第一篇:材料芯片与材料基因组
SHANGHAI JIAO TONG UNIVERSITY 课程论文
《材料芯片与基因组》
论文题目:
第一章 材料基因组计划
1.1 提出背景
金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。
美国科学院和工程院共同设置的国家研究理事会在2008年发表了题为《集成计算材料工程》的报告。报告明确指出了传统材料设计的方法和系统面临的问题:
① 现代的计算工具已经从根本上大大缩短了新产品设计的时间,材料设计却没有相似的可靠而普适的计算工具,使材料设计主要靠试验,从而导致材料设计远远落后于新产品设计;
② 太长的材料设计周期和低成功率使得新材料在新产品中的使用越来越少,从而导致非最佳的材料被用在产品中;
③ 用于产品的材料性能欠佳而成为制约产品性能设计的瓶颈,造成恶性循环。
应对美国提出的材料基因组研究计划,对我国如何规划、开展实施自己的科学计划提出建议并进行深入的研讨,在中国科学院和中国工程院的推动下,于2011年12月21—23日在北京召开了S14次香山科学会议。在此前召开的由两院部分院士参加的筹备会上,大家认为:“材料科学研究成分—结构—性能之间的关系,从新材料的发现、合成、性能优化、制备、应用、回收再利用,既有基础科学,又有工程科学,是一个系统工程。”因此,一致同意把那次会议定名为“材料科学系统工程”香山科学会议。
结合我国的国情,材料界的专家学者提出建设发展符合中国材料领域的“材料科学系统工程”,具体包含如下建议:
1)共用平台协同建设。建立几个集理论计算平台、数据库平台和测试平台“三位一体”的“材料科学系统工程中心”,结合国家大科学工程设施,集中国内材料计算与模拟领域优势力量,通力合作,跟上并引领国际材料领域新一轮发展的浪潮。
2)重点材料示范突破。选择几项国家急需的、战略需要的、国内有良好基础的结构材料和功能材料作为示范突破,通过与平台建设相结合,进行演示示范,为更大范围的推广积累经验。
3)产业链条协同创新。成立一个包括政府机构、科学家和产业代表在内的指导协调委员会,全面协调从材料基础研究、软件开发、数据库建立、测试平台直至产业化的各项工作,以充分发挥我国社会主义制度在统筹科学研究和产业化革命的优越性;建议有条件的教育机构开设相关课程。
1.2 基因组计划
1.2.1基本内容
从宏观上讲,所谓材料基因组可以理解为反映材料某种特性的“基本单元”及其“组装”。基本单元是指能直接反映材料性能差异的最小物质单元,不同材料基本单元是非唯一的,可以是组成物质的任何自然存在的原子、分子、电子、离子、单一相等物质粒子,也可以是这些物质组合而形成的团簇、单元或组合相。而组装是指将这些相同或不同的基本单元以某种工艺或技术结合,形成大尺寸材料。
美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,重点包括以下3方面的内容:计算工具平台、实验工具平台和数字化数据(数据库及信息学)平台。如图1所示:
图1材料创新框架
材料基因组技术包括高通量材料计算模拟、高通量材料实验和材料数据库三大组成要素;其中材料计算模拟是实现“材料按需设计”的基础,可以帮助缩小高通量材料实验范围,提供实验理论依据;高通量材料实验起着承上启下的角色,既可以为材料模拟计算提供海量的基础数据和实验验证,也可以充实材料数据库,并为材料信息学提供分析素材,同时还可以针对具体应用需求,直接快速筛选目标材料;材料数据库可以为材料计算模拟提供计算基础数据,为高通量材料实验提供实验设计的依据,同时计算和实验所得的材料数据亦可以丰富材料数据库的建设。
1.2.2 高通量材料计算模拟
材料基因组技术中所指的高通量计算,是指利用超级计算平台与多尺度集成化、高通量并发式材料计算方法和软件相结合,实现大体系材料模拟、快速计算、材料性质的精确预测和新材料的设计,提高新材料筛选效率和设计水平,为新材料的研发提供理论依据。其中并发式材料计算方法包括第一原理计算方法、计算热力学方法、动力学过程算法等,跨越原子模型、简约模型和工程模型等多个层次,并整合了从原子尺度至宏观尺度等多尺度的关联算法。
1.2.3 高通量实验
“材料高通量实验”是在短时间内完成大量样品的制备与表征。其核心思想是将传统材料研究中采用的顺序迭代方法改为并行处理,以量变引起材料研究效率的质变。
作为“材料基因组技术”三大要素之一,它需要与“材料计算模拟”和“材料信息学/数据库”有机融合、协同发展、互相补充,方可更充分发挥其加速材料研发与应用的效能,最终使材料科学走向“按需设计”的终极目标。当前,即使在材料计算模拟技术领先的欧美国家,由于受到目前计算能力、理论模型和基础数据的限制,绝大多数材料计算结果的准确性还远不能达到实验结果水平,难以满足实用要求。因此,在由传统经验方法向新型预测方法的过渡中,高通量实验扮演着承上启下的关键角色。首先,高通量实验可为材料模拟计算提供海量的基础数据,使材料数据库得到充实;同时,高通量实验可为材料模拟计算的结果提供实验验证,使计算模型得到优化、修正;更为重要的是,高通量实验可快速地提供有价值的研究成果,直接加速材料的筛选和优化。随着中国材料科技的快速发展和材料基因组方法在研发中不断被广泛采用,高通量实验的重要性将日益彰显。
1.2.3.1 高通量实验制备技术
高通量实验中组合材料样品的制备一般分为“组合”与“成相”2个步骤:1)将多个元素系统性地进行混合,以获得所需的材料成分“组合”;
2)通过扩散或者热力学过程形成晶相或非晶相材料,即“成相”。组合材料样品的制备方法种类繁多,可根据不同应用领域的要求灵活选用。包括:基于薄膜沉积工艺的高通量组合制备技术(基于薄膜形态的组合材料芯片是目前发展最为成熟的高通量材料制备技术。
1.2.3.2 材料高通量表征工具:
高通量微区成分、结构表征:同步辐射光源在从红外至硬X射线全光谱范围内均能实现高亮度微聚焦,同时还具有高准直性、全光谱、高偏振、高纯净等优秀特性,从而能够很好地满足高通量组合材料样品所需的亮度和空间分辨率要求,因此是理想的高通量组合材料表征测试手段。
高通量微区光学性质表征:现有的连续光谱椭偏仪商业产品可提供10μm的空间分辨率和比较广的光谱范围,可用于高通量微区光学性质的表征。除连续光谱椭偏仪外,激光椭偏仪、阴极荧光计、光致荧光测试仪均可实现高通量微区光学性质表征。
高通量微区电磁学性能表征:衰逝微波探针显微镜的微区分辨率是普通的电磁仪表难以实现的,配以自动化的样品台控制和数据采集,可以实现组合材料芯片的高通量、全自动电磁学特性测量。
高通量微区热力学性能表征:利用飞秒脉冲激光技术进行时间域热反射成相,可以达到1μm的空间分辨率和10000点/h的测试速率,广泛适用于薄膜及体材热力学参数的微区表征,包括导热系数、热膨胀系数、熔点、热力学参数(Cp、H,等)、热电参数等。
高通量微区电化学性能表征:美国PrincetonAppliedResearch,AMETEK,Inc.开发的VersaSCAN微区电化学扫描系统是以电化学过程和材料电化学特性为基础的高通量微区电化学测试平台,可提供6种微区电化学测试技术,包括扫描电化学显微镜、扫描开尔文探针、扫描振动电极测试、微区电化学阻抗测试、扫描电解液微滴测试、非接触式微区形貌测试。
1.2.4材料数据库
近年来,大数据这一概念在科学与工程领域兴起并快速扩展,引起大量不同领域研究者的广泛兴趣。现代科学与工程的各个的领域都会涉及大数据概念。湍流模拟过程中追踪流场演变错产生的数据、分子动力学模拟金属塑性变形过程中存储原子空间位置所产生的数据、望远镜资料库中记录星体光谱信息的数据。
基于材料基因组技术的材料发展计划将大数据概念与传统的材料发展紧密联系在一起。从材料、工艺,直到最终的结构件,需要涉及大量的、不同类型的数据。图2为不同阶段、不同尺度范畴结构材料涉及的图像以及背后存在的潜在海量数据大数据概念已经深人到材料科学与工程的各个方面,如材料成分筛选、工艺优化、微结构机理分析、以及物理与力学性能评估等。就一种特定的材料而言,完整的数据信息由结构性数据与非结构性数据构成。结构性数据包括化学成分、加工与热处理艺、微观组织特征、物理性能、以及力学性能(如强度、伸长率、疲劳寿命、裂纹扩展速率、蠕变速率、温度与应变率敏感性等)非结构性数据包括测试用的仪器设备、测试与检测标准、测试环境温度与气氛条件等影响实验数据适用范围、可靠性与置信度等限制性条件,以及为便于数据传播与理解的解释性信息。
