个很小的流涌就可以使设备损坏,人们对接地系统的重视程度也逐步提高,接地做的好与坏直接关系到设备能否正常运行,是否有安全隐患的大问题。因而,对接地材料性能、适用环境进行详细的了解是选择好的接地材料,做好接地网建设的重要因素。

第三篇:配电网中性点接地方式的选择

配电网中性点接地方式的选择

随着城市电网的不断发展,电缆在我国许多城市电网中的使用率越采越高,许多公用变电站的出线已大部分或全部改成电缆线路,电缆线路的大量应用在提高配电网供电可靠性的同时也带来了新问题,即电力系统电容电流的不断增长,如实测的某城市配电网电容电流高达200A以上,如此大的电容电流将严重危及配电设备的安全运行。本文比较了中性点经小电阻接地和经消弧线圈接地的优缺点,分析了电网结构、变压器连接组别对中性点接地方式的影响,针对接地电阻阻值的选择、安装位置以及消弧线圈补偿形式的优化提出了新观点。

中性点接地方式的现状

长期以来解决电缆导致电力系统电容电流过大的问题主要有两种方法,即中性点经消弧线圈接地和中性点经小电阻接地。

20世纪80年代以前,我国在35kV配电网中大多采用经消弧线圈接地方式,最近十几年以来陆续有城市采用小电阻接地方式,如上海、天津;这两种接地方式在10kV配电网中均有应用。

实际上,究竟采用哪一种方式在我国的理论界和工程界中也存在着分歧。文规定:“3—10kV架空线、35kV、66kV系统,单相接地故障电容电流超过10A,或3—10kV电缆线路系统单相接地故障电容电流超过30A时,应采用消弧线圈接地方式”;同样文中还有这样的规定:“6—35kV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术的要求以及本地的运行经验等”、“16kV和10kV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振、间歇性电弧接地过电压等对设备的损害,可采用高电阻接地方式”。文规定:“35kV、10kV城网中以电缆为主的电网,必要时可采用中性点经小电阻或中电阻接地,确定中性点接地方式时,必须全面研究供电可靠性、健全相工频电压升高、对通讯线路的干扰影响、继电保护的灵敏度和选择性等方面”。从这两个标准的规定来看,两种接地方面均可采用,具体采用哪一种应根据各地实际情况选择,标准针对10kV架空线系统和电缆系统给也了两个限值10A和30A,但对于实际电网中最为常见的混合系统没有做出明确规定。

小电阻接地方式与消弧线圈接地方式的比较

传统理论认为中性点经小电阻接地方式有以下优点:单相接地时,健全相电压升高接续时间短对设备绝缘等级要求较低,一次设备的耐压水平可按相电压来选择;单相接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可比较容易地切除接地线路。但同时也存在以下缺点:由于接地点的电流较大,零序保护如动作不及时,将使接地点及附近的绝缘受到更大的危害,导致相间故障的发生;永久及非永久性的单相接地线路的跳闸次数均明显增加。例如,根据深圳供电局梅林变电站的统计数据,该站改造为中性点经小电阻接地之前的两年中10kV线路共跳闸53次,改造后的三年中10kV线路共跳闸136次。

中性点经消弧线圈接地方式有以下优点:单相接地时,由于消弧线圈的电感电流可抵消接地点流过的电容电流,使流过接地点的电流较小,可带单地故障运行2h。对于配电网中日益增加的电缆馈电回路,虽然接地故障的发生概率有上升的趋势,但因接地电容电流得到补偿,所以单相接地故障并不会发展为相间故障!但采用该种接地方式时,系统有可能因运行方式改变造成欠补偿从而引发谐振过电压。目前运行在配电网中的消弧线圈的结构多为手动调匝,必须退出运行才能调整,且在线实时检测电网单相接地电容电流的设备很少,因此消弧线圈在运行中不能根据电容电流的变化及时地进行调节,不能很好地起到补偿作用。青岛电网内一电容电流水平较高的35kV系统依靠6台消弧线圈补偿,自2000年初至2003年7月共发生单相接地故障24次,其中发展成永久性跳闸事故的有15次。

中性点经小电阻接地时,原则上一个配电网中只能有一个接地点,否则会导致零序电流过大,进而损坏设备或使保护失去选择性:中性点经消弧线圈接地时,接地点的数目标不受奖限制,可在该系统电源侧只设置一台消弧线圈接地来进行集中补偿,也可在负荷侧公用变电站的高压侧设置多台消弧线圈来进行分散补偿,或者均采用。电容电流的估算

