第一篇:新型节能环保功能性建筑材料的性能研究
新型节能环保功能性建筑材料的性能研究
[摘 要]本文首先分析了节能环保功能性建筑材料的几种代表材料,并对新型节能环保功能性建筑材料的应用场景进行研究,最后展望了新型节能环保功能性建筑材料的发展趋势,为节能环保功能性建筑材料的发展、应用与推广提供资料参考。
[关键词]节能环保;功能性;建筑材料;性能研究
中图分类号:TU50 文献标识码:A 文章编号:1009-914X(2017)12-0145-01
在国家政策的推动和支持下,在材料工程不断发展的背景下,很多新型的节能环保材料投入市场,并得到推广和应用。由于施工单位对材料的性能和使用方式不了解,在节能环保材料的使用中经常出现一些问题,这严重影响了新型节能环保材料作用的发挥,并影响了新型节能环保材料的应用和推广。
一、几种常见的新型节能环保功能性材料分析
1、石膏建筑材料
石膏是一种比较传统的节能材料,相比于其他建筑材料,其煅烧能耗更低,其材料的制作能够实现能源的节约。除此以外,石膏相比于混凝土等材料,还有着可循环利用的优点,能够极大的减少工程建设中建筑垃圾的生产量,实现对环境的保护和资源的充分利用。石膏还有着无毒无害的优点,并具有优良的耐热和耐火性,能够满足多种使用环境的装饰和建筑施工需求,是一种值得广泛推广和应用的优秀材料。
2、废弃的植物纤维
植物纤维来源于废弃农作物、植物和木材,是一种来源广泛的可再生材料。我国陆地面积广博,不仅拥有着大面积的农田,还有着异常丰富的植物纤维资源。将植物纤维在加工,能够有效的激发植物纤维的性能,并通过技术处理满足装饰、建筑施工等不同的施工需求,具有巨大的应用和发展前景。
3、泡沫玻璃建材
泡沫玻璃同样是新型节能建筑材料的一种,泡沫玻璃来源是废弃的玻璃。将废弃的玻璃回收、加工成节能建筑材料,能够实现对废弃玻璃剩余价值的挖掘,在避免废弃玻璃乱丢污染环境的同时,变废为宝。泡沫玻璃技术在生产中也十分环保,不会产生废气、废渣和废水,因而其生产再加工符合环保材料的要求。随着我国城市化的不断推进,玻璃已经成为城市垃圾的重要组成部分,实现对废弃玻璃的回收利用。
4、膜材料
膜材料有着极高的透光率,其作为一种新型环保节能材料,在建筑工程中的应用,能够实现对自然光线的充分利用,从而降低建筑照明用电量。膜材料还有着导热性低、保温性能好的优势,具有极佳的保温隔热性能。除此以外,膜材料还有密度小、质量轻、耐久性好、抗紫外能力强等优势,在西方发达国家有着广泛的应用。
二、几种节能环保材料的应用方式
节能环保材料在建筑工程中应用比较广泛,包括装饰工程、围护结构体系、门窗、墙面施工和设计中均有着广泛的应用。
1、装饰装修工程中的应用
节能环保材料在装饰工程中的应用极为广泛,包括地板、涂料、板材等,都有着节能材料的身影,并抢占了一定的市场份额。诸如泡沫玻璃、膜材料、石膏等材料,其本身就具有特殊的视觉效果,在装饰工程中的应用,能够极大的提高装饰工程的施工质量。除此以外,诸如复合地板、节能环保涂料、节能化学建材等在装饰工程中的应用,不仅效果较好,并且有着更低的造价,其材料循环的特性,还能够有效的避免浪费,推动了现代装饰工程的发展。
2、节能环保围护材料
幕墙、保温墙体均为墙体围护结构,在墙体材料改革不断深化的今天,节能环保材料在围护结构中应用越来越广泛。优秀的围护结构,不仅美观大方,还有着卓越的保温隔热性能。相比于传统围护材料,新型节能型材料在围护结构中的应用,不仅成本和造?r更低,而且视觉效果更好。例如,在现代幕墙工程中,就经常出现新型节能环保材料的身影。在大型建设工程中所使用的太阳能光电板,同样是一种能够实现对电能综合利用的节能型围护材料。
3、节能环保门窗
门和窗,是建筑必不可缺的结构。门发挥着沟通室内外的作用,窗子能够在帮助人们实现自然采光的同时,通过适当通风,使建筑获得更优质的室内空气环境。门窗是建筑通风和与室外沟通的关键结构,其节能性是否达标,将影响建筑的能耗。普通门窗隔热保温性能差,其在关闭期间仍然会与外界有比较明显的热量交换,这会加大室内空调和供暖设备的能耗,不符合节能设计要求。现如今,随着材料技术的发展,保温节能门窗使用越来越广泛。这些节能环保型门窗不仅更加美观,而且具有极佳的保温隔热性能,能够降低室内外温度交换效率,从而降低建筑室内空调系统能耗。在建筑设计中,不妨加大节能环保门窗的应用,虽然节能环保门窗造价较高,但从长远来看,其经济效益仍然比普通门窗优秀很多。
4、节能环保墙面材料
新墙体材料改革实施以来,在墙面工程中,环保节能材料使用的频率越来越高。墙面工程中所使用的材料,不仅需要符合节能设计要求,还必须保证其防火性能达标。除此以外,为了保证建筑墙体的保温隔热功能达到设计要求,在墙面工程中选用的新型节能材料,还要求具有较好的保温性能。现代的建筑节能环保墙面材料,包括节能环保漆和节能环保敷设材料两种,不同的节能环保材料,具有不同的适用性。炎热的南方地区,适用于节能环保涂层材料,而北方更适用于节能环保敷设材料。节能环保材料在墙体工程中的应用,不仅提高了墙体工程的经济性,还极大的提高了施工的环保性,为新墙体材料改革的推进做出了贡献。
三、新型节能环保材料的发展方向
1、节能环保材料价格逐渐走低
在国家政策鼓励、技术进步和产业链不断成熟的背景下,节能环保材料的产量越来越大,其价格也越来越低。节能环保材料价格的走低,极大的提高了人们在建筑工程中应用的积极性,并抢占了大部分传统材料的市场份额,成为建筑材料市场的新宠。
2、性能不断提高
节能环保材料是伴随着材料技术的发展而发展的,在材料技术飞速发展的今天,在市场需求的驱动下,在政策的鼓励与支持下,节能环保材料制造技术发展迅猛。很多先进的技术被迅速投产、建设,这极大的提高了市场上节能环保材料的性能。在当前的建筑材料市场中,具有优越保温、防潮、隔热、透光、阻燃等功能的节能环保材料比比皆是,为我国建筑工程的发展做出了巨大贡献。
3、对市场针对性更强
由于节能环保建筑材料品类多,并且功能齐全,因此能够适应更为广泛的市场需求。在当前的材料行业市场中,节能材料的开发和销售,与区域环境、气候和人文特点关系密切,通过这种细分的市场操作模式,不仅为企业带来了更多的利润,还为不同地区的人们提供更加符合其需求的优质材料。
4、施工过程中更高的技术标准
随着节能建筑材料生产日益精细化,为了追求最佳的视觉效果和功能效果,节能型建筑材料对施工技术的要求更加严格。这极大的提高了节能型建筑材料的使用效果,提升了节能型建筑材料的口碑与信誉,从而为节能型建筑材料的推广打下坚实的基础。
综上所述,节能型建筑材料已经走入千家万户,在实现资源和能源节约的同时,为人们创造了更加优质的生活和家居环境。相信随着节能型建筑材料生产技术的进步,和节能型建筑材料市场认可度不断提高,节能型建筑材料将会为我国社会、经济的发展做出更大的贡献。
参考文献
[1] 周亚愚.新型节能环保功能性建筑材料的性能分析[J].建材发展导向:下,2016,14(5).[2] 王菊,彭兴民,WangJu,等.新型节能环保功能性建筑材料的性能分析[J].城市建筑,2014(15):229-229.