图2 跨越不同尺度的结构材料图像
材料数据分为计算数据和实验数据。长期以来,材料数据研究处于单打独斗和小规模的“数据制造-简单处理”模式,往往采用图表和统计方法等传统低通量人工数据处理方法,针对单次或数次计算、实验得出的少量数据进行分析,并对其规律进行猜想和提出经验公式,无法严谨预测和深度挖掘材料本质科学规律,造成材料研究经验结论多于理论的现状,无法完成从“试错”材料研究向材料理性设计的转变,同时也使得相同工作盲目重复进行,极大地浪费了有限的科研资源。
为解决上述问题,目美国麻省理工学院建立的Materials Project数据库,主要集中在无机固体上,尤其以锂离子电池材料为主。Materials Project利用密度泛函理论(density functional theory)收集的巨型数据库来预测模拟物质模型的实际属性。目前该数据库里保存了大约10万种可能存在的材料。为了充分发挥这些据在新材料研发中的作用,研究人员用人工筛选结合机器学习的方式来探索这些数据间蕴含的材料本质性能规律。Materials Project采用分布式计算的原理,使用者可以通过在电脑上下载一个程序来进行运算并返还结果。
美国哈佛大学清洁能源计划建立起来的Molecular Space数据库也是基于密度泛函理论,采用人工加机器学习的方式来挖掘数据库的潜力。目前,Molecular Space数据库在网上发布了230万种元素组合供研究人员使用。
日本国立材料科学研究所建立的材料数据库是在其原有的11个材料数据库基础上整合建立的,涵盖了聚合物、无机非金属材料、金属材料、超导材料、复合材料以及扩散等内容,是目前世界上最大的、最全的材料数据库系统。目前,其含有数据库及应用系统已达到20个,包括8个材料基本性能数据库,3个工程应用数据库,5个在线结构材料数据库以及4个数据库应用系统。目前注册用户超过80000名,分别来自149个国家的21228个组织机构。
1.3 基因组总体目标
2011年6月,美国总统巴拉克·奥巴马在卡耐基·梅隆大学的演讲中宣布了“先进制造业伙伴关系”计划,材料基因组计划是其中的一个重要组成部分.他明确指出了材料基因组计划的总体目标:“将先进材料的发现、开发、制造和使用的速度提高一倍” 《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享(利益通过学习标识以解决知识产权问题),目标是把新材料研发周期减半,成本降低到现有的几分之一,以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,加强美国的国际竞争力。
1.4 培育下一代材料工作者“材料基因组计划”
提出、建立所需网络共享结果和信息,打破材料固有分散多学科性质形成的障碍;建立基础设施并签署协议,促进学术界、政府和工业界的合作,让研究人员、教师和学生都有机会充分利用各种基础设施。根据该计划,2012财年,美国政府将投入1亿美元,拟用数年时间在各个部门之间开展一系列的联合研究行动:①美国能源部(DOE)科学办公室将与国家科学基金会(NSF)携手开发、维护和实施可靠、可互操作和可重复使用的下一代物质设计软件。DOE将通过“材料和化学计算设计”项目,NSF将通过“21世纪科学与工程网络基础设施框架”项目,来协调发展高品质生产软件工具包。②为支持先进软件项目开发,DOE和NSF还将协调发展下一代的表征工具,为算法和软件工具的发展和验证提供基础数据。③美国国家标准与技术研究院主导的“先进材料设计”项目将针对标准基础设施,使材料的发现和优化计算建模和仿真更可靠,该项目将与DOE、NSF的项目密切配合。④美国国防部(DOD)将重点投资计算材料的基础研究和应用研究,提高材料性能,满足广泛的国家安全需求,在材料防御系统保持技术优势,陆军研究实验室、海军研究办公室和空军研究实验室将共同进行该项目的研究。⑤DOE能源效率和可再生能源部门的新一代材料方案将充分利用计算工具,加速制造和新能源材料的表征技术,新投资领域包括:用于制造过程的新材料,提高材料性能和降低制造成本的新复合材料系统,用于预测空间和时间变化的建模和仿真工具等。⑥NSF和DOD将发挥引领示范作用,培育和发展下一代材料工作者,推动建立政府、学术界和产业界的新伙伴关系。1.5 材料基因组计划应用成功实例
美国国家研究理事会(NRC)最近发表的报告《轻质化技术在军用飞机、舰船和车辆中的应用》中引用了两个成功的ICME合金设计实例[180]。一个是由Olson领导设计由QuesTek创新公司开发的FerriumS53飞机着陆架用齿轮钢[181-182];另一个是GE开发的燃气涡轮机用GTD262高温合金[180,183]。作者作为共同发明人(江亮博士是主导发明者)参与了GTD262合金的设计和开发。它的设计和开发从概念到生产只用了4年时间,研发所用经费是以前同类合金的开发成本的1/5左右。通过把计算热力学相稳定性的预测与GE内部的材料性能模型和数据库的整合,我们设计GTD262的成分一次到位,没有像以前开发合金那样要经过几次来来回回的重复实验才能达到成分的优化。因为设计时考虑到了很多因素,如可铸性、可焊性和抗氧化等,中试和生产过程中也没有出现任何问题。GTD262合金的设计是一个很好的ICME的例子。但希望它的成功不要给人一种错觉,以为现在就可以在把一个全新的合金的研发时间缩短到4年之内。GTD262是修改一个现有的合金(GTD222)而获得的。在GTD222的成分附近,GE有过去的经验数据库以帮助我们设计。如果是一个成分远离现有合金的全新的合金,我们现在还没有所需的以物理/机制为基础的模型和性能数据库来进行合金设计。材料基因组工程就是要建立这样的模型和性能数据库来实现快速设计新材料。
第二章 组合芯片技术
2.1 背景
组合材料芯片技术是近年来发展起来的一种新型的材料研究方法.区别于传统材料研究中一次只合成和表征一个样品的策略,组合材料芯片技术的基本思想在于大量不同的样品通过并行的方式在短时间内被制备而形成样品库(也称作材料芯片),同时结合快速或高通量的检测技术以获得样品的各项特性,从而达到快速发现和优化筛选新型材料体系的目的.该技术自1995年首次报道以来,已引起了材料学界的极大重视,并先后在光学材料、电子材料、磁性材料等多个技术领域中被成功地加以运用。
2.2 组合芯片技术与基因组计划的关系与意义
组合材料芯片是高通量材料实验技术的重要组成部分,可实现在一块较小的基底上,通过精妙设计,以任意元素为基本单元,组合集成多达10~108种不同成分、结构、物相等材料样品库,并利用高通量表征方法快速获得材料的成分、结构、性能等信息,以实验通量的大幅度提高带来研究效率的根本转变,实现材料搜索的“多、快、好、省”。组合材料芯片技术经历了20 年的发展与完善,已形成一系列较为成熟的材料制备技术与表征方法。
高通量材料制备和快速表征是“材料基因组计划”的三大要素平台之一,而“组合材料芯片”技术在高通量材料制备和快速表征平台中占有独特地位,因此它在“材料基因组计划”中的重要意义与作用是不言而喻的。
2.3 组合材料芯片技术发现、优化新材料的过程步骤
2.3.1 材料芯片的设计和制备
