第一篇:常用芯片总结
常用芯片总结
1.音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334
4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。
2.音频放大芯片4558,LM833,5532,此二芯片都是双运放。
3.244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。
4.373和374,地址锁存器,5.max232和max202,max3232 TTL电平转换
6.网络接口变压器。需要注意差分信号的等长和尽量短的规则。
7.amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。
8.74XX164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。
9.网卡控制芯片CS8900,ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。24位AD:CS5532,LPC2413,ADS1240,ADS1241效果还可以仪表运放:ITL114,不过据说功耗有点大
音频功放:一般用LM368
音量控制IC: PT2257,Pt2259.PCM双向解/编码 :/ CW6691.cirruslogic公司比较多
2.4G双工通讯IC CC2500
1.cat809,max809,这些是电源监控芯片,当低于某一电压以后比如3.07v等出现一个100ms的低电平,实现复位功能。当然这个要求是低复位。max810,cat810等就是出现一个100ms的高电平。还有一些复位芯片,既有高又有低复位输出,同时还有带手动触发复位功能,型号可以查找一下。
2.pericom的pt7v(pi6cx100-27)压控振荡器,脉冲带宽调制。
1、语音编解码TP3054/3057,串行接口,带通滤波。
2、现在用汉仁的网卡变压器HR61101G接在RTL8019AS上,兼容的有VALOR的FL1012、PTT的PM24-1006M。
3、驱动LED点阵用串行TPIC6B595,便宜的兼容型号HM6B59
5交换矩正: mt 88168*16
双音频译码器: 35300
我们原来使用单独的网络变压器,如常用的8515等。现在我们用YDS的一款带网络变压器的RJ45接口。其优点:1.体积仅比普通的RJ45稍微大一点。
2.价格单买就6元,我觉得量稍微大点应该在4-5左右或者更低。
3.连接比较方便只要把差分信号注意就可以了。
缺点:用的人不多,不知道是因为是新,还是性能不好,我们用了倒没什么问题。不过没有做过抗雷击等测试,我觉得既然YDS做了这样的产品,性能应该问题不大。我觉得最好再加一点典型电路的原理图等。比如说网络接口,串口232,485通讯,I2C级连,RAM连接,FLASH连接,电压转换,时钟电路,打印接口电路,以及如何在没有典型电路的时候,把芯片和已有系统有效连接等。首先要有开关电源需求,额定电流,功率,几路输出,主路设计等等如何测试其性能指标达到要求。
便宜的液晶驱动芯片HT1621
要求一般的485芯片SN308
2CH375A USB主控芯片 南京沁恒的数据采集,我用tlc2543, AD7656,AD976
运放OP27,很好用,经受住时间考验,连续3年
我介绍一下我现在用的光耦,就是光电隔离:
TLP521-1 TLP521-2 TLP521-4 线性光耦hcr210不错
其实我只用过TLP521-1,很好用的,TLP521-2 的价格比 TLP521-1要贵两倍多,不只为什么,恩 LED导通电流是小了一点,它们由于速率有点低所以推荐高速光耦
6N1361M
6N13710M
单通道HDLC协议控制器:MT8952;
音频放大器LM2904;
512k*8带软件保护可段/整片擦除的flah28SF040;
关于电压转换芯片的一点体会:AD7865做电机控制的使用很不错,四路350K,14位精度,单电压,+/-10V输入,推荐使用AD7864的升级用。掉电保存可以选择NVRAM,带电池的,maxim有很多
74ALVC164245,电平转换芯片,3.3V电平和5V电平总线接口用
74HCT14:复位隔离缓冲
ULN2003:达林顿输出的驱动芯片,带继电器灭弧的二极管,驱动继电器不错
MAX708:复位芯片,带高低电平和手动复位功能
CPU:虽然不推荐选用***货,但是多一个选择也不错,SuperH系列的CPU性能不错
1:usb控制器,cypress公司的cy7c63723,cy7c68013,63723是otp的建议初次搞usb接口的不要使用,调试起来很麻烦。
2:cpld,fpga用xilinx的型号很全
3:2.4g rf收发芯片nrf2401a
看门狗 813、705、706等
1、LI358/LM324 小信号放大器,通用型的当然你要求太高就的另选了。
2、24C08/24C16 EEPROM 感觉还可以!