第二篇:秸秆环保节能材料性能的研究
秸秆环保节能材料性能的研究
摘要:对秸秆水泥基复合材料的性能进行了研究,利用秸秆制成的轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防虫鼠害及环保节能等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标。
关键词:秸秆;水泥基复合材料;环保节能;秸秆轻体保温砌块
绿色化是新型建材的发展趋势,绿色建材是指具有环保、节能、健康、安全、可靠、可再生等属性的建材,其核心内容是采用清洁的技术,从原料选用,产品制造,使用过程或再循环,以及废弃物处理等环节中进行污染控制设计,选用无毒和低毒的原材料,生产过程中尽可能减少污染的产生,副产物尽可能的做到回收利用,产品在使用过程中,不应对环境和人类健康产生污染和威胁。实验部分
1.1秸秆纤维
实验采用的秸秆纤维是经破碎的玉米秸秆,其主要成份是SiO2、木质素纤维素等。玉米秸秆颗粒均匀,粒度适中,湿润后体积不膨胀,易于压实,这有利于拌和均匀和提高混合料的密实度。而采用的水泥和表面改性剂均为弱碱性物质,因此,玉米秸秆与水泥及表面改性剂拌和,其混合料的化学性能较稳定。植物纤维玉米秸秆,既可起增强作用,又可减轻复合材料的质量,使其具有隔音、隔热性能。
玉米秸秆在破碎后,形成窄而薄的纤维状态,长径比大的纤维含量大,加入一定的助剂时与水泥基体混合均匀、充分,且结合状态好、强度高。秸秆成分见表1。
1.2 水泥
以波特兰水泥(硅酸盐水泥)为基体的植物纤维水泥材料存在耐久性问题,在碱环境中,植物纤维的耐久性下降。Gram[1]认为,水泥基材孔隙中的高碱性液相对剑麻纤维有侵蚀作用,Velpari等将黄麻纤维浸泡在pH=13的波特兰水泥料浆的滤液中30 d,发现纤维的抗拉强度由50 MPa降至12 MPa。很多研究者认为,这可能与Ca(OH)2在纤维孔隙内结晶有关。波特兰水泥料的pH值一般都超过13,避免植物纤维破坏的方法之一是,把水泥的碱性降到pH(12~12?5)。由于硅酸盐水泥的碱性很高,所以不宜选用硅酸盐水泥。实验采用低碱性的氯氧镁水泥。
氯氧镁水泥也称Sorel水泥或镁质水泥,是一种气硬性胶凝材料。它有许多性能优于波特兰水泥,如不需要湿养护,防火性能好,导热系数小,耐磨性好,早期强度高、耐油、抗普通盐和硫化物侵蚀性能也相当好。镁水泥的水化产物主要是:5 Mg(OH)2?MgCl2?8H2O(简称5?1?8相或相5)和3 Mg(OH)2?MgCl2?8 H2O(简称3?1?8相或相3),是由活性的MgO和MgCl2水溶液发生水化反应形成的。因此,提高镁水泥的耐水性主要是提高5?1?8相和3?1?8相的稳定性。
(1)氧化镁。实验用的是轻烧镁粉,是用菱镁矿石(MgCO3)经750℃~850℃煅烧后再磨细而成,是一种浅黄色的粉末。其物理性能如下:密度3?2 g/cm3,细度120目/cm2筛余量1?5%。化学成分如下:MgO为81?4%;CaO为1?2%;烧失量为8%。
(2)卤粉(块、片或粒状)。卤粉应易溶于水,不溶解的沉淀物<0?5%,MgCl2≥45%,SO42-<2%,NaCl<2%。
1.3 磷酸
采用天津市化学试剂三厂生产的磷酸,其化学成分如下:H3PO4含量不少于85%;灼烧残渣0?2%。
1.4 粉煤灰
粉煤灰是火力发电厂煤粉燃烧后剩下的灰分,是工业废料,含有相当高的无定性硅质材料。粉煤灰是由各种颗粒机械混合而成的群体,其中多为球形玻璃体,比表面积较大,其矿物组成主要是玻璃相、莫来石相、石英、赤铁矿、磁铁矿及少量未燃烧碳粒。主要化学成分如下:Loss:7.78%;SiO2:59.93%;Al2O3:20.16%;Fe2O3:4.24%;CaO:0.92%;MgO:1.45%。采用干燥磨细粉煤灰。
1.5 硅藻土
采用吉林长白硅藻土。我国是世界上硅藻土矿大国之一,有丰富的硅藻土资源,全国保有储量6 636万t,远景储量5亿t,可开采一千年以上。
吉林长白硅藻土化学成分如下:SiO2:79.80%;Al2O3:4.09%;MgO:0.16%;CaO:0.3%;TiO2:0.2%;烧失量:9.70%。实验采用经过600℃煅烧的硅藻土,由于有机质被烧掉,使硅藻土相对富集,孔隙度增大,比表面积提高,活性显著改善。
1.6 超细矿渣
通化钢铁集团超细粉磨厂生产,灰白色粉末状、高性能混凝土掺合料。矿渣粉比表面积:8 000 cm2/g。化学成分见表2。
1.7 其它外加剂
(1)脲醛树脂。乳白色液体。
(2)有机硅(JHG-621甲基硅酸钠)。外观:淡黄色液体;比重:1?20~1?26;游离碱(%):10;甲基硅酸钠(%):20;氯化钠(%):3。
(3)铁矾(FeSO4?7H2O)。含量<99?0%,(4)标准砂:采用湖南平潭产的标准砂。
1.8 耐水性实验过程
(1)胶砂强度检验。根据GB 177-85《水泥胶砂强度检验方法》,进行胶砂强度试验(对于氯氧镁水泥浆体来说,其用液量为达到标准稠度时MgCl2溶液用量)。
(2)抗水性能试验。抗水性用软化系数表示。
(3)扫描电子显微镜。采用JEOL日本电子株式会社生产的JSM-5500 LV扫描电子显微镜。结果与讨论
2.1 秸秆掺量对复合材料力学性能的影响
从图1~图3可以看出,随着秸秆掺量的增加,复合材料的28 d抗折强度在一定范围内有所提高。这是因为加入的秸秆能与胶凝材料很好的粘结,对材料基体起到增强的作用;但秸秆掺量超过一定的范围,由于体系内没有足够的胶凝材料来包裹它,这样抽出物大量析出,影响了界面的结合强度,所以,当秸秆掺量过大时,抗折强度也就会降低;28 d抗压强度就随着秸秆掺量的增加而降低。但从总整体上看,随着秸秆掺量的增加,复合材料的折压比逐渐增大,说明材料的脆性下降,韧性增加。
2.2 超细矿渣对复合材料力学性能的影响
图4~图6是秸秆掺量为10%、树脂掺量为2%,超细矿渣掺量对复合材料力学性能的影响.加入的活性SiO2,在氯氧镁浆体中能与MgO反应,生成水硬性的MgSiO2,而使镁水泥的结构稳定性和耐水性提高。
2.3 脲醛树脂对复合材料力学性能的影响