根据所要解决的问题,在掌握现有材料结构、理化性质的基础上,设计涵盖范围尽可能宽的材料芯片———由不同成分、不同掺杂的微小试样组成的试样阵列或梯度试样,然后按照所设计的材料芯片,在同一块基片上以相同或相近的条件同时合成大量的材料试样,形成由众多微小材料试样密集组合而成的材料芯片。目前较为成功的制备技术主要有组合溶液喷射法和结合掩模技术的物理沉积法。组合溶液喷射法是最先发展起来的制备技术。但用这种技术制备的材料芯片试样密度较低,在(1in2)的基片上仅包含100个分立试样;结合掩模技术的物理沉积法已广泛应用于薄膜材料芯片的制备。与传统成膜方法不同的是,该方法是在薄膜沉积的同时结合一定的掩模技术(如二元掩模、四元掩模等),并通过掩模的遮蔽和运动,在基片形成特定的成分分布,从而组合成空间可定位的薄膜材料芯片,其试样密度比组合溶液喷射法要高得多,它能够在(1in2)的基片上制备上千个,甚至几十万个成分连续梯度变化的薄膜试样。
2.3.2材料芯片的处理
制备好的材料芯片上的试样还需要通过后续工艺最终形成设计的材料结构。物理沉积制备的材料芯片是通过在中低温下进行长时间的退火处理,促使组元间的充分扩散、亚稳相的形成和防止组元的蒸发,然后再在高温下经固相反应合成所设计的材料。材料芯片在较低温度下长时间退火后的组织同传统的受控固相反应类似。薄膜有限的厚度和大量的界面使之处于高自由能的状态,为组元间扩散和混合提供了驱动力,也为亚稳相的形成提供了可能。
2.3.3 材料芯片的表征
检测材料芯片的目的是从中快速发现具有较好性能的材料配方,即“线索材料”。由于检测技术必须能在其精度范围内正确反映所测材料的性质,对高密度材料芯片的性能测量提出了挑战。考虑到材料试样库上的试样数量多(可达1000或10000个),而每个试样的量很少(微克至毫克量级),单个试样的尺寸非常小(亚毫米至毫米量级),目前传统的材料表征方法大多不能满足组合材料芯片技术研究对高通量表征的需求。因此发展满足不同芯片性能测量要求的相关检测技术极为重要。现在已发展的检测技术有发光性能的检测、介电/铁电性能的检测、电光/磁光性能的检测和材料结构/成分的检测等。
2.3.4 线索材料的优化
通过前面三个基本步骤,尤其是第三步的芯片表征,可以从材料芯片的试样库中发现“线索材料”。围绕着“线索材料”,重新在较小范围设计更精细的材料芯片,重复前面步骤,对线索材料的组分、结构及热处理工艺等条件进行微调和优化。
2.3.5 目标材料的放大
组合材料芯片中的试样都是以薄膜态的形式出现的,经过上述步骤优化出的目标材料(或称先导材料)可以直接作为研究成果以薄膜的形式加以应用转化。另外,组合材料芯片所形成的数据库和目标材料也为粉体和块体材料的开发提供了先导数据。由于三维的块体材料与二维的薄膜材料之间存在一定的差异,需要目标材料的放大制备和放大检测。作为组合材料芯片技术的最后一个步骤,目标材料的放大主要是采用传统方法合成相应的材料(粉体或块体),并对材料的组分、结构及性能与目标材料(薄膜)进行对照,获得与目标材料性能指标一致的材料。
2.4 组合材料芯片技术优势
由组合材料芯片技术获得的研究结果与用传统方法在块体(粉体)试样上获得的结果具有一致性,可以用于先导材料的快速选择和评判。此外,组合材料芯片技术还具有以下明显优势:(1)高效性
采用组合技术来实现新材料的开发和优化,可以减少试验次数、缩小试验规模、降低试验成本、缩短筛选周期,加快发现新材料的速度。同时,利用组合材料芯片技术制备的试样库包含相关化学成分、制备过程参数、试样性能、结构特征等信息,在客观上还大大增加了材料研究过程中意外发现新材料的几率。
(2)数据库的建立
合材料芯片技术可以快速、系统地建立材料性能与各层次结构、组分间的制约关系和关联数据库,为后续的材料设计提供可靠的科学依据。
(3)特别适用于多元材料体系相图的研究
二元、三元相图的研究已证实了组合材料芯片技术的可行性。鉴于四元以上复杂系统相图研究的艰巨性,若以传统方法逐点制备试样,则组合太多,成本太高,耗时太长,而且由于取点密度的限制,一些窄的相区还有可能被漏掉,而这些区域的材料往往有异常的性能。连续组合方法是研究复杂系统相图的有效手段,并能直观形象地将相区、相界显示出来。
(4)理论研究
材料芯片中大量的组合和界面还为扩散动力学、成核生长等理论的研究提供了丰富数据,从中有望发现新的规律,进而丰富材料科学理论。
2.5 组合材料芯片技术应用
组合材料芯片技术与材料芯片的高通量表征水平的发展密切相关,具备什么样的芯片检测技术才能开展相应的材料研究。受材料芯片检测技术的限制,组合材料芯片技术早期主要集中在发光材料、介电/铁电材料、催化剂等的优化和筛选。近年来随着材料结构/成分、纳米压痕测试技术等的建立,组合材料芯片技术开始在金属材料研究中获得应用。在铁-镍二元合金体系的研究中,组合芯片技术体现出很大的优势。Young等选择铁-镍合金为研究对象,采用X射线衍射仪测定晶体结构,采用扫描霍耳探针和扫描磁光克尔效应测量仪测定磁性能,将组合材料芯片技术应用在铁-镍合金组织和性能的研究中,成功得到了铁-镍合金的连续相图。其结果与用传统方法在块体试样上获得的结果基本一致,但用组合技术获得的研究成果系统性好,效率高,研究周期大大缩短。随后Young等又对铁-镍-钴三元合金系进行了研究,进一步证实了这一结果,同时他们还意外发现了两个狭窄的非晶相区,这是以前用传统方法没有发现的,或是因传统方法相对“粗放”而被忽视的相区。
Banerjee等采用组合材料芯片技术研究了生物医用合金钛-铌-锆-钽体系不同成分的组织,同时通过压痕技术测定了芯片中各组分的硬度和弹性模量,建立了成分-组织-力学性能的数据库。同时指出:对Ti-32Nb-10Zr-5Ta合金,当组织中含有20%α相是有益的,此时可以在保持较小弹性模量的同时提高强度;而当组织中不存在α相时,即使合金成分不变,在保持类似弹性模量下强度也将降低。
Seung等利用纳米压痕技术测量了钛-铝成分梯度试样芯片的力学性能,建立了成分-硬度的关系,发现其结果与块体材料一致,证明采用组合材料芯片技术预测块体材料性能的方法是可行的。
Specht等利用同步辐射加速器测定铬-铁-镍试样芯片的成分、结晶相、晶粒尺寸,描绘了铬-铁-镍纳米薄膜在200~800℃退火的三元相图,显示了铬-铁-镍纳米薄膜的相和晶粒尺寸随成分、退火温度的变化情况。Ludwig等则利用组合材料芯片技术研究了铁-铂体系的成分和退火温度对其磁性能的影响,为退火温度的选择提供了依据。
Jun等采用组合材料芯片技术研究了具有形状记忆效应的镍-钛-铜合金体系,得到了滞后温度值与合金成分的关系,研究结果与镍-钛-铜块体合金一致。他们还首次给出了滞后温度值与转变延伸张量的中间特征值之间的关系,并且确定出可以改进控制形状记忆性能的新的合金成分范围。
最近,中科院上海硅酸盐研究所等开展了“组合材料芯片技术在快速筛选及优化镀锌钢板新体系中的应用”的研究。运用组合材料学思想,使用离子束溅射方法,制备了铝-锌全组分的材料芯片,采用纳米压痕方法对材料芯片的力学性能进行了表征。结果显示,随着铝含量的提高,芯片的硬度和弹性模量均增加。这与传统块体材料结论相似,显示材料芯片结果可以用于预测铝-锌材料的力学性能。同时,采用电化学方法对材料芯片的耐蚀性能进行了表征。在综合阳极极化曲线、线性电阻和平衡电位结果后认为,铝质量分数为50%~73%时耐腐蚀性能最好。而目前在工业上得到广泛应用的热镀锌55%Al-Zn合金恰好处于此成分范围。这一研究结果表明组合技术在优选新型钢铁材料时也大有用武之地。
2.6 材料组合芯片技术发展与展望
从组合材料芯片技术的发展趋势分析,自从1995年美国科学家率先提出创新的组合材料方法学思想以来,组合材料芯片技术已成为当今,乃至今后几十年材料研究的主流方向之一。当前,组合材料研究方法已经在发达国家实际应用于材料科学多个分支,由此将给材料科学和相关产业带来新机遇。该技术最诱人的特点在于大幅度缩短材料研究周期、节省资源消耗、降低研究成本等方面的优势。近年来,中国对新材料界(尤其是以钢铁等为代表的传统产业)实现跨跃式发展和突破的要求很强烈。从某种意义上讲,作为发展中国家,往往更加迫切地需要实现跨跃式发展,或者说更加迫切地依赖于超常规的技术和途径,如果能把握和充分利用新兴组合材料学和组合技术所带来的机遇,就有可能实现发展的大跨越。我国在组合材料研究领域虽已有所部署,但还没有形成以产业为背景的研究和开发势头,在这样的情况下,选择我国有基础优势的钢铁或合金材料为切入点,发展组合材料芯片技术与应用研究,必将加速新钢种和合金的研发进程,进而带动相关技术和产业的发展。