选择某系统的中性点接地方式时,应先了解该系统的电容电流大小,计算电容电流大小的方法有直接试验法、间接试验法、精确计算法、图表估算法、经验估算法等。最简单方便的是经验估算法,即根据经验公式和本系统内架空线路和电缆线路的长度粗略估算电容电流 IC=(I+k)∑icn(1)式中IC为系统电容电流之和;k为由配电设备造成的电网电容电流的增加百分比,对于10kV系统取16%、对于35kV系统取13%;∑icn 为架空线路和电缆单相接地的电容电流之和,任一线路的单相接地电容电流icn为 icn=KUeL(2)式中Ue为线路额定电压,kV;L为线路长度,km;K为经验系数,如计算线路为架空线路,有、无避雷线时K分别取为0.0033、0.0027(木杆塔、金属或水泥杆塔时再增大10%—12%),计算线路为电缆线路时,K的计算公式为:K=(95+1.44S)/(2200+0.23S),S为电缆芯线截面积,mm2。

根据式(1)、(2)可容易地计算出电容电流,对于10kV配电网,如电缆线路超过16km,电容电流将超过29.7A。考虑到一般10kV系统一段母线上的出线不多于6回,可得到如下结论:在负荷密度较大、供电半径较小的城市10kV配电网中,可采用10kV母线分列运行的方式将电容电流限制在30A以下,从而可采用投资较小的中性点不接地运行方式。而对于35kV配电网而言,一旦电缆线路超过2km,电容电流就会超过30A。

需说明的是,电缆线路的电容电流可由试验得到的三相电容值计算得到,而电缆的三相电容值测试是交接试验中的常规项目。因此计算K的经验公式仅供参考。变压器连接组别对中性点接地方式的影响变压器连接组别对中性点接地方式的影响很大。主变压器绕组的连接组别主要有△、Y0两种。对于10kV配电网,由于受客观条件的限制只能采取集中设置中性点接地装置的模式。对于35kV配电网,根据电源侧变压器二次线圈和负荷侧变压器一次线圈的不同连接组别,可列出如下常见的几种组合形式:

(1)△-Yn(不是表示某台变压器的连接组别,而是表示某线路两端变压器连接组别的配合,下同):采用经小电阻接地或消弧线圈集中补偿的接地方式时都必须采用专用的接地变制造一个中性点,也可借助于二次变电站的一次线圈侧引出的中性点而采用消弧线圈分散补偿接地方式。

(2)△-△:经消弧线圈接地或经小电阻接地都必须借助接地变,因此只能选择集中接地模式。(3)Y0-△:这是一种非常适合采用集中设置接地的情况,可经消弧线圈接地也可经小电阻接地,但并不适用于分散补偿的接地模式。

(4)Y0-Y0:这是一种最为灵活的组合形式,理论上经小电阻接地、消弧线圈集中补偿及消弧经线圈分散补偿均可采用。但实际配电网中由于受变压器连接组别的限制,很少出现这种组合形式。有些地区为了应用这种组合形式,对35KV主变压器采取了特殊的Y0/Y0/△连接组别,其中的△绕组是平衡绕组,仅用于提供三次谐波电流通道。

采用中性点经小电阻接地方式时应注意的问题

(1)一次设备绝缘水平的选择。中性点经小电阻接地后,由于发生单相接地时非故障相的工频电压升高值较小,且故障切除时间较短,因此广州、北京的部分电网选用了相电压水平的产品,如电缆、避雷器等,运行情况良好。而上海供电公司仍按照中性点不接地方式选择设备,认为即使采用小电阻接地,暂态过是压也可能达到相电压峰值的2.5倍。