图7~图9是秸秆掺量为10%、矿渣掺量为10%,树脂掺量对复合材料力学性能的影响。由于脲醛树脂与秸秆的粘结强度较高,且与镁水泥的界面结合较致密,加入树脂后可以提高复合材料的强度;当树脂的掺量为2%,抗压强度和抗折强度达到最大值.随着树脂掺量的增加,抗折强度缓慢降低,抗压强度大幅度降低,折压比增高。这是由于树脂与氯氧镁水泥浆体浑然一体一起浸透粘接纤维,包裹和填充在纤维的表面和空隙中,提高了对纤维的握裹力。树脂胶乳分子内和分子间的活动性大,具有一定的柔韧性和弹性,当受到应力作用时,可以吸收一定的能量,减缓因应力引起的开裂破坏.树脂胶乳加入到氯氧镁水泥中后,构成了胶体、晶体、纤维交错连生的整体,起到了强化界面的作用。
2.4保温性能
通过导热系数测定仪测得材料的导热系数,精确到0.001.从图15可以看出,随着秸秆掺量的增加,复合材料的导热系数不断降低,即材料的保温性能随秸秆掺量的增加而提高.从秸秆的微观结构中可以看到,秸秆为多孔结构,当其被镁水泥的水化产物包裹后,这些孔隙就被封闭起来,这样的结构无异于其它保温材料的微观结构,所以,加入秸秆同样可以起到保温的作用。利用秸秆生产轻体节能保温砌块的研究
秸秆轻体节能保温砌块,芯材以破碎玉米秸秆为主要原材料,以改性耐水镁水泥为胶凝材料,配以调凝剂、抗水剂、防水剂、防腐剂及各种改性外加剂、活性粉煤灰等,芯材两侧配以保护层。项目处于国际先进水平,取得了突破性的创新性研究成果,秸秆轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防渗、防虫鼠害等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标,现已申报国家发明专利。结论
从上文可以得出结论,利用秸秆制成的轻体保温砌块具有轻质、高强、保温性能好、吸水率低、抗冻融性能高、防火、防水、防渗、防虫鼠害等特点,成本低廉,实现了北方寒冷地区单一墙体材料节能50%(240 mm厚)的目标。
参考文献:
[1] 张潇立,汤晨,詹小泉,张新华.复合保温墙体隔热性能研究[J].科技创新导报.2009(32)
[2] 毛广志.建筑节能与可再生能源利用[J].科技信息.2009(30)
[3] 刘琦华,侯新平.外墙外保温体系及其保温隔热材料浅析[J].科技创新导报.2009(27)
第三篇:建筑环保节能材料
建筑环保节能材料——玻璃
摘要
建筑节能成为世界建筑界共同关注的问题。建筑外围护结构的热工性能直接 影响建筑能耗,玻璃幕墙是现代建筑较多采用的外围护结构之一,它不仅实现了 建筑外围护结构中墙体与门窗的合二为一,而且把建筑围护结构的使用功能与装 饰功能巧妙地融为一体,使建筑更具现代感和装饰艺术性。而大面积玻璃幕墙在 提供良好采光的同时却又带来了采暖与制冷能耗高的隐患,它是建筑能耗的一个 薄弱环节。因此,研究玻璃幕墙的节能设计对建筑节能工作的开展有重要意义。突飞猛进的经济建设进一步促进了玻璃业的快速发展,浮法玻璃和玻璃加工企业如雨后春笋般崛起,建筑、汽车、家电、家具、装饰、艺术等各种玻璃玲琅满目层出不穷,而太阳能玻璃、低辐射玻璃、自洁玻璃、光电玻璃等新技术产品也开始占据市场和即将成为主流。其中,镀膜中空玻璃的出现,给现代建筑业开拓了一片新的天地。
镀膜玻璃
低辐射玻璃
太阳光控制玻璃
正文 1绪论
1.1建筑节能
(1)能源问题是当前世界各国普遍重视的问题,并己被列为人类面临的四大 生存问题之一。在全世界的能源消耗中,无论是发达国家还是发展中国家,建筑 能耗在总能耗中所占的比重都是很大的,约为25%至45%[1]。而且,建筑能耗属 于消费性能耗,相对于生产性能耗,消费性能耗除了保证正常消费需要的部分外,余者则是浪费。因此,在世界范围内能源问题日益紧迫、建筑能耗不断增长的今 天,世界各国又都将建筑节能工作列为节能工作中的重点。
(2)建筑用能的高低取决于建筑围护结构的保温隔热性能、建筑的密闭性等。尽管我国在墙体、屋面材料、门窗、楼板节能技术和产品的研发、生产、设计、建设等方面做了大量工作,国家对新型墙材的推广也出台了一系列的优惠政策,也取得一定成绩,然而,由于建筑围护结构的保温隔热性能不高、建筑的密闭性 差等因素,造成我国建筑能耗总量居高不下,与国外先进水平仍存在巨大差距,我国在建筑围护结构节能方面还有很大潜力。
1.2玻璃幕墙的应用及节能
(1)玻璃幕墙不仅实现了建筑外围护结构中墙体与门窗的合二为一,而且把 建筑围护结构的使用功能与装饰功能巧妙地融为一体,使建筑更具现代感和装饰 艺术性。玻璃幕墙的这种良好特性,使它一经问世就得到人们的重视和青睐。我
国从上世纪 80 年代初开始引入玻璃幕墙,经过20 多年的发展,玻璃幕墙在全国 各地的建筑,特别是在一些地区的标志性公共建筑中已经使用的相当多了。香港 的中环广场,上海的金茂大厦、锦江大厦,北京的西单国际大厦等都采用了大面 积的玻璃幕墙。据不完全统计,上海目前约有5层以上玻璃幕墙建筑1300多幢,幕墙总面积超过1000万平方米。我国每年有600多万平方米的幕墙投入使用,并 以10%的速度继续增长[2]。而大面积玻璃幕墙在提供良好采光的同时却又带来了采 暖与制冷能耗高的隐患,这是建筑能耗的一个薄弱环节。因此,研究玻璃幕墙的 节能设计对建筑节能工作的开展有重要意义。
(2)高楼大厦需要建筑幕墙。[3]因为 a、建筑幕墙不同于填充墙,它具有以下 的特点:它是由面板和支承结构组成的完整的结构系统;它在自身平面内可以承 受较大的变形或者相对于主体结构可以有足够的位移能力;它是不分担主体结构
所受的荷载和作用的围护结构。幕墙通常由面板(玻璃、铝板、石板、陶瓷板等)和后面的支承结构(铝横梁立柱、钢结构、玻璃肋等)组成。这个外墙系统支承