第三章 总结
材料基因组技术是近年来全球新材料研发方法的革命,在美国被列为国家发展战略,在我国被列入新材料重大科技专项的重要主题之一。材料基因组技术是材料研发新理念与高性能计算、材料基因芯片、大数据、互联网+等现代信息技术深度融合的产物,是典型的多学科交叉,是新兴学科生长点。
材料基因组技术旨在数十倍乃至数百倍地加速新材料从研发到应用的进程,提高效率,降低成本,支撑包括电子信息、能源环保、航空航天等先进制造业的发展,是国民经济和国家安全的重要保障。
材料基因组技术基于计算材料科学、高通量实验表征与测试、数据库与数据挖掘技术等,是对传统新材料研发模式提出的全新的变革,是材料科学研究与新材料研发在新时期的重要突破与创新,是解决国计民生与国防工业中关键技术材料瓶颈的重要途径。自材料基因组计划提出以来,得到材料科学家的积极响应并取得一系列重要进展。但是,在当前条件下完全建成材料基因组技术所需要的软件与硬件基础,完全抛弃实验支撑而直接计算出新材料 的成分与工艺,实现新材料的完全按需设计,仍然是不现实的。通过建设与发展高通量计算模拟、高通量实验样品制备与表征、服役环境下材料力学行为的计算模拟、以及数据库等技术,并基于已有的海量实验数据结果,充分利用传统材料科学领域中对材料成分、工艺、微结构与力学性能相互关联规律的认识,积极发挥材料基因组技术在新材料研发过程中的作用、切实推进材料基因组技术发建设与发展,对充分认识并全面推进材料基因组技术在新材料研发中的变革与突破,具有极其重要的意义与价值。
中国的新材料产业与先进国家相比,整体水平仍存在较大差距。
在此背景之下,中国材料界对材料基因组技术已形成基本共识,即必须顺应国际新材料研发的趋势,尽快启动中国版的“材料基因组计划”,变革以“炒菜法(试错法)”为基础的材料研发传统模式,实现新材料领域的超常规速度发展。
材料基因组计划是以市场与应用为导向的材料研发新理念,是新材料研发的“加速器”。中国版材料基因组计划必须根据国情,面向国家战略需求,围绕加速新材料应用。与欧美国家相比,中国的差距是宽谱的、全方位的。因此,需要首先做好5项工作:
1)建设基于材料基因组技术的先进材料创新基础研发平台; 2)尽快研发自主的软硬件技术与工具;
3)大力传播材料基因组技术提出的高效率研究方法、文化和理念; 4)通过国家级科研项目进行有导向性的推广; 5)加快培养材料基因组技术领域专业人才。
材料基因组技术是材料科学技术的一次飞跃,在中国实施材料基因组计划,就是要构建将先进实验工具、模型计算手段与数据无缝衔接的新型材料创新技术框架体系,用高通量并行迭代替代传统试错法中的多次顺序迭代,逐步由“经验指导实验”向“理论预测、实验验证”的新模式转变。在前期充分发挥中国在高通量实验技术上的相对优势,逐渐向“计算引领”过渡,以加速中国关键新材料的“发现—开发—生产—应用”进程,推动中国新材料产业跨越式发展。只有这样,才能实现习近平主席提出的“推动中国制造向中国创造转变、中国速度向中国质量转变、中国产品向中国品牌转变”的目标。
参考文献:
[1].中国材料基因组计划如何跨出第一步?[J].中国材料进展,2014,Z1:528-529.[2]刘俊聪,王丹勇,李树虎,陈以蔚,魏化震.材料基因组计划及其实施进展研究[J].情报杂志,2015,01:61-66.[3]王海舟,汪洪,丁洪,项晓东,向勇,张晓琨.材料的高通量制备与表征技术[J].科技导报,2015,10:31-49.[4]项晓东,汪洪,向勇,闫宗楷.组合材料芯片技术在新材料研发中的应用[J].科技导报,2015,10:64-78.[5]赵继成.材料基因组计划简介[J].自然杂志,2014,02:89-104.[6]赵继成.材料基因组计划中的高通量实验方法[J].科学通报,2013,35:3647-3655.[7]关永军,陈柳,王金三.材料基因组技术内涵与发展趋势[J].航空材料学报,2016,03:71-78.[8]向勇,闫宗楷,朱焱麟,张晓琨.材料基因组技术前沿进展[J].电子科技大学学报,2016,04:634-649.[9]王海舟.材料基因组计划中的新材料表征技术实验平台[A]..分析科学 创造未来——纪念北京分析测试学术报告会暨展览会(BCEIA)创建30周年[C].:,2015:2.[10]万勇,黄健,冯瑞华,姜山,王桂芳.浅析美国“材料基因组计划”[J].新材料产业,2012,07:62-64.[11]刘茜,陈伟,刘庆峰,归林华,朱丽慧,王利.组合材料芯片技术应用最新进展——新型合金材料的快速发现和优选[J].科技导报,2007,23:64-68.[12]罗岚,徐政,许业文,刘庆峰,刘茜.物理气相法制备材料芯片的发展[J].材料导报,2004,02:69-71+64.[13]秦冬阳.组合材料芯片技术在钛合金研究中的应用[D].东北大学,2010.[14]朱丽慧,朱硕金,刘茜,刘庆峰,王利.组合材料芯片技术及其在金属材料研究中的应用[J].机械工程材料,2008,01:1-4.
第二篇:材料基因组
彭贤文
材料1201
41230029
材料基因组计划
自从十九世纪八十年代以来,技术变革和经济的发展越来越依赖新材料的发展。正如硅在十九世纪七十年代引起现代信息技术产业的崛起,先进材料可能推进新兴的旨在解决能源、国家安全以及人类福利等问题的价值数十亿美元的产业的发展。随着先进材料不断应用于解决清洁能源、国家安全以及人类福利等问题,它对经济安全以及人类的幸福生活越来越重要。加速先进材料的发现和发展对提升全球竞争力也是至关重要。材料基因组计划将创建一个新的材料创新的时代。
目前,一种材料从发现到第一次投入使用的时间范围大约是10到20年,这使得新材料的发展速度远远落后与产品的开发速度。这是因为长久以来材料的发展和研究依赖科学的直觉的反复的实验。而且,当前大多数的材料设计和测试是通过旷日持久的反复试验以及表征循环来执行的。同时,一种新材料发展的各个阶段可能由不同的工程师或科研团队在不同的研究机构完成,各个阶段间缺乏促进整体快速发展的信息反馈。为实现材料的快速发展,必须加速计算模型、数据交换以及模拟材料行为的高级算法的发展来补充物理实验。改善的数据分享系统以及更加综合的工程团队将使设计、系统工程以及生产活动交互重叠。用数学模型和计算仿真来取代冗长昂贵的经验研究将显著加速材料的发展和配置。
为此,材料基因组计划将创建一个材料创新框架,首先,打造材料创新基础。材料基因组计划将研发新的综合计算、实验和数据信息学的工具。这些软件和集成工具将跨越整个材料发展过程,并以一种开放平台进行开发,提高预测能力,并按最新标准快速整合整个材料创新基础数字化信息。这一基础设施将与现有的产品设计框架无缝结合,推动材料工程设计快速、全面的发展。然后,开发数据共享平台。材料基因组计划将设置数据共享平台让研究人员能够轻松地将自己的数据导入模型,同时使研究和工程人员能够彼此整合数据,促进处于不同材料开发阶段的科学家和工程师的跨学科交流。此外,材料基因组计划将用研发的新材料来实现国家的目标。美国目前面临的清洁能源、国家安全和人类福祉等问题的求解都有赖于先进材料的发展。对于国家安全相关材料,美国国防部和国防实验室都在材料研究方面投入巨资。研究实验室忙于轻质保护材料、电子材料、储能材料、生物替代材料等的研究。军方则使用先进材料来保护和武装军队。对于人类健康和福利相关材料,先进材料的许多应用可解决人类健康和福利面临的挑战,从生物相容性材料,如假肢或人工器官,到用于设计防止受伤的保护材料。对于清洁能源系统相关材料,众所周知开发清洁能源、减少对于石油的依赖是美国明确优先发展的项目。材料研究可以帮助找到新技术,如为生物燃料生产更好的催化剂、直接从阳光产生能量的人工光合作用、新颖高效的太阳能光伏、便携式能源存储设备等。
最后,在政府、学术界和产业界的利益相关者要接受并不断扩大材料创新基础设施的范围和内容,以给我们的下一代生产力必要的工具和方法来实现我们国家的目标。
第三篇:ARM芯片和操作系统总结与比较.