3、MPS3100
1,可做充电器的电压升降的IC,SP34063,感觉使用起来还是听方便的2,RF IC,NRF2401,NREF2402,还有功能更强的集成增强型8051内核的好象是 NRF24E1,不过我没用过
3,音频功放TPA021
13.HT12D,是与“HT12E”对应的解码芯片。也有红外的解码芯片。
4.IRF640N,MOSFET,电力场效应管
电能(ATT7022A、SA9904B)、压力(PGA309)、温度(DS18B20、K型热电偶MAX6675)、湿度(SHT10)、液位(LM1042)、烟雾(NIS-09C+MC145018)、红外(HS0001)、距离(TDC-GP1)、转速(KM115-1),codec(AMBE-2000)、can(SJA1000)、gps(u-blox)、无线数传(nRF905、nRF9e5)
cirruslogic--cs5460计量芯片,0.1级
ADE7758三相电力计量芯片0.5级
ATT7022三相电能计量芯片0.5级,可作多功能表
24bit的有AD7712AN
温度传感器:AD592CN,环境稳定25度时精度,+/-0.5度
第二篇:FPGA芯片配置总结
FPGA芯片配置总结
[日期:2010-05-22 ] [来源:本站编辑 作者:佚名] [字体:大 中 小](投递新闻)
1.FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式。
AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EPCS4配置器件专供AS模式,目前只支持Cyclone系列。使用Altera串行配置器件来完成。Cyclone期间处于主动地位,配置期间处于从属地位。配置数据通过DATA0引脚送入 FPGA。配置数据被同步在DCLK输入上,1个时钟周期传送1位数据。(见附图)
PS则由外部计算机或控制器控制配置过程。通过加强型配置器件(EPC16,EPC8,EPC4)等配置器件来完成,在PS配置期间,配置数据从外部储存部件,通过DATA0引脚送入FPGA。配置数据在DCLK上升沿锁存,1个时钟周期传送1位数据。(见附图)
JTAG接口是一个业界标准,主要用于芯片测试等功能,使用IEEE Std 1149.1联合边界扫描接口引脚,支持JAM STAPL标准,可以使用Altera下载电缆或主控器来完成。
FPGA在正常工作时,它的配置数据存储在SRAM中,加电时须重新下载。在实验系统中,通常用计算机或控制器进行调试,因此可以使用PS。在实用系统 中,多数情况下必须由FPGA主动引导配置操作过程,这时FPGA将主动从外围专用存储芯片中获得配置数据,而此芯片中fpga配置信息是用普通编程器将设计所得的pof格式的文件烧录进去。专用配置器件:epc型号的存储器
常用配置器件:epc2,epc1,epc4,epc8,epc1441(现在好象已经被逐步淘汰了)等
对于cyclone cycloneII系列器件,ALTERA还提供了针对AS方式的配置器件,EPCS系列.如EPCS1,EPCS4配置器件也是串行配置的.注意,他们只适用于cyclone系列.除了AS和PS等单BIT配置外,现在的一些器件已经支持PPS,FPS等一些并行配置方式,提升配置了配置速度。当然所外挂的电路也和PS有一些区别。还有处理器配置比如JRUNNER 等等,如果需要再baidu吧,至少不下十种。比如Altera公司的配置方式主要有Passive Serial(PS),Active Serial(AS),Fast Passive Parallel(FPP),Passive Parallel Synchronous(PPS),Passive Parallel Asynchronous(PPA),Passive Serial Asynchronous(PSA),JTAG等七种配置方式,其中Cyclone支持的配置方式有PS,AS,JTAG三种.对FPGA芯片的配置中,可以采用AS模式的方法,如果采用EPCS的芯片,通过一条下载线进行烧写的话,那么开始的“nCONFIG,nSTATUS”应该上拉,要是考虑多种配置模式,可以采用跳线设计。让配置方式在跳线中切换,上拉电阻的阻值可以采用10K
3,在PS模式下tip:如果你用电缆线配置板上的FPGA芯片,而这个FPGA芯片已经有配置芯片在板上,那你就必须隔离缆线与配置芯片的信号.(祥见 下图).一般平时调试时不会把配置芯片焊上的,这时候用缆线下载程序.只有在调试完成以后,才把程序烧在配置芯片中, 然后将芯片焊上.或者配置芯片就是可以方便取下焊上的那种.这样出了问题还可以方便地调试.在AS模式下tip: 用过一块板子用的AS下载,配置芯片一直是焊在板子上的,原来AS方式在用线缆对配置芯片进行下载的时候,会自动禁止对FPGA的配置,而PS方式需要电路上隔离。
4,一般是用jtag配置epc2和flex10k,然后 epc2用ps方式配置flex10k.这样用比较好.(这是我在网上看到的,可以这样用吗?怀疑中)望达人告知.5,下载电缆,Altera下的下载电缆分为byteblaster和byteblasterMV,以及ByteBlaster II,现在还