在主体结构上,通常包封主体结构。由于面板之间有宽缝,面板与横梁立柱的连 接有活动能力,所以幕墙在平面内,可以承受1/100的大变形。幕墙如果采用螺栓、摇臂、弹簧机构与主体结构连接,则可以在两者之间产生大的相对位移,甚至当 主体结构侧移达到1/60时,幕墙也不会破坏。b.抵抗地震灾害需要幕墙。1995年 日本阪神大地震、1999年台湾集集大地震,震中烈度都在11度以上,砌体填充墙、常规玻璃窗大量破坏,而幕墙,即使是玻璃幕墙,也很少有震害的报告,震后大 多保存完好。中国建筑科学研究院结构所进行过七个各种类型建筑幕墙的振动台 试验,结果表明:即使当台面输入加速度达到。0.9g(相当于10度大震),结构位 移达到1/60以上时,幕墙也没有损坏,保持良好性能。砌体填充墙在1/1000位移 时开裂,1/300位移时破坏,即使在小地震下也会产生破损,中震下会严重破坏。其原因是它在自身平面内变形能力很差,又被填充在主体结构内,不能有相对的 位移,被强迫一起振动,最终导致破坏。常规玻璃窗大体上也差不多。因此在地 震中震害非常严重。建筑幕墙的板围宽缝和特别的连接构造,使得它可以耐受到 1/100~1/60的大位移、大变形。类似于树叶相对于树枝、幕布相对于台口,无论 主体结构怎样摇晃,幕墙都可以安全无恙。高楼大厦耸入云霄,地震中强烈摆动,只有幕墙才能保证抗震安全,不会倒坍坠落,防止产生伤亡事故。d、幕墙节省结构 和基础的费用。建筑材料,如钢材、水泥都是高耗能、高造价的材料,节约材料,就是节约能耗,节约资源。玻璃幕墙的重量只相当于砖墙的1/10,混凝土墙板的 1/7;[3]铝板幕墙更轻:370㎜砖墙760㎏/㎡,200㎜空心砖墙250㎏/㎡,而玻 璃幕墙只有35~40㎏/㎡,铝板幕墙只有20~25㎏/㎡,一座150m高,外墙面为 20000㎡的高层建筑,采用幕墙可减轻墙体自重5000t~12000t。[3]这就大大减少了 主体结构的材料用量,也减轻了基础的荷载,节约了基础的造价。在上海、天津 等软弱地基上建造超高层建筑,这更起了决定性的作用。e.存在的问题是可以解决 的。2005年7月1日起,《公共建筑节能设计标准》开始施行。铝板幕墙和石板幕 墙因为背面有保温层,完全可以满足标准的要求。玻璃幕墙只要合理进行设计,也是可以达到标准的要求的。Low-E中空玻璃幕墙的推广使用,就是一个有力的 措施。双层通风幕墙、真空玻璃幕墙的保温性能,已优于传统的墙体材料。节能 不节能,不在于是不是玻璃。选用合适的玻璃,采用合理的构造,就完全可以达 到节能的标准。建筑幕墙是结构安全的一个重要保障,合理设计、精心施工是我 们应有的态度。正如汽车虽然消耗能源、污染空气、造成车祸,但却不会有人因 此而拒绝使用;同样我们相信,建筑幕墙也会在扬长避短、兴利除弊、技术创新 中,得到更大的发展。
(3)由于相关政策的出台,节能和业主利益休戚相关,人们愈来愈重视外围 护结构的节能效益。目前中空玻璃以及中空镀膜玻璃等具有较高保温隔热性能的材料 逐渐取代了以往较常使用的普通白色玻璃。现在不断有开发项目主动与节能、生 态相挂钩,这表明节能领域将很快会成为众多开发商的最新 “必争之地”。采用新 材料和新技术以求 “节能”,势必会增加开发商的成本,但一旦业主们明白开发前 期先预支,后期就能收到回报,建筑的吸引力必将倍增,这对于建筑市场来说,无疑又是一醒目卖点。另外,伴随全民素质的提高,环保意识的增强,人们对自 己居住的环境将越来越关心,为整个人类的利益而 “节能”,也会成为每个居民的 共同意识。
2国内外幕墙玻璃的研究现状 2.1国外研究现状
70年代能源危机后,人们逐渐认识到玻璃幕墙在能源消耗方面的严重缺陷。西方工业化国家开始对增强玻璃幕墙的热工性能进行研究。对普通的玻璃幕墙结构,热工性能是通过材料来实现的。比如说玻璃,最开始是单层玻璃,然后出现
了单层镀膜玻璃,接着是中空玻璃和低辐射玻璃。以前的铝型材导热性大,保温 隔热不好,后来发展到在铝型材中内嵌隔热条,即隔热断桥铝型材,用来减缓热 传导。可以说,到目前为止,通过材料来提高建筑的隔热保温性能已经发展到极 限,余地已经不大。所以从结构,以及整个建筑的外围护系统中谋求功能性的飞 气
跃,便成了必由之路。80年代初,热通道幕墙、智能幕墙研制成功了。
热通道幕墙,也称为双层皮玻璃幕墙,是一种新型的节能幕墙,是幕墙技术 的新发展。最初具有对双层皮玻璃幕墙研究性质的是1930年勒.柯布西耶在巴黎救 世军旅馆中“mur neutralisant”的设想。后来由于缺乏资金,外层玻璃和制冷设备 都被取消了,结果引发了建筑内部的恶劣环境。柯布西耶的多层玻璃幕墙或许是 一次技术失败,但它指出了玻璃建筑将要面临的新挑战,同时也指明了未来建筑 概念发展的方向。随后,双层皮玻璃幕墙技术在实践中逐步成熟,同时也暴露出 一系列问题,继而引发了对双层皮玻璃幕墙的研究[7]。目前的智能玻璃幕墙建筑,技术上主要是通过双层玻璃幕墙来实现。虽然双层玻璃幕墙本身一次性建设投资 较大,但它一方面可以降低建筑能耗,保护生态环境;另一方面,由于建筑物所 需能耗降低,可以减少建筑设备的一次性投入,特别是大量节约建筑运营成本。欧洲能源成本高,环保意识强,双层玻璃幕墙已成为现代化大型生态办公建筑的 发展方向。
目前,国外已建成的双层皮玻璃幕墙较多。[8]如:1980年建成的美国纽约西 方化学中心采用“外侧双层中空玻璃,内侧为单层幕墙,1500㎜ 宽的热通道”,此通道内安装了活动百页,该百页可以通过感应光线进行 自动调节,通道热空气 在过热时可以从通道顶端排走。1986年建成的劳埃德大厦采用“外侧双层中空玻 璃,内侧为单层幕墙,75㎜宽的热通道,通道一层楼高,之间互不连通”,被处 理过的空气通过设在架空地板内的风道送入热通道,再从另一端排走,这样可以 带走通道内50%的热量。1997年在德国埃森建成RWE总部,可能是目前最精密 复杂的幕墙系统,通道内有活动百页。每个单元有独立的进、排风口,该风口是 一精巧的鱼嘴型装置,进入通道内的空气直接从室外引进,热通道为建筑物提供 部分新风。
据欧洲大量文献介绍,双层幕墙系统具有较大的节能潜力,它采用可循环使 用的材料,建造速度快,对运输及施工场地要求小,同时又可创造出极具时代感 的建筑风格,被公认为具有 “生态”意义的建造方式,近十余年来,在欧洲发达 国家得以广泛应用。据统计:仅在德国便己建成上百栋双层玻璃幕墙建筑。双层 玻璃幕墙可以为建筑提供一个温度缓冲层,其在冬季被动式利用太阳能方面的潜 力已经得到公认,欧洲已建成的实例也提供了足够的证据。
智能幕墙尚处在发展的初期,智能幕墙从广义上说,包括以下几部分:热通 道幕墙、通风系统、智能化控制系统、遮阳系统、空调系统、环境监测系统等. 它可以根据外界自然条件的变化 自动调节功能,高效地利用能源。目前,世界范 围内己建成的智能幕墙不多。1993年建成的德国杜伊斯堡的商业促进中心是应用 智能幕墙的典型例子,外侧为点式单层玻璃幕墙,内侧为单元式幕墙,200㎜宽 的热通道,通道有控制光线的可调节式百页。2.2国内研究现状
我国80年代开始生产有框玻璃幕墙,隐框玻璃幕墙是90年代开始国外厂家 在上海生产出单元式玻璃幕墙,继而国内自己能够生产单元式幕墙。每年以600万平方米的速度生产各种幕墙[2],幕墙业的发展正由小到大,由不规范向比较规范的发展。但玻璃幕墙在能耗方面存在着许多问题。