1、ARM7与 ARM9 两处理器之间的比较 比较 ARM7 ARM9
体系结构
0.9MIPS/MHz的 3级流水线和冯 ·诺伊曼结构 1.1MIPS/MHz的 5级流水线和哈佛结构
速度
主频在 100MHz 以内,学生完全可以掌 握其设计技术。
主频在 200-600MHz 左右,属高速设 计,至少有 3年以上经验的硬件工程 师才可能进行设计。
引脚 144(LPC2220 QFP 289(S3C2440 BGA 寄存器 196(LPC2220 476(S3C2440 内设模块
AMBA、System Manager、UART、Timers、PWM、I/O Ports、RTC、ADC、IIC、SPI、WDT、External memory controller、Power control、Interrupt Controller、IIS。
AMBA、System Manager、UART、Timers、PWM、I/O Ports、RTC、ADC、IIC、SPI、WDT、External memory controller、Power control、Interrupt Controller、IIS。
MMU、LCD、NAND Flash、DMA、Touch Screen、Camera、USB Host、USB Device、SD Host&MMC Interface 应用场合 ARM7大多数用在自动控制,智能仪器
仪表方面
ARM9用在多媒体处理方面。
相同面 处理器模式、指令集、开发环境、下载调试 环境(基本概念、软 件 编 程、基本 方 法 不 同面
引脚数 目、资源 数 目、速度。建议:从简到繁 , 从易到难。
知识 的 传授 应 该注重 在面上, 而不 能 仅局限于点 上。(S3C44B0→ S3C2410→ S3C2440
2、嵌入式操作系统之间的比较
比较 μCOS-II2.6 WinCE5.0 Linux2.6.30.4 大 小 KB 微核 MB MB 文 件数 目 16(13+3 Kernel :36个 Driver :263个
Kernel 206 arch :11539/22 Driver 8501个 实时性 硬 实时 系 统: 能 够 在指 定 的 期限 完 成实时任务 , 即使是 最坏 的 情况下 软实时 系 统: 在平均情况下 能 支持任 务 的 执 行 期限 软实时 系 统
下载 方式 直接下载 BootLoader BootLoader 软 件 支持 支持 C/C++编 程的 软 件 都支持 专 用的开发环境 PB、eVC(Visual Stdio 专 用的开发环境 Gcc、Gdb 应用场合 自动控制,仪器仪表, 实时性要求 高的 产品
手持 设 备、仪器仪表 手持 设 备、学习难易 程度 懂 C
1、操作 系 统 级 别 上的 编 程(内 核机 制、消 息机 制、内存 管 理、中断 处理
2、组 件 编 程(网络、文 件系 统、GUI
3、OS 配置与移植 有过 VC 经验,经验足
1、PB、eVC 图形 环境
网络 设 备
2、BootLoader
3、操作 系 统 级 别 上的 编 程(内 核机 制、消息机 制、内存 管 理、中断 处理
4、组 件 编 程(网络、文 件系 统、GUI
5、驱 动 定 制 与 开发 熟悉 Linux , C 语言牛
1、linux shell命 令集
2、程 序链 接(Makefile 文 件
3、gcc 编 译 环境和 gdb 调试 环 境
4、BootLoader
5、操作 系 统 级 别 上的 编 程(内 核机 制、消息机 制、内存 管 理、中断 处理
6、组 件 移植与编 程(网络、文 件系 统、GUI
7、驱 动 定 制 与 开发
8、OS 定 制、裁剪 与移植
多媒体 教 学 课 件, 教 学大 纲 , 试 卷等 资 料 ,有 需 要 登录 论坛 进行 下载。
第四篇:功放芯片与效果器芯片简介
几款功放芯片与效果器芯片简介
2010-11-27 14:46
http://更多优惠天成批发商城
TDA1521/TDA1514A
TDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低掉真度及高稳度而设计推出的两款芯片。所以用来接驳CD机直接输出的音质出格好。此中的参数为:TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的掉真仅为0.5%。TDA1514A的工作电压为±9V~±30V,在电压为±25V、RL=8Ω时,输出功率达到50 W,总谐波掉真为0.08%。输入阻抗20KΩ, 输入灵敏度600mV,信嘈比达到85dB。其电路设有等待、静嘈状态,具有过热庇护,低掉调电压高纹波按捺,而且热阻极低,具有极佳的高频解析力和低频力度。其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。以上两款功放的外围零件都比力少,是“傻瓜”型的功放芯片,非常适合初级发烧友组装,只要按照电路图,不需调试就可获得很好的效果。由于该芯片的输入电平比力低,我们在制作是不需前置放大器,只要直接接到我们的电脑声卡、光驱、随身听上即可。著名的电脑多媒体音箱安步者也是采用这两种芯片。
LM3886
LM38863TF是美国NS公司(美国国家半导体公司)于90年代初推出的一款大功率音频功放芯片。该芯片的主要参数:工作电压为±9V~±40V(保举±25V~±35V)RL=8Ω时的持续输出功率达到68W(峰值135 W)。如果接成BLT时的输出功率可以达到100W,而它的掉真小于0.03%,其内部设计有非常完善的过耗庇护电路。本人也在使用使芯片,它的音色非常甜美,音质醇厚,颇有电子管的韵味,适合播放比力柔和的音乐。NS公司还有LM1875、LM1876、LM4766等大师都熟悉的芯片,此中LM4766是最新的,为双声道设计,内含过压、欠压、过载、超温等庇护电路。其输出功率不小于2×40W.低音深沉而有弹性,颇具胆机的风格。
TDA7294
TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆摧出的一款颇有新意的DMOS大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,广泛应用于HI-FI规模:如家庭影院、有源音箱等。该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;短路电流及过热庇护功能使其性能更完善。TDA7294的主要参数:Vs(电源电压)=±10~±40V;Io(输出电流峰值)为10安培;Po(RMS持续输出功率)在Vs=±35V、8Ω时为70W,Vs=±27V、4Ω时为70W;音乐功率(有效值)Vs=±38V、8Ω时为100W,Vs=±29V、4Ω时为100W。总谐波掉真极低,仅为0.005%。此外,SGS-THOMSON意法微电子公司还有几种代表作的功放芯片,如:TDA7295 TDA7296 TDA7264、TDA2030A(我们常用的麦蓝低音炮就是采用此芯片)等。
LM4610N
LM4610是美国国家半导体公司的高品质直流控制音响电路。它是一块操纵直流电压控制调子、音量和声道平衡的立体声集成电路,而且具有3D音场措置、等响度抵偿功能。该电路控制光滑流畅,音质自然流畅,高频清晰、解析力佳,其发生的3D环绕声场具有很强的三维空间感和包抄感,主不雅观感受与SRS的效果类似。LM4610N的主要电气参数如下:具有3 D声场措置功能和响度抵偿功能。响度抵偿是针对人耳在音量较小时对凹
凸频信号的灵敏度下降,因而在分歧音量时对高、低频端作适度的提升抵偿,使人耳在任何响度下始终听到平坦、均衡的响应。它的电压规模是:9V~16V(典型为12伏,电流为35毫安);掉真度仅0.03%;信嘈比高达80dB;频宽达250 kHz,音量调节为75dB;平衡调节为1~20dB;调子调节规模为±15dB;最大增益2dB;LM4610N具有输入阻抗高(30Ω),输出电阻低(20Ω)的长处。用LM6410N调子控制电路对提高音质和加强低频力度及三维空间感感化突出。可以说LM4610N是组装功放系统或替换调音部门的精品。
BBE技术
BBE是一种声音增强和改善的专利技术。它的全称是Barcus-BerryElectronice,是美国BBE.sound公司于1985年开始就推出市场的新技术。一呈现就得到广泛的应用,好比国外的松下、索尼,国内的TCL、创维、乐华等新一代彩电。在灌音和唱片上也纷纷操纵BBE技术,而一些广播电台如加拿大的广播公司、瑞士国际广播、韩国广播及日本的NHK当局开通的广播电视系统,都应用了这种技术。高解析力BBE电路XR1075 XR1075是美国XEAR公司最新推出的高解析力 BBE芯片。是在XR1071的根本上,采用新的双极性技术,使其芯片的噪声系数更低、总谐波掉真更小,而芯片的体积更小,外围元件进一步简化,凹凸频延伸、高频解析力增强调节规模和低频抵偿规模均比XR1071更宽。高频调节规模-0.5~+13 db,低频抵偿调节规模-0.5~+13db.数码超重低音措置器M51134P M51134P
是日本三菱公司专门为AV影音系统开发的专用超低音检测加强电路。其内部包罗:频率检测、调整器、电平检测、低通滤波VCA压控放大等。道理是采用数码滤波方式检测输入信号中的低频成分的电平的凹凸,加强相应低频成分并进行低频动态扩展(又压控放大器完成),其道理与一般的低通滤波器形式的重低音加强电路分歧。M51134P供给的重低音效果有强烈的震撼感,出格是雷声、炮声、爆炸声等尤为突出。M51134P只是检测低于120Hz的信号,如果输入信号中没有低于120Hz的成分,则没有输出。
最新尺度虚拟杜比环绕声芯片QS7779/QS7785
QS7779/QS7785是加拿大Qsound音频尝试室推出的单片虚拟化环绕音效措置电路,是目前业界公认的措置效果最接近自然原声的虚拟杜比环绕芯片!QS7779为2入2出方式,QS7785为2入5出,两者内部都包罗了杜比定向逻辑和DVD(AC-3)混合信号解码器,使用Qsound尝试室的专利Qsurround虚拟环绕技术,并由Qsound尝试室授权使用,该芯片的主要功能是:(1)如果输入的是普通的立体声信号,则进行立体声效果增强:(2)如果输入的是2声道的矩阵编码信号(杜比定向逻辑或混合AC-3信号)则先将其解码,再虚拟化合成2声道或5声道输出。QS7779主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,使用2只扬声器实现虚拟化环绕声。2.信噪比11db, 动态规模