推出了基于USB-blaster.由于BB基本已经很少有人使用,而USB-Blaster现在又过于昂贵,这里就说一下BBII和 BBMV的区别.BBII支持多电压供电5.5v,3.3v,2.5v,1.8v;
BBII支持三种下载模式:AS,可对Altera的As串行配置芯片(EPCS系列)进行编程PS,可对FPGA进行配置
JTAG,可对FPGA,CPLD,即Altera配置芯片(EPC系列)编程而BBMV只支持PS和JTAG6,一般在做FPGA实验板,(如cyclone系列)的时候,用AS+JTAG方式,这样可以用JTAG方式调试,而最后程序已经调试无误了后,再用 AS模式把程序烧到配置芯片里去,而且这样有一个明显的优点,就是在AS模式不能下载的时候,可以利用Quartus自带的工具生成JTAG模式下可以利用jic文件来验证配置芯片是否已经损坏,方法祥见附件.7.Altera的FPGA可以通过单片机,CPLD等加以配置,主要原理是满足datasheet中的时序即可,这里我就不多说了,有兴趣的朋友可以看看下面几篇文章,应该就能够明白是怎么回事了.8.配置时,quartus软件操作部分:
(1).assignment-->device-->device&pin options-->选择configuration scheme,configuaration mode,configuration device,注
意在不支持远程和本地更新的机器中configuration mode不可选择,而configuration device中会根据不同的配置芯片产生pof文件,如果选择自动,会选择最小密度的器件和适合设计
(2).可以定义双口引脚在配置完毕后的作用,在刚才的device&pin option-->dual-purpose pins-->,可以在配置完毕后继续当I/O口使用
(3).在general菜单下也有很多可钩选项,默认情况下一般不做改动,具体用法参见altera configuration handbook,volume2,sectionII.(4)关于不同后缀名的文件的适用范围:
sof(SRAM Object File)当直接用PS模式下将配置数据下到FPGA里用到,USB BLASTER,MASTERBLASER,BBII,BBMV适用,quartusII会自动生成,所有其他的配置文件都是由sof生成的.pof(Programmer Object File)也是由quartusII自动生成的,BBII适用,AS模式下将配置数据下到配置芯片中
rbf(Raw Binary File)用于微处理器的二进制文件.在PS,FPP,PPS,PPA配置下有用处
rpd(Raw Programing Data File)包含bitstream的二进制文件,可用AS模式配置,只能由pof文件生成hex(hexadecimal file)这个就不多说了,单片机里很多
ttf(Tabular Text File)适用于FPP,PPS,PPA,和bit-wide PS配置方式
sbf(Serial Bitstream File)用PS模式配置Flex 10k和Flex6000的jam(Jam File)专门用于program,verigy,blank-check
参考链接:http:///news/2010-05/2141.htm
第三篇:Linux芯片总结
基于Cortex-M3内核的STM32嵌入式处理器的学习报告
一、Cortex-M3内核概述:
Cortex‐M3是一个32位处理器内核,它内部的数据路径是32位的,寄存器是32位的,存储器接口也是32位的。CM3采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问并行不悖。Cortex-M3采用ARMv7-M构架,不仅支持Thumb-2指令集,而且拥有很多新特性。较之ARM7-TDMI,Cortex-M3 拥有更强劲的性能、更高的代码密度、位带操作、可嵌套中断、低成本、低功耗等众多优势。
CM3提供一个可选的MPU,而且在需要的情况下也可以使用外部的cache;另外在CM3中,Both小端模式和大端模式都是支持的。CM3内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。另外,它为支持更高级的调试,还有其它可选组件,包括指令跟踪和多种类型的调试接口。
二、Cortex-M3内核配置
ARMCortex-M3采用哈佛结构,并选择了适合于微控制器应用的三级流水线,但增加了分支预测功能,可以预取分支目标地址的指令,使分支延迟减少到一个时钟周期。针对业界对ARM处理器中断响应的问题,Cortex-M3首次在内核上集成了嵌套向量中断控制器(NVIC)。Cortex-M3的中断延迟只有12个时钟周期(ARM7需要24-42个周期);Cortex-M3还使用尾链技术,使得背靠背中断的响应只需要6个时钟周期(ARM7需要大于30个周期)。Cortex-M3采用了基于栈的异常模式,使得芯片初始化的封装更为简单。
Cortex-M3加入了类似于8位处理器的内核低功耗模式,支持3种功耗管理模式:通过一条指令立即睡眠、异常/中断退出时睡眠和深度睡眠,使整个芯片的功耗控制更为有效。