普通单层玻璃幕墙,能耗约占整个建筑能耗的40%左右[2]。现阶段我国提高玻璃幕墙节能保温性能的主要措施是采用镀膜玻璃(包括Low-E玻璃、热反射玻璃)、中空玻璃及隔热断桥铝型材来降低结构传热系数,消除结构体系 “热桥”,降低空气渗透热损失,减少开启窗扇面积,提高密封性等。在大多数地区,采用单层的Low-E玻璃、热反射玻璃进行保温节能:在严寒地区保温要求很高的 建筑中,则采用中空玻璃和隔热断桥铝型材来实现节能。在热工性能方面比过去的门窗有所改善,但仍然存在能耗较大问题。
真空玻璃幕墙是一种节能的幕墙形式,在我国一些节能建筑上已经有采用。如北京天恒大厦,该项目坐落于北京市东城区东直门立交桥东北角,外立面使用 真空玻璃幕墙,整体外观形象豪华的建筑风格。真空玻璃幕墙具有节能、防结露、减少室内温差、隔音性能好、抗风压强等优势。天恒大厦是世界首座整栋真空玻
璃高节能甲级写字楼。[9]总建筑面积57238万平方米,地下4层,地上2层,大楼采用半隐框真空玻璃幕墙7000平方米,采用真空玻璃铝合金断热窗2500多平方米。采用真空组合中空的结构,经国家建筑工程质量检验中心检测,其传热系数K=1.2W/㎡·K。达到和超过国标保温窗最高级10级标准。而一般中空玻璃K值=3.4 W/㎡·K。大厦整体运用真空玻璃,单项成本仅提高10%~15%,由于真空玻璃在建筑节能上的优势,在投入使用后,预计年节电量280万度,节约中央空调电费260万元左右。由于节电,减少了发电燃煤而生产的污染,保护了环境。节约了后期成本,每年可节约20~30%的能耗。同时,真空玻璃这一环保节能材料的应用,营造了更加舒适的办公环境。又如清华大学超低能耗示范楼,[10]该楼 位于清华校园东区,总建筑面积为3000平方米,是我国第一座超低能耗示范楼,于2005年3月建成并对社会开放。该项目是北京市科委的“奥运科技专项”之一,同时是科技部“十五”科技攻关项目“绿色建筑关键技术研究”的技术集成平台,也是 清华大学绿色建筑的科研基地,开放式实验室及高新技术产品的示范展台。在此 基础上,将开展各项与绿色建筑相关的科学研究,示范世界上各种先进的绿色建 筑技术,展示各种绿色建筑的相关产品并进行有关绿色建筑技术的培训和宜传工 作。在这些广泛应用高新技术的绿色节能产品中,真空玻璃尤为引人关注。立面 幕墙采用两种幕墙结构,西侧为热通道式玻璃幕墙,外层为点式单片玻璃幕墙,下部有进风口,上部有出风口,进、出风口都可开启和关闭,内层为中空玻璃开 启窗,内、外层之间有可调节角度的遮阳卷帘。东侧为双层窗结构,外层为中空 玻璃的推拉窗,内层为双层玻璃的平开窗,内、外层之间有太阳能集热器,外层 窗的外侧有可调节的水平百叶外遮阳。在示范楼三楼的南立面双层皮幕墙的内层是高性能中空玻璃幕墙,中间一片采用真空玻璃,真空玻璃之间的间隙只有0.1~0.2㎜,中间支撑物来承受大气的压力,清华大学超低能耗示范楼南立面高性能真空玻璃冬季晚上的耗热量比单片白玻璃减少了83%,比普通中空玻璃减少了70%,比离线低辐射膜中空玻璃减少了37%。而西立面高性能真空玻璃节能窗节能更明显,耗热量度比单片玻璃减少了85%,比普通中空玻璃减少了74%,比离线低辐射膜充氢气中空玻璃减少了43%。该窗的K值<1.2W/㎡·K,由此可见高性能真空玻璃热工性能之优异,节能效果之明显。
目前,我国建成的热通道幕墙建筑不多。2000年6月投入使用的国家会计学
院教学楼是国内最早的热通道幕墙,位于北京市顺义区天竺镇,建筑面积14000㎡。该教学楼为4层建筑,1~3层为教学区,第4层为办公区,其幕墙由深圳方大集团股份公司设计施工。针对业主提出既要透明,又要高效利用能源的要求,以及北京地区的气候、地理环境,设计小组经过研究决定南向幕墙采用热通道。该幕墙为中国大陆最早的热通道玻璃幕墙,南向幕墙凡要求透明之处,内侧采用 低辐射(5+14A+5)㎜中空玻璃、外侧采用6㎜钢化透明玻璃、热通道宽160㎜内 设遮阳百叶,其结构平面见图1.1;不要求透明的,其内侧采用防火板+防火保温 棉十复合铝板,外侧及热通道不变,其结构构造如图1.2。北向幕墙由低辐射中空
玻璃(5+14A+5)㎜与复合保温板(防火板+40mm玻璃棉+铝塑板)构成。幕墙最大标 高16m,分格为2000(宽)×1050(高)㎜。国家建筑工程质量监督检验中心对该幕墙 进行了冬季保温性能检验:幕墙透明部分的传热系数为1.4W/(㎡·K),幕墙不透 明部分的传热系数为0.86 W/(㎡·K),幕墙平均传热系数为1.0 W/(㎡·K),低于 《民用建筑节能设计标准(采暖居住部分)北京地区实施细则》(DBJ01-602-97)中的 规定值,满足北京地区的节能要求。[8]
图1.1 热通道玻璃幕墙平面图
图1.2 热通道玻璃幕墙结构构造图
在冬季保温性能的检测中太阳辐射能量最大达500w/㎡,南向房间室内空气 白天最高温度达28.8℃,而北向房间的最高温度为20.8℃,最高温度相差达8.0℃,平均温度相差达4.8℃。为什么南向房间和北向房间,属同一个空调系统,而室温 度相差如此显著?[8]这是由于南向房间采用了热通道幕墙,而北向房间采用的只是 Low-E中空玻璃幕墙。
近年来,我国也对热通道幕墙、智能幕墙作了一些研究,并发表了大量的科 研论文。1998年深圳市三鑫特种玻璃技术股份有限公司(简称三鑫股份),与高等院 校共同建立了我国第一个建筑玻璃与幕墙研发中心,并配制各种试验、检测仪器 设备,具有对玻璃产品、建筑幕墙构配件产品从化学分析到力学性能的试验和检 测能力。公司在各种新型幕墙的研究上均取得很大成绩,其中点支式幕墙、双层 换气节能幕墙己被国家建设部批准为高新技术项目。公司在研究中心建立我国第 一个针对点支式幕墙和双层节能幕墙新技术进行科研的实验室。2000年深圳方大 公司在北京国家会计学院双层玻璃幕墙投入使用后,进行热工性能观测和热工分 析;2003年深圳市对通过双层玻璃幕墙与单层玻璃幕墙进入室内的太阳辐射进行 了对比实测,它对我们正确认识双层玻璃幕墙有很大作用。2001年10月,武汉凌 云和德国慕尼黑工业大学、华中科技大学联合成立了双层幕墙的实验站,主要研 究幕墙的热工性能和空气动力性能,到2004年为止,在实验样墙上经过两年多的 实验研究,已经形成了一整套系统解决方案。清华大学王余生副教授指导研究生 马欣完成“窗— 建筑实体要素的技术性研究”硕士论文,从窗的技术性问题入