110db.QS7785主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,解出的环绕信号为2声道全频带,和AC-3环绕声不异,优于杜比定向逻辑系统。2.前方采用3 D立体声增强技术,后方采用3D合成虚拟环绕技术,分两种增强方式(低增强和高增强),具有中置输出及低音增强功能。3.使用5声道实现环绕声,也可用2声道输出方式。4..信噪比11db, 动态规模110db
运放(运算放大器)我们常见或常用到有:4558(比力便宜一般用于一些随身听)。
NE5532曾经被誉为运算放大器之皇。AD712K.AD827(非常不错的运放在市面上很难买到正货,传闻定货也要等三个月。市面价大约100元每块).以上的都是双运放,还有四运放如:TL084.LT058 等等.TDA1521/TDA1514A是荷兰飞利浦公司专门为数字音响在播放时的低掉真度及高稳度而设计推出的两款芯片。所以用来接驳CD机直接输出的音质出格好。此中的参数为:
TDA1521在电压为±16V、阻抗为8Ω时,输出功率为2×15W,此时的掉真仅为0.5%。TDA1514A的工作电压为±9V~±30V,在电压为±25V、RL=8Ω时,输出功率达到50 W,总谐波掉真为0.08%。输入阻抗20KΩ, 输入灵敏度600mV,信嘈比达到85dB。其电路设有等待、静嘈状态,具有过热庇护,低掉调电压高纹波按捺,而且热阻极低,具有极佳的高频解析力和低频力度。其音色通透纯正,低音力度丰满厚实,高音清亮明快,很有电子管的韵味。以上两款功放的外围零件都比力少,是“傻瓜”型的功放芯片,非常适合初级发烧友组装,只要按照电路图,不需调试就可获得很好的效果。由于该芯片的输入电平比力低,我们在制作是不需前置放大器,只要直接接到我们的电脑声卡、光驱、随身听上即可。著名的电脑多媒体音箱安步者也是采用这两种芯片。
LM3886
LM38863TF是美国NS公司(美国国家半导体公司)于90年代初推出的一款大功率音频功放芯片。该芯片的主要参数:工作电压为±9V~±40V(保举±25V~±35V)RL=8Ω时的持续输出功率达到68W(峰值135 W)。如果接成BLT时的输出功率可以达到100W,而它的掉真小于0.03%,其内部设计有非常完善的过耗庇护电路。本人也在使用使芯片,它的音色非常甜美,音质醇厚,颇有电子管的韵味,适合播放比力柔和的音乐。NS公司还有LM1875、LM1876、LM4766等大师都熟悉的芯片,此中LM4766是最新的,为双声道设计,内含过压、欠压、过载、超温等庇护电路。其输出功率不小于2×40W.低音深沉而有弹性,颇具胆机的风格。
TDA729
4TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆摧出的一款颇有新意的DMOS大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,广泛应用于HI-FI规模:如家庭影院、有源音箱等。该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;短路电流及过热庇护功能使其性能更完善。TDA7294的主要参数:Vs(电源电压)=±10~±40V;Io(输出电流峰值)为10安培;Po(RMS持续输出功率)在Vs=±35V、8Ω时为70W,Vs=±27V、4Ω时为70W;音乐功率(有效值)Vs=±38V、8Ω时为100W,Vs=±29V、4Ω时为100W。总谐波掉真极低,仅为0.005%。此外,SGS-THOMSON意法微电子公司还有几种代表作的功放芯片,如:TDA7295 TDA7296 TDA7264、TDA2030A(我们常用的麦蓝低音炮就是采用此芯片)等。
LM4610NLM4610是美国国家半导体公司的高品质直流控制音响电路。它是一块操纵直流电压控制调子、音量和声道平衡的立体声集成电路,而且具有3D音场措置、等响度抵偿功能。该电路控制光滑流畅,音质自然流畅,高频清晰、解析力佳,其发生的3D环绕声场具有很强的三维空间感和包抄感,主不雅观感受与SRS的效果类似。LM4610N的主要电气参数如下:具有3 D声场措置功能和响度抵偿功能。响度抵偿是针对人耳在音量
较小时对凹凸频信号的灵敏度下降,因而在分歧音量时对高、低频端作适度的提升抵偿,使人耳在任何响度下始终听到平坦、均衡的响应。它的电压规模是:9V~16V(典型为12伏,电流为35毫安);掉真度仅0.03%;信嘈比高达80dB;频宽达250 kHz,音量调节为75dB;平衡调节为1~20dB;调子调节规模为±15dB;最大增益2dB;LM4610N具有输入阻抗高(30Ω),输出电阻低(20Ω)的长处。用LM6410N调子控制电路对提高音质和加强低频力度及三维空间感感化突出。可以说LM4610N是组装功放系统或替换调音部门的精品。
BBE技术
BBE是一种声音增强和改善的专利技术。它的全称是Barcus-BerryElectronice,是美国BBE.sound公司于1985年开始就推出市场的新技术。一呈现就得到广泛的应用,好比国外的松下、索尼,国内的TCL、创维、乐华等新一代彩电。在灌音和唱片上也纷纷操纵BBE技术,而一些广播电台如加拿大的广播公司、瑞士国际广播、韩国广播及日本的NHK当局开通的广播电视系统,都应用了这种技术。高解析力BBE电路XR1075 XR1075是美国XEAR公司最新推出的高解析力 BBE芯片。是在XR1071的根本上,采用新的双极性技术,使其芯片的噪声系数更低、总谐波掉真更小,而芯片的体积更小,外围元件进一步简化,凹凸频延伸、高频解析力增强调节规模和低频抵偿规模均比XR1071更宽。高频调节规模-0.5~+13 db,低频抵偿调节规模-0.5~+13db.数码超重低音措置器M51134P M51134P
是日本三菱公司专门为AV影音系统开发的专用超低音检测加强电路。其内部包罗:频率检测、调整器、电平检测、低通滤波VCA压控放大等。道理是采用数码滤波方式检测输入信号中的低频 成分的电平的凹凸,加强相应低频成分并进行低频动态扩展(又压控放大器完成),其道理与一般的低通滤波器形式的重低音加强电路分歧。M51134P供给的重低音效果有强烈的震撼感,出格是雷声、炮声、爆炸声等尤为突出。M51134P只是检测低于120Hz的信号,如果输入信号中没有低于120Hz的成分,则没有输出。
最新尺度虚拟杜比环绕声芯片QS7779/QS778
5QS7779/QS7785是加拿大Qsound音频尝试室推出的单片虚拟化环绕音效措置电路,是目前业界公认的措置效果最接近自然原声的虚拟杜比环绕芯片!QS7779为2入2出方式,QS7785为2入5出,两者内部都包罗了杜比定向逻辑和DVD(AC-3)混合信号解码器,使用Qsound尝试室的专利Qsurround虚拟环绕技术,并由Qsound尝试室授权使用,该芯片的主要功能是:(1)如果输入的是普通的立体声信号,则进行立体声效果增强:(2)如果输入的是2声道的矩阵编码信号(杜比定向逻辑或混合AC-3信号)则先将其解码,再虚拟化合成2声道或5声道输出。QS7779主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,使用2只扬声器实现虚拟化环绕声。2.信噪比11db, 动态规模
110db.QS7785主要特点: 1.内带杜比定向逻辑和 DVD(AC-3)混合信号解码输器,解出的环绕信号为2声道全频带,和AC-3环绕声不异,优于杜比定向逻辑系统。2.前方采用3 D立体声增强技术,后方采用3D合成虚拟环绕技术,分两种增强方式(低增强和高增
强),具有中置输出及低音增强功能。3.使用5声道实现环绕声,也可用2声道输出方式。4..信噪比11db, 动态规模110db
运放(运算放大器)我们常见或常用到有:4558(比力便宜一般用于一些随身听)。
NE5532曾经被誉为运算放大器之皇。AD712K.AD827(非常不错的运放在市面上很难买到正货,传闻定货也要等三个月。市面价大约100元每块).以上的都是双运放,还有四运放如:TL084.LT058 等等.在音响中,功放是担任『讯号放大』的功能,由于他不做换能工作,因此就电器设计理论而言,功放不需要高深的技术,而且他的制造出产设备可以最简单,测试调校仪器的需求也是最普通。当然,设计是一回事,制造又是一回事,音色的好坏又是一回事。有些厂商把机器制做的很复杂,代价卖的很贵,音色自然也不错;而有些厂商把机器做的非常小,内部也很单,代价卖的很公共化,音色也不差。在这种情况下,身为消费者要如何来选购功放?可以有以下的建议:一个是驱动能力(即功率多少),另一个是主动原件(便是胆机还是晶体管机)。功放可大致区分为几大派系,首先我们先来讲讲英国派:这个地域,由于国情保守,所以所设计的功放输出功率都不高,出格是归并功放(integrate damplifier)这是英国厂家最拿手的杰作,其输出功率一般都不会超过70W X 2以上。而美国功放则完全是「地大物博」的表示,200W X 2仅是尺度数值.这种分袂相当显然,相信您到音响店看一看就可以很快发现这样的情况。而输出功率和驱动能力之间则是十分微妙的.讲到「输出功率」的凹凸与「驱动能力」的强弱,两者固然没有绝对的关系,但却有相对的联系。输出功率很容易从数字显示,50W,100W,200W甚至更多,但是驱动能力的辨识就得依靠慧眼,甚至得真正试过才知道了。后级「功率」功放的驱动对象是喇叭,驱动能力越强,也就暗示越能压得住喇叭。当然您会问,什么样的喇叭很难推?我的观点是:低效率的(86db以下的),低阻抗的(4欧或以下的),静电式和铝带式等等,都是很考你所选择的功放的。而功放的驱动能力则完全表此刻电流的供给上,电压X电流,就是真正的「功率」.如果有一部功放,其功率标称是100W X 2(8Ω),200W X 2(4Ω),400W X 2(2Ω),我们凡是称他是「大电流」设计,这种功放的驱动能力就会比力强,但是环顾您四周的使用者,能达到「功率倍增」的功放,往往都是MADE IN U.S.A.;而英国或是日本的产物,在这一方面就显的比力弱一些。因为大电流功放设计并不容易,输出级,电源供应部,都要非常讲究,故大电流功放在机体上都不容易迷你小巧,英国归并功放在功率,体型上固然比不上美国产物,但是因为走的路线分歧,当在斗室间驱动喇叭时,他们的表示,也有令人称道之处。而日产功放虽在Hi-end市场上一直无法安身。初入门者却往往会考虑采办日产功放。这是因为日本厂商也有它的绝活,出格是带DOLBY PROLOGIC, AC-3, THX,DTS的AV环绕功放,在AV的规模,百分之九十以上都是MADE IN JAPAN。所以各国各派都是各走各的LM1875最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的长处,还具