CM3 拥有通用寄存器R0‐R15以及一些特殊功能寄存器。R0‐R12是最通用的,但是绝大多数的16位指令只能使用R0‐R7(低组寄存器),而32位的 Thumb‐2指令则可以访问所有通用寄存器,特殊功能寄存器有预定义的功能,而且必须通过专用的指令来访问。Cortex‐M3中的特殊功能寄存器包括:程序状态寄存器组(PSRs或xPSR)、中断屏蔽寄存器组、控制寄存器(CONTROL)。
三、Cortex-M3的性能与特点
① Cortex-M3的许多指令都是单周期的——包括乘法相关指令。并且从整体性能上看,Cortex-M3基于ARMv7-M架构优于绝大多数的内核;
② 支持Thumb-2指令集,为编程带来了更多的灵活性,Cortex-M3的代码密度更高,对存储器的需求更少;
③ Cortex-M3有先进的中断处理功能,其内建的嵌套向量中断控制器支持多达240条外部中断输入,向量化的中断功能剧烈地缩短了中断延迟,因为不需要软件去判断中断源,而且中断的嵌套也是在硬件水平上实现的,不需要软件代码来实现; ④ Cortex-M3需要的逻辑门数少,所以先天就适合低功耗要求的应用,CM3的设计是全静态的、同步的、可综合的,所以任何低功耗的或是标准的半导体工艺均可放心使用;
⑤ Cortex-M3支持传统的JTAG基础上,还支持更新更好的串行线调试接口;
四、基于Cortex-M3的STM32F103ZET6嵌入式开发板
国内Cortex-M3市场,ST(意法半导体)公司的STM32无疑是最大赢家,作为 Cortex-M3内核最先进的两个公司之一,ST 无论是在市场占有率,还是在技术支持方面,都是远超其他对手。在Cortex-M3芯片的选择上,STM32无疑是我们学习使用Cortex-M3的首选开发板。
作为初学者来学习使用Cortex-M3内核其实会很困难,而通过运用功能强大的集成开发板stm32,则能够加深我们对内核运用的了解;每一套开发板都会配套一个固件库,这个固件库函数可以是我们不完全了解Cortex-M3内核寄存器的工作方式前提下,通过调用库函数实现对寄存器的控制,而且寄存器版本的STM32开发指南能够帮助我们更进一步认识寄存器的工作。
STM32F103ZET6属于中低端的32位ARM微控制器,有512K的片内Flash存储、64K字节的SRAM等高性价比的配置。作为一款常用的增强型系列微控制器,STM32F103ZET6适用于电力电子系统方面、电机驱动、应用控制、医疗、手持设备、PC游戏外设等。
我之前参加的一位工程学院研究生导师的课题项目----“风送式智能喷雾技术”就利用到STM32F103ZET6作为嵌入式控制器。我首先将STM32F103ZET6的模块化功能与项目要求匹配之后,再集成运用到这个项目实际当中;比如驱动蠕动泵,我就使用到pwm输出模块,之后我就学习STM32F的有关库函数以及相应定时器、GPIO的配置;又比如比例阀的控制开度运用到A/D转换模块,我除了知道对应的库函数参数设置,同时也要学习了解ADC控制寄存器,每个要转换的通道以及转换速率的计算;这样保证了在接触嵌入式处理器的学习之中不至于生活实际脱节,又能很好去了解内核的寄存器工作情况。
第四篇:74LS192芯片总结
74LS192引脚图管脚及功能表
74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:
(a)引脚排列
(b)逻辑符号 图中:为置数端,为加计数端,为减计数端,为非同步进位输出端,计数器输入端,为非同步借位输出端,P0、P1、P2、P3为为清除端,Q0、Q1、Q2、Q3为数据输出端。
其功能表如下:
例如:用74LS192芯片设计出三十进制计数器
用 192 采用级联法
做成 3*10 的一个芯片满十进一
另一个芯片到3 即0011的时候提供清零脉冲
恢复到0000
详见图
第五篇:UC2844芯片应用PCB设计总结
2844芯片设计总结
2844芯片散热问题,目前得到的温升是比较理想的,从温升40度直降到36.5度,这样就很好地解决了温升问题。
1、2844芯片设计电路图:
2、TOP设计布线
设计要点:要保证2844 芯片本体中间有8个过孔,芯片的接地(N)引脚有2个过孔,走线与PIN同宽,其它尽量宽。
3、BOTTOM设计布线
设计要点:尽量保证下层铜皮宽度覆盖芯片的管脚,通过多个过孔,保证表层更好散热。
4、第二层N网络布线
设计要点:由于N网络在第二层是大面积的,需要多打几个过孔到外层散热,其它网路尽量引线出来再打孔,保证2844芯片本体下有完整的铜箔。
5、整体的布线
设计要点:尽量在离芯片 4MM处放置阻容零件,方便把芯片其他网络的引线拉出处理,保证了周边阻容的就近放置,也使芯片的散热铜皮加大。
设计经验结论:
A、散热的铜皮设计优先要布在外层,因为散热远好于内层,即使空间很紧,只有2-3mm的宽度,散热铜箔也要尽量平均布在外层,同时再增加内层铜皮。B、由于2844 芯片周边需要布阻容,大概在4 MM左右的距离布器件,即能满足阻容就近放置,也能满足散热铜箔面积大。C、2844 芯片的本体中心打上8个过孔,其它有空间尽量多打几个,更有助散热
二、附加设计文件
ES201KZ6_1.0.pcb