手,对窗和幕墙进行材料、性能方面的分析。其中有少量内容涉及双层皮玻璃幕墙,但仅做概述。门华中科技大学研究生张勇完成“夏热冬冷地区公共建筑节能效率分析”硕士论文,其中一部分章节从夏热冬冷地区的气候特点出发,利用DOE-2 对双层皮玻璃幕墙进行了计算机模拟。华中科技大学研究生杜鹏在导师指导下完 成了“可呼吸的建筑表皮—夏热冬冷地区双层皮玻璃幕墙的气候适应性系列研 究之一”硕士论文。华中科技大学研究生王振完成“夏热冬冷地区双层皮玻璃幕 墙的气候适应性设计策略研究”硕士论文。都对本文的研究很有借鉴意义。而不 能依据地区具体的气候条件灵活地进行幕墙的节能设计并做出相应的构造改进,忽视依据具体地域特性而简单采用其它地区的双层幕墙技术难以达到最佳节能效 果。
2.玻璃幕墙的耗能及其节能措施 2.1玻璃组件
据资料介绍普通玻璃应用于建筑上,有1/3能量是通过玻璃的传导而损失的。目前在世界性能源紧张的今天节能已成为一种趋势,减少通过玻璃的能量损失越 来越被建筑师和建筑使用者所重视,减少透过玻璃的能量损失已被提到议事日程。其实节能玻璃在最近几年已获得了长足的发展,只是人们对玻璃的认识还不十分 全面,因此掌握玻璃的节能特性对正确选用玻璃品种至关重要。2.1.1玻璃节能评价的主要参数
自然界中热量的传递通常有三种形式,对流、辐射和传导。由于玻璃是透明 材料,通过玻璃的传热除上述三种形式外还有太阳能量以光辐射形式的直接透过。衡量通过玻璃进行能量传播的参数有玻璃的传热系数K值、太阳能透过率、遮蔽 系数、相对热增益等。
(1)K值
K值是用来表征在一定条件下热量通过玻璃在单位面积(通常是1㎡)、单位 温差(通常指室内温度与室外温度之差一般1℃或1K)、单位时间内所传递焦耳数,它的单位通常是W/㎡·K。K值是玻璃的传导热、对流热和辐射热的函数,它是这 三种传热方式的综合体现。玻璃的K值越大,通过玻璃的能量损失就越多,越不 利于节能。
(2)太阳能参数
透过玻璃传递的太阳能其实有两部分,一是太阳光直接透过玻璃而通过的能 量;二是太阳光在通过玻璃时一部分能量被玻璃吸收转化为热能,该热能中的一 部分又进入室内。通常有三个概念来定义:
1)太阳光透射率:太阳光以正常入射角透过玻璃的能量占整个太阳光入射能的 百分数。
2)太阳能总的透过率:太阳光直接透过玻璃进入室内的能量与太阳光被玻璃吸 收转化为热能后二次进入室内的能量之和占整个太阳光入射能的百分数。
3)太阳能反射率:太阳光被所有表面(单层玻璃有两个表面,中空玻璃有四个 表面)反射后的能量占入射能的百分数。
(3)遮蔽系数[13]
相同条件下,太阳辐射能量透过某玻璃组件的量与透过3㎜厚普通透明平板 玻璃的量之比就是该玻璃组件的遮蔽系数,用SC表示。遮蔽系数越小,阻挡阳光 直接辐射的性能越好。
2.1.2 建筑节能玻璃的性能及选择
选择合适玻璃类型主要从热特性和光学性能考虑。目前我国开发应用的节能 玻璃有吸热玻璃、热反射镀膜玻璃、低辐射玻璃(LOW-E玻璃)、中空玻璃、真空 玻璃等。
(1)吸热玻璃
吸热玻璃是一种能够吸收太阳能的平板玻璃,它是利用玻璃中的金属离子对 太阳能进行的选择性吸收,同时呈现不同的颜色。吸热玻璃有本体着色和表面镀 膜两大类产品,本体着色玻璃是在无色透明平板玻璃的配合料中加入特殊着色剂,采用浮法、垂直引上法、平拉法等工艺生产;表面镀膜产品是在玻璃表面喷镀吸 热和着色的氧化物薄膜形成吸热玻璃。有些夹层玻璃胶片中也掺有特殊的金属离 子,用这种胶片可以生产出吸热的夹层玻璃。
吸热玻璃的节能原理是当太阳光透过玻璃时,玻璃将光能吸收转化为热能,热能又以导热、对流和辐射的形式散发出去,从而减少太阳能进入室内,降低空 调负荷。现在有些建筑物用的浅绿色玻璃,以及在二十世纪90年代常见的茶色、蓝色玻璃都属于这种类型的吸热玻璃。
(2)镀膜玻璃
镀膜玻璃在建筑上的应用主要有两种,即热反射玻璃(也称太阳能控制玻璃)、低辐射玻璃。
热反射玻璃是在玻璃表面镀上金属、非金属及其氧化物薄膜使其具有一定的 反射效果,能将太阳能反射回大气中而达到阻挡太阳能进入室内使太阳能不在室 内转化为热能的目的。太阳能进入室内的量越少,空调负荷也就越小;热反射玻 璃的反射率越高说明其对太阳能的控制越强,但是玻璃的可见光透过率会随着反 射率的升高而降低,影响采光效果,太高的玻璃反射率也可能出现光污染问题。
解决玻璃幕墙保温隔热问题,早期人们研制了吸热玻璃和热反射玻璃等,这 些玻璃虽然有隔热的功能,但同时,也存在着影响玻璃通透性、光污染等的问题。低辐射镀膜玻璃是在20世纪90年代发展起来的新型保温玻璃,它的辐射率一般 只是普通玻璃辐射率的1/10左右,通透性也较好,节能效果比较明显。而遮阳型 低辐射玻璃采用独特的热喷射镀膜技术制作而成,除本身具有低辐射性能外,它 还具有控制阳光的性能。一般而言,采用单片吸热玻璃、热反射玻璃或低辐射玻 璃等,虽然有一定的节能效果,但效果是有限的,而采用由这些玻璃组成的中空 玻璃则是较理想的选择。
(3)中空玻璃
中空玻璃的隔热性能好,是因为其内部的空气层处于一个封闭的空间,气体 不产生对流,且空气的导热系数仅是玻璃的1/27。所以,中空玻璃是有较好节能 效果的。
(1)普通单片玻璃传热系数的计算: 玻璃的热阻R为:R=d/λ
式中:R—玻璃的热阻(㎡·k/w);
D—玻璃的厚度(m);
λ一玻璃的导热系数〔取0.76 W/(m·k)〕
6mm厚普通单片玻璃的热阻R=d/λ=0.006/0.76=0.008㎡·k/w 8mm厚普通单片玻璃的热阻R=d/λ=0.008/0.76=0.011㎡·k/w 根据《民用建筑热工设计规范》,玻璃的传热阻:R0=R1+R+Re 式中:R0—玻璃的传热阻:
R1—内表面换热阻,取0.11㎡·k/w;
R—玻璃的热阻,6mm厚玻璃取0.008㎡·k/w; 8mm厚玻璃取0.011 ㎡·k/w;
Re—外表面换热阻,冬季取0.04㎡·k/w 6mm厚普通单片玻璃的传热阻:Ro = R1+R+Re=0.11+0.008+0.04=0.158㎡·k/w 8mm厚普通单片玻璃的传热阻:Ro= R1+R+Re=0.11+0.011+0.04-=0.161㎡·k/w 6mm厚普通单片玻璃的传热系数K为:K=1/ Ro=1/0.158=6.33㎡·k/w 8mm厚普通单片玻璃的传热系数K为:K=1/ Ro=1/0.161=6.21㎡·k/w