有完整的庇护电路,在同类型芯片中属于高档型号...功放芯片就好象是多媒体音箱的“心脏”,是为音箱供给动力的部件,也是关系到音质的重要环节之一,所以很多伴侣都想一探究竟,以下为小编搜集来的常见多媒体音箱功放芯片资料(国半篇),但愿能给大师一点参考价值。
1,LM1875
LM1875最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的长处,还具有完整的庇护电路,在同类型芯片中属于高档型号,好比说老版的惠威D1080就使用了这个芯片。可惜的是这款芯片已经公布颁发停产(传说风闻),众多使用LM1875的音箱型号也纷纷升级,使用了代换芯片。
此外DIY的伴侣,采办零件时要注意,由于LM1875单价较高,所以仿冒者很多,分袂起来也比力困难,这方面常识以后将单独撰文说明。
2,LM3886
LM3886同样是单声道设计,共有11个引脚,相对LM1875来说,LM3886具有更大的功率,更宽的动态,在其它参数上也有优势,所以只有最高端多媒体音箱才会采用LM3886做为功放芯片,此外甚至在HI-FI功放里面也经常见到它的身影,可见LM3886本质的优秀。
3,LM1876
LM1876在多媒体音箱中使用并不多,但也是国半的经典功放芯片之一,它的音色表示和LM1875如出一辙,但是为双声道设计,同时功率也要大一点,很适合DIY。4,LM4766
网上凡是的说法是,LM4766等于将两个LM3886封装在一起,这样说是比力形象的,从性能参数来看,LM4766刚好和LM3886相当,甚至音色表示也如出一辙。不外DIY的伴侣要注意了,LM4766引脚较多,具有“蜈蚣芯片”的“美称”,在业余情况的焊接下,具有必然的难度。
好了,常见多媒体音箱功放芯片资料(国半篇)就介绍到这里,请关注我们近期的:常见多媒体音箱功放芯片资料(意法[ST]篇)。
尝试10.TDA7294 发烧级功放制作
TDA7294是欧洲著名的SGS-THOMSON意法微电子公司于90年代向中国大陆推出的一款颇有新意的场效应大功率的集成功放电路。它一扫以往线性集成功放和厚膜集成的生、冷、硬的音色,颇具电子管功放韵味,并广泛应用于HI-FI规模:如家庭影院、有源音箱等。迄今为止,可以说它是目前世界上为数不多的最好的功放集成电路之一。
该芯片的设计以音色为重点,兼有双极信号措置电路和功率MOS的长处。具有耐高压、低噪音、低掉真度、重放音色极具亲和力等特色;而且具有静音待机功能,短路电流及过热庇护功能使其性能更完善,有关电器参数如下。
工作电压规模:(VCC+VEE)=80V
输出功率:高达100W
电压规模:|VCC|+|VEE|=20V-80V
第五篇:AT89C52芯片
AT89C52 AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。主要功能特性
1、兼容MCS51指令系统 2、8kB可反复擦写(大于1000次)Flash ROM; 3、32个双向I/O口; 4、256x8bit内部RAM; 5、3个16位可编程定时/计数器中断;
6、时钟频率0-24MHz; 7、2个串行中断,可编程UART串行通道; 8、2个外部中断源,共8个中断源; 9、2个读写中断口线,3级加密位;
10、低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;
11、有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求。引脚功能及管脚电压
AT89C52为8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚
PDIP封装的AT89C52引脚图
排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。P0 口 P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8 个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1 口
P1 是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉
电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与AT89C51 不同之处是,P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),Flash 编程和程序校验期间,P1 接收低8 位地址。表.P1.0和P1.1的第二功能 引脚号 功能特性
T2,时钟P1.0 输出 T2EX(定P1.1 时/计数器2)
P2 口
P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2 口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2 口输出P2 锁存器的内容。Flash 编程或校验时,P2亦接收高位地址和一些控制信号。P3 口
P3 口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能,P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。RST复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。ALE/PROG 当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。PSEN 程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。EA/VPP 外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。XTAL1 振荡器反相放大器的及内部时钟发生器的输入端。XTAL2 振荡器反相放大器的输出端。特殊功能寄存器
在AT89C52 片内存储器中,80H-FFH 共128 个单元为特殊功能寄存器(SFR),SFR 的地址空间映象如表2 所示。并非所有的地址都被定义,从80H—FFH 共128 个字节只有一部分被定义,还有相当一部分没有定义。对没有定义的单元读写将是无效的,读出的数值将不确定,而写入的数据也将丢失。不应将数据写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是“0”。
AT89C52除了有AT89C51所有的定时/计数器0 和定时/计数器1 外,还增加了一个定时/计数器2。定时/计数器2 的控制和状态位位于T2CON(参见表3)T2MOD(参见表4),寄存器对(RCAO2H、RCAP2L)是定时器2 在16 位捕获方式或16 位自动重装载方式下的捕获/自动重装载寄存器。编辑本段数据存储器
AT89C52 有256 个字节的内部RAM,80H-FFH 高128 个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128字节的RAM 和特殊功能寄存器的地址是相同的,但物理上它们是分开的。
当一条指令访问7FH 以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128 字节RAM 还是访问特殊功能寄存器。如果指令是直接寻址方式则为访问特殊功能寄存器。
例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2 口)地址单元。MOV 0A0H,#data 间接寻址指令访问高128 字节RAM,例如,下面的间接寻址指令中,R0 的内容为0A0H,则访问数据字节地址为0A0H,而不是P2 口(0A0H)。MOV @R0,#data 堆栈操作也是间接寻址方式,所以,高128 位数据RAM 亦可作为堆栈区使用。·定时器0和定时器1:
AT89C52的定时器0和定时器1 的工作方式与AT89C51 相同。片上资源
定时器2基本特性: 定时器2 是一个16 位定时/计数器。它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON(如表3)的C/T2 位选择。定时器2 有三种工作方式:捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON 的控制位来选择。定时器2 由两个8 位寄存器TH2 和TL2 组成,在定时器工作方式中,每个机器周期TL2 寄存器的值加1,由于一个机器周期由12 个振荡时钟构成,因此,计数速率为振荡频率的1/12。
在计数工作方式时,当T2 引脚上外部输入信号产生由1 至0 的下降沿时,寄存器的值加1,在这种工作方式下,每个机器周期的5SP2 期间,对外部输入进行采样。若在第一个机器周期中采到的值为1,而在下一个机器周期中采到的值为0,则在紧跟着的下一个周期的S3P1 期间寄存器加1。由于识别1 至0 的跳变需要2 个机器周期(24 个振荡周期),因此,最高计数速率为振荡频率的1/24。为确保采样的正确性,要求输入的电平在变化前至少保持一个完整周期的时间,以保证输入信号至少被采样一次。捕获方式:
在捕获方式下,通过T2CON 控制位EXEN2 来选择两种方式。如果EXEN2=0,定时器2 是一个16 位定时器或计数器,计数溢出时,对T2CON 的溢出标志TF2 置位,同时激活中断。如果EXEN2=1,定时器2 完成相同的操作,而当T2EX 引 脚外部输入信号发生1 至0 负跳变时,也出现TH2 和TL2 中的值分别被捕获到RCAP2H 和RCAP2L 中。另外,T2EX 引脚信号的跳变使得T2CON 中的EXF2 置位,与TF2 相仿,EXF2 也会激活中断。
自动重装载(向上或向下计数器)方式:
当定时器2工作于16位自动重装载方式时,能对其编程为向上或向下计数方式,这个功能可通过特殊功能寄存器T2CON(见表5)的DCEN 位(允许向下计数)来选择的。复位时,DCEN 位置“0”,定时器2 默认设置为向上计数。当DCEN置位时,定时器2 既可向上计数也可向下计数,这取决于T2EX 引脚的值,当DCEN=0 时,定时器2 自动设置为向上计数,在这种方式下,T2CON 中的EXEN2 控制位有两种选择,若EXEN2=0,定时器2 为向上计数至0FFFFH 溢出,置位TF2 激活中断,同时把16 位计数寄存器RCAP2H 和RCAP2L重装载,RCAP2H 和RCAP2L 的值可由软件预置。若EXEN2=1,定时器2 的16 位重装载由溢出或外部输入端T2EX 从1 至0 的下降沿触发。这个脉冲使EXF2 置位,如果中断允许,同样产生中断。定时器2 的中断入口地址是:002BH ——0032H。