(2)零序电流水平和接地电阻的选择。IEEEl43标准规定,15K及以下的低电阻接地方式电网中工业设施的接地故障电流应限制在400A以下:上海的35KV配电网将零序电流限制在2KA或1KA以下,天津的35KV配电网将零序电流限制在1.3KA以下。一般来说,中性点电阻可按如下公式选择:R=UP/(2—3)IC(3)式中R为中性点电阻,Ω;UP为系统相电压,V;IC为系统单相接地时的电容电流,A。实际上由式(3)计算出来的中性点电阻值是一个满足继电保护装置动作要求的最大值,实际应用时可选择为比计算值稍大的数值。上海电网的实际经验表明,选择较高的接地电流水平有利于使整定值躲过区外单相接地故障时由电流互感器和零序滤过器误差所引起的不平衡电流且有助于零序电流保护各级之间的配合,及满足高电阻接地时动作灵敏系数的要求。中性点电阻值如选择得过低,将造成两个不利的后果:对通信线路干扰大,增加了人身触电的危险性。根据日本的经验,架空线路系统中性点电阻中的电流为100-200A时及以电缆为主的配电网中性点电阻的电流为400~800A时,单相故障接地电流对通信线路的干扰不大。由上海市区供电公司的经验得知,35KV系统中性点电流在2KA以下未收到干扰通信线路的报告,由广州电网的试验结果得知,电力电缆与通信电缆在马路两侧敷设电缆时零序电流为1kA、平行距离为1km时,其电磁感应电压约为30V,远小于430V的限值,但未给出同沟敷设时的试验数据。因此只要在敷设电缆时选择合适的路径,即可将大接地电流对通信线路的影响降到可以接受的程度。但据文推算,将接地故障电流限制在800~2000A以下时,假设沿自然分布的钢筋混凝土电杆进行接地,则人站在距电杆1m处、手触及电杆裸露钢筋时会有6KV以上的接触电压。因此作者认为,接地电流选择在几百安培较为稳妥。

(3)接地电阻安装位置的选择。接地电阻必须安装在电源侧变电站,一般可直接安装在变压器中性点处。但如果此处变压器的连接组别为△接线,如前文所述,接地电阻需借助于接地变“制造出”的中性点才能够安装,接地变的安装地点有两选择:母线上或主变压器出口。作者认为接地变应安装在主变压器的出口处,主要原因是既不占用出线间隔的位置,又可提高供电可靠性。

(4)选择中性点经小电阻接地方式时,一个系统中只能有一个接地点,不允许两个或更多的中性点电阻并列运行,且不允许失地运行。因此理想方式是中性点电阻与主变压器同步投切。例如,一变电站35kV侧主接线形式为单母线分段,每段母线上有一台主变。两段母线并列运行时,应只投入一个接地电阻;分列运行时,每段母线均投入一个接地电阻;一台主变停电,另一台主变带全站负荷运行时,也应只投处一个接地电阻,且最好投入运行主变侧的接地电阻,以免出现主变保护动作眺开分段开关后运行母线失去中性点的情况。采用中性点经消弧线圈接地方式时应注意的问题

(1)集中补偿与分散补偿的比较。实际应用中两者的不同主要表现在补偿容量上。国内厂商能够提供的消弧线圈最大容量是2.4MVA,能够补偿大约110A的电容电流,因此,消弧线圈集中补偿方式最大只能补偿100安左右的电容电流,而分散补偿方式可以补偿的电容电流在理论上是无限的。例如,德国柏林一个30KV电缆网络的电容电流曾高达4KA,共采用41台消弧经圈进行补偿,其单台补偿电流为40-I70A,运行状况良好。但分散补偿受线路运行方式的影响较大。假设某系统的正常残流水平为7A,如此时有一条线路跳闸,且这条线路的末端装有补偿电流为25A的消弧线圈,则该系统中的残流将变成18A的容性电流,这对于系统的安全运行有负面影响。

(2)消弧线圈容量的计算。一个系统中所需配置的消弧线圈补偿容量的计算公式为

Q=I.3ICUe/√3(4)式中Q为消弧线圈实补偿容量,kVA;Ue为系统额定线电压,KV;IC为该系统电容电流总和,A。

(3)自动补偿的问题。近10年来,国内厂家制造出了能够在运行状态调整消弧线圈容量的有载调节开关,也开发出了能够自动测量系统电容电流值并据此自动调整消弧线圈运行挡位的装置,在实际工程应用中发现,在采用消弧线圈分散补偿的系统中如装设两台或更多的具备自动调整功能的消弧线圈会出现冲突的情况。因此在一个系统中只能投入一台具备自动调整功能的消弧线圈。