(2)中空玻璃传热系数的计算:
a.常用的6mm+9A+6mm中空玻璃传热系数的计算: 6mm+9A+6mm的中空玻璃的热阻R为:
R=R1+Ra+R2=0.008+0.14+0.008=0.156㎡·k/w 式中:R—玻璃的热阻㎡·k/w
R1—外层玻璃的热阻,取0.008㎡·k/w(上文已计算)
Ra一空气层的热阻,取0.14㎡·k/w[2]
R2—内层玻璃的热阻,取0.008㎡·k/w 中空玻璃的传热阻:R=R1+Ra+R2= 0.11+0.156+0,04=0.306㎡·k/w 6mm+9A+6mm中空玻璃的传热系数K为:K=1/ Ro=1/0.306=3.27 ㎡·k/w b.西安地区常用的l0mm+9A+10mm的中空玻璃传热系数的计算: 10mm厚玻璃的热阻R为:R=d/λ=0.01/0.76=0.013㎡·k/w 10mm+9A+10mm的中空玻璃的热阻R为: R=R1+Ra+R2=-0.013+0.14+0.013=0.166㎡·k/w 式中: R—玻璃的热阻时.k/w
R1—外层玻璃的热阻,取0.013㎡·k/w
Ra—空气层的热阻,取0.14㎡·k/w
R2—内层玻璃的热阻,取0.013㎡·k/w 中空玻璃的传热阻:Ro= R1+R+ Re =0.11+0.166+0.04=0.316㎡·k/w 10mm+9A+10mm中空玻璃的传热系数K为:K=1/ Ro=1/0.316=3.16 ㎡·k/w 以上计算结果表明;中空玻璃的传热系数比单片玻璃的传热系数要小很多,如:6mm+9A+6mm的中空玻璃的传热系数比6mm厚普通单片玻璃的传热系数小 48.3%。且随着玻璃厚度的增加,传热系数会有所降低。
由于使用地域的不同,对中空玻璃的性能、尺寸的要求也不尽相同,如邻街 建筑,要求中空玻璃的隔音性能要好;而寒冷地区,要求中空玻璃的保温性能要 好;低层建筑,中空玻璃的面积可以大一些,而高层建筑,因为承受的风压大,中空玻璃的面积就要小一些。
我国建筑行业Low-E中空玻璃的应用处于迅猛发展的势头,1999年竣工的上 海金茂大厦,高达420米,是上海著名的标志性建筑。世界著名的建筑玻璃生产 商法国圣戈班集团中国区项目经理称,上海市建委2005年已要求金茂大厦迅速进 行节能整改,原因是在整个陆家嘴地区,金茂大厦已经成为最大的电老虎,年耗 电量惊人,金茂大厦己确定将玻璃幕墙全部更换为LOW-E玻璃幕墙,预计其更换 总面积将不少于10万平方米。他认为,对玻璃幕墙的全面改造将大大改善大厦内 部空调制冷效果不佳的现状,提升这幢标志性建筑的租售、旅游人气。
(4)真空玻璃[9]
真空玻璃是将两片玻璃板(可以是浮法玻璃、夹丝玻璃、钢化玻璃、压延玻璃、喷砂玻璃、吸热玻璃、紫外线吸收玻璃、热反射玻璃等)洗净,在一片玻璃板上以 10~25㎜的间隔放置高度为0.1~0.5㎜,直径为0.3~1.0的圆柱状支撑物或 宽度为0.4~0.6㎜的线状或格子状支撑物。然后再放上另一片玻璃板。将两片玻 璃板的四周涂上焊接玻璃或有机粘接剂、低熔点金属等,在450℃中加热15~60 分钟,在去除玻璃板上附着的水分及有机物的同时由焊接玻璃将两片玻璃板的四 周封边,形成一个整体。在适当位置开孔,用真空泵抽真空,使两片玻璃板间膛 的真空压力达到0.001毫米汞柱,即形成真空玻璃。真空玻璃的两片一般至少有一 片是低辐射玻璃,这样就将通过真空玻璃的传导、对流和辐射方式散失的热降到 最低,其工作原理与玻璃保温瓶的保温隔热原理相同。真空玻璃是玻璃工艺与材 料科学、真空技术、物理测量技术、工业自动化及建筑科学等,多种学科、多种 技术、多种工艺协作配合的硕果。
真空玻璃是与中空玻璃结构完全不同的新产品。中空玻璃大多用铝框四周封 边、间隔2块玻璃,内含空气或充氩气,总厚度最薄的12㎜。真空玻璃用适当分 布的微粒支柱做间隔,间隙层只有0.1~0.2㎜,空腔内抽真空无气体,真空度达 到0.1帕以上,总厚度最薄只有6㎜左右。作为新一代节能玻璃,它具有比中空 玻璃更好的隔热、保温性能,其保温性能是中空玻璃的2倍,是单片普通玻璃的4 倍;由于真空玻璃热阻高,具有更好的防结露结霜性能,在相同湿度条件下,真 空玻璃结露温度更低,这对严寒地区的冬天采光极为有利,而且真空玻璃不会出 现普通中空玻璃经常出现的“内结露”现象;真空玻璃具有良好的隔声性能,在大多 数声波频段,特别是中低频段,真空玻璃的防噪音性能优于中空玻璃;真空玻璃 具有更好的抗风压性能,同样面积同样厚度条件下进行的抗风压试验中,真空玻 璃抗风压性能等级明显高于中空玻璃;真空玻璃还具有持久、稳定、可靠的特性,在参照中空玻璃拟定的环境和寿命试验进行的紫外线照射试验、气候循环试验、高温高湿试验,经国家建筑工程质量监督检测中心检测,真空玻璃的热阻变化均 在2%以下,通过在日本的应用表明,真空玻璃内的支撑材料在涉及金属疲劳度方 面的寿命可达50年以上,高于其使用的建筑寿命。真空玻璃最薄只有6mm,现有 住宅窗框原封不动即可安装,并可减少窗框材料,减轻窗户和建筑物的重量。真 空玻璃属于玻璃深加工产品,其加工过程对水质和空气不产生任何污染,并且不 产生噪声,因此对环境无有害影响。
《公共建筑节能设计标准》GB50189对不同地区玻璃幕墙的热工性能提出不 同的要求,如对于我国严寒地区,冬季漫长、寒冷,建筑的采暖是主要能耗,因 此仅对玻璃的传热系数提出要求,而对遮蔽系数没提要求。事实上,对于严寒地 区来说,玻璃幕墙的遮蔽系数越大越好,因为遮蔽系数大有利于降低建筑冬季的 采暖能耗和照明能耗。依据《公共建筑节能设计标准》GB50189的要求,在严寒 地区,只有采用中空玻璃、甚至是Low-E中空玻璃,才能满足节能设计标准。对 于我国的夏热冬冷地区和夏热冬暖地区,建筑的夏季制冷是主要能耗,因此应降 低玻璃幕墙的遮蔽系数,《公共建筑节能设计标准》GBS0189对应用于夏热冬冷地 区和夏热冬暖地区的玻璃幕墙遮阳系数有明确规定。降低玻璃幕墙遮蔽系数的方 法很多,如采用着色玻璃、热反射玻璃、彩铀玻璃和遮阳系统,究竟采用何种遮 阳方式,应各方面因素综合考虑决定。
通常,炎热地区和夏热冬暖地区宜选择吸热玻璃和热反射玻璃;过渡地区和 夏热冬冷地区宜选择带热反射玻璃的中空玻璃;寒冷地区宜选择低辐射玻璃。在有条件的地方,尽量使用低辐射中空玻璃,它综合性能最好,对周围环境基本无 光污染,不眩目刺眼。