当DCEN=1 时,允许定时器2 向上或向下计数,如图6 所示。这种方式下,T2EX 引脚控制计数器方向。T2EX 引脚为逻辑“1”时,定时器向上计数,当计数0FFFFH 向上溢出时,置位TF2,同时把16 位计数寄存器RCAP2H 和RCAP2L 重装载到TH2 和TL2 中。T2EX 引脚为逻辑“0”时,定时器2 向下计数,当TH2 和TL2 中的数值等于RCAP2H 和RCAP2L中的值时,计数溢出,置位TF2,同时将0FFFFH 数值重新装入定时寄存器中。
当定时/计数器2 向上溢出或向下溢出时,置位EXF2 位。波特率发生器:
当T2CON(表3)中的TCLK 和RCLK 置位时,定时/计数器2 作为波特率发生器使用。如果定时/计数器2 作为发送器或接收器,其发送和接收的波特率可以是不同的,定时器1 用于其它功能,如图7 所示。若RCLK 和TCLK 置位,则定时器2工作于波特率发生器方式。
波特率发生器的方式与自动重装载方式相仿,在此方式下,TH2 翻转使定时器2 的寄存器用RCAP2H 和RCAP2L 中的16位数值重新装载,该数值由软件设置。在方式1 和方式3 中,波特率由定时器2 的溢出速率根据下式确定:
方式1和3的波特率=定时器的溢出率/16定时器既能工作于定时方式也能工作于计数方式,在大多数的应用中,是工作在定时方式(C/T2=0)。定时器2 作为波特率发生器时,与作为定时器的操作是不同的,通常作为定时器时,在每个机器周期(1/12 振荡频率)寄存器的值加1,而作为波特率发生器使用时,在每个状态时间(1/2 振荡频率)寄存器的值加1。波特率的计算公式如下: 方式1和3的波特率=振荡频率/{32*[65536-(RCP2H,RCP2L)]} 式中(RCAP2H,RCAP2L)是RCAP2H 和RCAP2L中的16 位无符号数。
定时器2 作为波特率发生器使用的电路如图7 所示。T2CON 中的RCLK 或TCLK=1 时,波特率工作方式才有效。在波特率发生器工作方式中,TH2 翻转不能使TF2 置位,故而不产生中断。但若EXEN2 置位,且T2EX 端产生由1 至0 的 负跳变,则会使EXF2 置位,此时并不能将(RCAP2H,RCAP2L)的内容重新装入TH2 和TL2 中。所以,当定时器2 作为波特率发生器使用时,T2EX 可作为附加的外部中断源来使用。需要注意的是,当定时器2 工作于波特率器时,作为定 时器运行(TR2=1)时,并不能访问TH2 和TL2。因为此时每个状态时间定时器都会加1,对其读写将得到一个不确定的数值。
然而,对RCAP2 则可读而不可写,因为写入操作将是重新装载,写入操作可能令写和/或重装载出错。在访问定时器2或RCAP2 寄存器之前,应将定时器关闭(清除TR2)。可编程时钟输出:
定时器2 可通过编程从P1.0 输出一个占空比为50%的时钟信号,如图8 所示。P1.0 引脚除了是一个标准的I/O 口外,还可以通过编程使其作为定时/计数器2 的外部时钟输入和输出占空比50%的时钟脉冲。当时钟振荡频率为16MHz 时,输 出时钟频率范围为61Hz—4MHz。
当设置定时/计数器2 为时钟发生器时,C/T2(T2CON.1)=0,T2OE(T2MOD.1)=1,必须由TR2(T2CON.2)启动或停止定时器。时钟输出频率取决于振荡频率和定时器2 捕获寄存器(RCAP2H,RCAP2L)的重新装载值,公式如下: 输出时钟频率=振荡器频率/{4*[65536-(RCP2H,RCP2L)]} 在时钟输出方式下,定时器2 的翻转不会产生中断,这个特性与作为波特率发生器使用时相仿。定时器2 作为波特率发生器使用时,还可作为时钟发生器使用,但需要注意的是波特率和时钟输出频率不能分开确定,这是因为它们同使用RCAP2L和RCAP2L。UART串口
AT89C52的UART 工作方式与AT89C51 工作方式相同。时钟振荡器
AT89C52 中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1 和XTAL2 分别是该放大器的输入端和输出端。
这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图10。
外接石英晶体(或陶瓷谐振器)及电容C1、C2 接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2 虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳 定性,如果使用石英晶体,我们推荐电容使用30pF±10pF,而如使用陶瓷谐振器建议选择40pF±10pF。
用户也可以采用外部时钟。采用外部时钟的电路如图10 右图所示。这种情况下,外部时钟脉冲接到XTAL1 端,即内部时钟发生器的输入端,XTAL2 则悬空。由于外部时钟信号是通过一个2 分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。中断
AT89C52 共有6 个中断向量:两个外中断(INT0 和INT1),3 个定时器中断(定时器0、1、2)和串行口中断。所有这些中断源如图9 所示。
这些中断源可通过分别设置专用寄存器IE 的置位或清0 来控制每一个中断的允许或禁止。IE 也有一个总禁止位EA,它能控制所有中断的允许或禁止。注意表5 中的IE.6 为保留位,在AT89C51 中IE.5 也是保留位。程序员不应将“1”写入这些位,它们是将来AT89 系列产品作为扩展用的。
定时器2 的中断是由T2CON 中的TF2 和EXF2 逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2 或EXF2 产生中断,而由软件清除中断标志位。
定时器0 和定时器1 的标志位TF0 和TF1 在定时器溢出那个机器周期的S5P2 状态置位,而会在下一个机器周期才查询到该中断标志。然而,定时器2 的标志位TF2 在定时器溢出的那个机器周期的S2P2 状态置位,并在同一个机器周期内查询到该标志。低功耗模式
空闲节电模式
在空闲工作模式状态,CPU 自身处于睡眠状态而所有片内的外设仍保持激活状态,这种方式由软件产生。此时,同时将片内RAM 和所有特殊功能寄存器的内容冻结。空闲模式可由任何允许的中断请求或硬件复位终止。由硬件复位终止空闲状态只需两个机器周期有效复位信号,在此状态下,片内硬件禁止访问内部RAM,但可以访问端口引脚,当用复位终止空闲方式时,为避免可能对端口产生意外写入,激活空闲模式的那条指令后一条指令不应是一条对 端口或外部存储器的写入指令。掉电模式
在掉电模式下,振荡器停止工作,进入掉电模式的指令是最后一条被执行的指令,片内RAM 和特殊功能寄存器的内容在终止掉电模式前被冻结。退出掉电模式的唯一方法是硬件复位,复位后将重新定义全部特殊功能寄存器,但不改变RAM中的内容,在Vcc恢复到正常工作电平前,复位应无效,且必须保持一定时间以使振荡器重启动并稳定工作。编程和加密
Flash存储器的编程
AT89C52单片机内部有8k字节的Flash PEROM,这个Flash 存储阵列出厂时已处于擦除状态(即所有存储单元的内容均为FFH),用户随时可对其进行编程。编程接口可接收高电压(+12V)或低电压(Vcc)的允许编程信号。低电压编程模式适合于用户在线编程系统,而高电压编程模式可与通用EPROM 编程器兼容。AT89C52 单片机中,有些属于低电压编程方式,而有些则是高电压编程方式,用户可从芯片上的型号和读取芯片内的签名字节获得该信息。
AT89C52 的程序存储器阵列是采用字节写入方式编程的,每次写入一个字节,要对整个芯片内的PEROM 程序存储器写入一个非空字节,必须使用片擦除的方式将整个存储器的内容清除。编程方法
编程前,须按表9 和图11 所示设置好地址、数据及控制信号,AT89C52 编程方法如下:
1. 在地址线上加上要编程单元的地址信号。2. 在数据线上加上要写入的数据字节。3. 激活相应的控制信号。
4. 在高电压编程方式时,将EA/Vpp 端加上+12V 编程电压。
5. 每对Flash 存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/PROG 编程脉冲。每个字节写入周期是自身定时的,通常约为1.5ms。重复1—5 步骤,改变编程单元的地址和写入的数据,直到全部文件编程结束。程序存储器的加密
AT89C52 有3 个程序加密位,可对芯片上的3 个加密位LB1、LB2、LB3 进行编程(P)或不编程(U)来得到。
当加密位LB1 被编程时,在复位期间,EA 端的逻辑电平被采样并锁存,如果单片机上电后一直没有复位,则锁存起的初始值是一个随机数,且这个随机数会一直保存到真正复位为止。为使单片机能正常工作,被锁存的EA 电平值必须与该引脚当前的逻辑电平一致。此外,加密位只能通过整片擦除的方法清除。数据查询
AT89C52 单片机用Data Palling 表示一个写周期结束为特征,在一个写周期中,如需读取最后写入的一个字节,则读出的数据的最高位(P0.7)是原来写入字节最高位的反码。写周期完成后,所输出的数据是有效的数据,即可进入下一个字节的写周期,写周期开始后,Data Palling 可能随时有效。Ready/Busy:字节编程的进度可通过“RDY/BSY 输出信号监测,编程期间,ALE 变为高电平“H”后,P3.4(RDY/BSY)端电平被拉低,表示正在编程状态(忙状态)。编程完成后,P3.4 变为高电平表示准备就绪状态。
程序校验:如果加密位LB1、LB2 没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用如图12的电路。加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。
芯片擦除:利用控制信号的正确组合(表6)并保持ALE/PROG 引脚10mS 的低电平脉冲宽度即可将PEROM 阵列(4k字节)和三个加密位整片擦除,代码阵列在片擦除操作中将任何非空单元写入“1”,这步骤需再编程之前进行。读片内签名字节:AT89C52 单片机内有3 个签名字节,地址为030H、031H 和032H。用于声明该器件的厂商、型号和编程电压。读AT89C52 签名字节需将P3.6 和P3.7 置逻辑低电平,读签名字节的过程和单元030H、031H 及032H 的正常校验相仿,只返回值意义如下:
(030H)=1EH 声明产品由ATMEL公司制造。(031H)=52H 声明为AT89C52 单片机。(032H)=FFH 声明为12V 编程电压。(032H)=05H 声明为5V 编程电压。