(4)长期以来在中性点经消弧线圈接地的配电网中如何准确选择单相接地故障线路是一个难题,现在有的配电网中采用消弧线圈并联短时投入的中值电阻的方案解决此间题效果良好。国内已开发出一种通过瞬时改变消弧线圈短路阻抗来改变消弧线圈补偿度,再根据非故障线路的零序电流在该过程中基本不变而故障线路有明显变化这—理论进行故障选线的装置。但这两种方法都不适用于消弧线圈分散设置的35KV配电网。缺少一种不依赖于专用零序电流互感器即可准确进行故障选线的小电流选线装置仍是影响中性点经消弧线圈接地方式应用的主要因素。在处理系统接地故障中,作者曾多次遇到将某段母线上所有线路均试验—次才能找到故障线路的尴尬局面。

综上所述,作者认为设置消弧线圈的理想办法是在系统电源侧变电站配置一台具有尽可能大可调容量(至少要达到100A)的消弧线圈,该消弧线圈应装设在线测量电容电流和自动调整容量的装置。同时根据系统的电容电流水平分散设置足够数量的消弧线圈(不必具备自动调整功能),分散设置的消弧线圈单台容量不要超过集中设置的消弧线畔的调节能力。电源侧的消弧线圈应正常运行在公接挡位的中间位置。以减小运行方式改变时分散布置的消弧线圈突然退出运行给系统补偿能力带来的影响,此外应尽可能地配备高质量的小电流选线装置。

结语

中性点经小电阻接地及经消弧线圈接地这两种方式各有优缺点。各地区在选择接地方式时应根据电网结构、电容电流水平,变压器连接组别、电缆化比例、负荷重要程度等实际情况进行综合经济技术比较后决定,作者认为,在一个电缆化率极高的配网中应优先考虑小电阻接地方式,而以于实际电网中大量存在的混合系统仍应该采用消弧线圈接地方式。

来源:摘自2004.9《电能效益》

第四篇:系统安全接地

接地的分类

安全接地工作接地屏蔽接地

安全接地

设备金属外壳等的接地

用电设备的绝缘物质层由于受到了外部的机械损伤、系统过电压或者本身老化等原因而导致绝缘性能大大降低时,设备的金属外壳、操作手柄等导电部分出现较高的对地电压。人触及这些部位时,会发生触电危险。因此凡是人可接触的部位(如外壳、框架、机座、操作手柄等金属部件)都必须接地,称为安全接地。

第五篇:接地管理制度

淄博齐翔石油化工集团有限公司

接地线使用管理规定

为适应齐翔公司快速发展的需要,规范电气人员的操作行为,现对2008年编制的《电气运行规程》中有关接地线部分进行修订。本规定适用于齐翔公司所有变配电所。

第一章接地线的管理 第一条管理职责

1、班长应全面掌控所辖各变配电所的接地线,每周至少检查一次接地线的外观、标号、摆放及外借情况;检修期间应每天检查及掌握接地线的使用情况。班长不在时,由班组技术员代行班长职责。

2、值班人员负责值班期间接地线的装设、拆除,对本班次的接地线的使用负有直接责任。

3、工作负责人有责任对工作区域接地线的装设及拆除进行二次检查。第二条管理规定

1、每个配电室应配有两组接地线,接地线应统一编号。

2、接地电线应悬挂在指定悬挂处,接地线编号应与悬挂处编号一致,且悬挂位置应是配电室显著位置。

3、值班人员在拆除接地线后,应第一时间将接地线悬挂于指定悬挂处。

4、检修工作需要装设接地线时。在接地线装设完毕后,值班人员必须在其相应工作票上填写:何时何位置装设员必须在其相应工作票上填写:何时何位置拆除

5、值班人员应将本班接地线情况记入值班记录,交班时进行必要的交接。第三条接地线的外借。

1、接地线一律不得外借,确因特殊情况外借时,外借单位应书面申请,经公司领导批示及班长签字后方可外借。

2、接地线外借后,值班人员应在值班记录上做好记录,记录内容包含何人何时借走*号接地线。

3、外借接地线必须在第四条接地线的定期检查与检验

1、定期检查。(1)接地线的所有夹头与软导线的连接是否可靠。(2)夹头活动机构是否灵活,夹头夹力是否足够,对于公共端为螺旋紧固的夹头,检查螺纹旋转部分是否灵活。(3)检查绝缘手柄是否有断裂。(4)接地线的标号是否齐全准确。

2、定期检验。

24小时内归还。

2)号接地线。在接地线拆除后,值班人1(或

2)号接地线。

(或

(1)检验周期为半年一次,(2)检验内容:手柄绝缘、接地导线直阻。第二章 接地线的装设

第五条接地线的装设一律由值班人员负责。

第六条值班人员装设接地线前必须穿戴与操作电压相匹配的高压绝缘手套、高压绝缘靴。如果地面绝缘情况不好,应增设与操作电压相匹配的绝缘垫。

第七条操作人员打开柜门前应先核对柜号,检查工作票、操作票与自己所站柜号是否一致。

第八条装设接地线前应先用与操作电压相匹配的高压验电笔验电。验电前应检查验电笔是否良好,再进行验电。在确认断电后方可装设接地线。第九条 第十条 第十一条接地线装设情况进行二次检查。第十二条位置装设1(或第三章 接地线的拆除第十三条修完毕。确认设备检修完毕标准:

1、所有检修人员已经撤离检修设备。

2、所有个人工具及公共工具已清点,无工具遗漏。

3、检修设备已通过电气试验及电气测试,符合送电要求。

4、如果检修是在电缆的电源侧和负荷侧同时进行,应以两侧全部检修完毕,且负荷侧施工负责人到电源侧办理锁票后,方可认为检修完毕。第十四条第十五条第十六条第十七条线拆除情况进行二次检查。第十八条拆除1(或2本规定自

接地线装设完毕后,在接地线装设完毕后,2)号接地线。

拆除接地线前,接地线的拆除一律由值班人员负责。拆除接地线的顺序为:先拆除母线(或导线)端,后拆除接地端。值班人员第一时间将接地线悬挂于指定悬挂处。接地线拆除后,工作负责人、工作许可人、在接地线拆除后,2011年10

工作负责人、工作许可人、班长或技术员应对

值班人员必须在其相应工作票上填写:在何 工作负责人、工作许可人、班组技术员确认设备检

班长或技术员应对接地值班人员必须在其相应工作票上填写:在何位置日执行。

淄博齐翔石油化工集团有限公司机动部

二0一一年九月二十五日

装设接地线的顺序为:先接接地端,后接导体端。装设接地线后,应在本柜体正面显著位置挂“已接地”标示牌。)号接地线。

月1

下载接地材料的选择及其应用word格式文档
下载接地材料的选择及其应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    铜质接地网在发电厂的应用趋势20070823

    铜质接地网在发电厂中的应用趋势 铜质接地网在发电厂中的应用趋势 在电力系统中,我们为了工作和安全的需要,必须对发电厂或变电站某些设备进行接地,为设备的工作或故障电流雷......

    接地安全论文

    《电气安全技术与接地》 课程论文 摘 要 雷电是十分常见的自然现象,地球上任何时候都有雷电活动。据统计,地球上每天发生800余万次的电闪雷鸣,几乎每秒有100次,每年因为雷击......

    防雷接地施工

    1. 第一节、雷电概述 雷击是年复一年的严重自然灾害之一。随着我国现代化建设的不断提高,通信、控制等弱电设备越来越多,规模越来越大。一方面大型电子计算机网络,程控交换机组......

    电焊机接地规范

    电焊机接地线接地要求1、接地导线应大于4mm2,采用铜芯多股软线。 2、多台电焊机不得串联共用同一根接地线。 3、不得在易燃易爆气体、液体、蒸汽等金属管道上做接地。 4、电......

    作业指导书 综合接地

    综合接地作业指导书1.施工说明本站综合接地网由水平接地体、垂直接地体及接地引出线组成。2.工艺流程基坑开挖至坑底标高后,按设计位置人工配合小型挖机挖沟,施作水平接地体。......

    防雷接地验收报告

    防雷接地申请验收报告 致四川石化原油储备库工程仓储运输部: 中国石油四川石化100x104m3原油储备库工程开工时间为2008年12月31日,施工单位为大庆油田建设集团有限责任公司,总......

    接地网安装标准

    接地网安装标准 一、 电气装置的下列部分均应接地: 1、 变压器、油开关、35PT、35CT、所用变、刀构架等金属底座和外壳。 2、 控制保护用二次线等及外壳等可靠接地。 3、 控......

    什么叫工作接地

    ⒈什么叫工作接地,保护接地,保护接另,重复接地?为什么要采用这些接地? ⑴工作接地:电力系统中某些点为了电气设备的正常工作而做的接地。⑵保护接地:将电气设备的金属外壳用导......