第四篇:新型节能环保材料在建筑中的应用范文
新型节能环保材料在建筑中的应用
【摘要】节能环保型建材具有低物耗、低能耗、少污染、多功能、可循环再生利用等特征,集可持续发展、资源有效利用、环境保护、清洁生产等综合效益于一体,成为未来建筑材料发展的方向和趋势,符合人类的需求和时代发展的潮流。本文阐明了新型节能环保材料在建筑中的必要性,分析研究了新型节能环保材料在建筑中的应用。
【关键词】新型节能环保材料建筑应用
中图分类号:TE08文献标识码:A 文章编号:
新型环保型节能建材, 是人们提高生活质量的重要保证, 随着人们生活水平的不断提高, 对居住环境也有了一个更高的标准。绿色建材, 环境保护, 清洁生产已成为人类永恒的主题。因此, 我们要提高对绿色环保型节能建材的认识, 加强对绿色环保型节能建材的研究和推广, 建立有效的机制和科学的评估体系, 制定切实可行的方案, 尽全力搞好新型环保型节能材料的推广应用, 使人们有一个优良的生存环境, 为人们的健康发展尽一份力量。
一、新型节能环保材料在建筑中的必要性
1、室内污染的主要来源
室内装饰材料污染物对人们尤其是儿童存在潜在的健康危害,主要污染物包括以下3 类:
(1)甲醛
甲醛是造成室内空气污染的第一大杀手,是一种无色有刺激性气味的有毒化学品,被世界卫生组织确定为强致癌和致畸物。通常情况下,装修完成后都要进行室内装饰和购买家具,由于装修和家具制造要使用大量人造板材,而生产人造板需大量使用毒性高的甲醛为原料制造的胶粘剂。由于胶粘剂中的甲醛释放期很长,一般长达15 年,导致甲醛成为室内空气中的主要污染物。
(2)苯及苯系物
苯系物包含苯、甲苯、二甲苯等,被国际癌症研究机构确认为有毒的致癌物质。苯在各种建筑材料的有机溶剂中大量存在,比如各种油漆的添加剂和稀释剂,一些防水材料的添加剂中,在日常生活中,苯也用作装饰材料、人造板家具和杀虫剂的溶剂。苯系物被人体吸人后,可出现中枢神经系统麻醉作用;可抑制人体造血功能,可导致胎儿的先天性缺陷等。
(3)氨
氨是一种无色而具有强烈刺激性臭味的气体。氨的主要来源有建筑材料中的混凝土外加剂;采用含有尿素组分胶粘剂的木制板、以氨水作为添加剂与增白剂的涂料。
氨对人体会产生严重危害:
① 以气体形式吸入肺泡,与血红蛋白结合,破坏运氧功能;
② 氨具有碱性,对动物或人体的上呼吸道有刺激和腐蚀作用;
③ 长期接触氨后可能会出现皮肤色素沉积或手指溃疡等症状。
2.生态环保型建筑成为国内发展主流
近年来,随着国内外低碳环保消费理念的广泛倡导,环保型消费形式逐步占据主流,住宅建筑的生产商和消费者都对建材提出了安全、健康、环保的要求。采用清洁卫生技术生产,减少对天然资源和能源的使用,大量使用无公害、无污染、无放射性,有利于环境保护和人体健康的环保型建筑材料,是住宅建筑发展的必然趋势。
发达国家相继根据各自的特点,在生态建筑发展过程中建造了一系列生态建筑示范项目。建筑形式包括办公、住宅、学校、商场等。这些示范建筑通过精妙的总体设计,结合自然通风、自然采光、太阳能利用、地热利用、中水利用、绿色建材和智能控制等高新技术,充分展示了生态建筑的魅力和广阔的发展前景。
而我国建筑业也日渐扩展了对环境问题认识的范围和深度,而且把环境问题与经济、社会的发展相结合,从根本上认识环境问题的重要性,对建筑装修所使用的材料给予了硬性规定。
二、新型节能环保材料在建筑中的应用
1、新型墙体材料
墙体材料在房屋建材中约占70%,是建筑材料的重要组成部分。绿色建材是建材发展的方向,因而发展墙体材料,一定要按照建材绿色化的要求,与资源综合利用、保护土地和环境紧密结合起来,由于水泥和钢材的都具有快速传导的特性,大面积用在建筑上,对建筑的节能就造成很大的影响,就很自然的造成大量的建筑能耗的浪费。众所周知的,墙体是外围护结构的主体,其所用材料的保温性能直接影响建筑的耗热量。我国基本上是以黏土砖为墙体材料为主,保温性能不能满足设计标准。因而在节能的前提条件下,我们应该进一步推广空心砖墙及其复合墙体技术。通过限制黏土砖,优化墙体材料产业与资源、环境、社会发展的关系,实现墙体材料的可持续发展,促进人与自然的和谐发展。
2、保温隔热材料
墙体特别是外墙的传热在建筑物总体传热中占比例最大,我国多采用保温节能墙体。墙体保温式根据保温层位置的不同可分为:外墙外保温、外墙内保温和中空夹心复合墙体保温等3 种。目前我的外墙保温技术发展很快,是节能工作的重点。外墙保温技术的发展与节能材料的革新是密不分的,建筑节能以发展新型节能建材为前提,必须足够的保温隔热材料作基础。而节能材料的发展必须与外墙保温技术相结合,才能真正发挥其作用。
3、防水密封材料
防水材料是建筑业及其他相关行业所需要的重要功能材料,是建材工业的一个重要组成部分。随着我国国民经济的快速发展,工业建筑与民用建筑对防水材料提出了多品种高质量的要求,而在桥梁、隧道、国防军工、农业水利和交通运输等行业和领域中也都需要高质量的防水密封材料。
4、节能门窗和节能玻璃
目前我国市场主要的节能门窗有:PVC 门窗、铝木复合门窗、铝塑复合门窗、玻璃钢门窗等。就玻璃钢门窗而言, 其型材具有极高的强度和极低的膨胀系数,具有广阔的发展前景。除结构外,对门窗节能性能影响最大的是玻璃的性能。目前,国内外研究并推广使用的节能玻璃主要有:中空玻璃、真空玻璃和镀膜玻璃等。在建筑节能中门窗的节能是不可忽视的,外门窗是住宅能耗散失的最薄弱部位,其能耗占住宅总能耗的比例较大,其中传热损失为1/3,冷风渗透为1/3,所以在保证日照、采光、通风、观景要求的条件下,尽量减小住宅外门窗洞口的面积,提高外门窗的气密性,减少冷风渗透,提高外门窗本身的保温性能,减少外门窗本身的传热量是建筑中门窗节能的必要措施。社会上普遍存在的问题是往往考虑的仅仅是采光、通风、经济和美观等方面的问题,而没有好好的去考虑有关节能的问题。其具体节能措施有:
(1)控制住宅窗墙比。住宅窗墙比是指住宅窗户洞口面积与住宅立面单元面积的比值,JGJ26―2010《民用建筑节能设计标准(采暖居住部分)》对不同朝向的住宅窗墙比做了严格的规定,指出“北向、东向和西向、南向的窗墙比分别不应超过30%、35%、50%”。
(2)提高住宅外窗的气密性,减少冷空气渗透。如设置泡沫塑料密封条,使用新型的、密封性能良好的门窗材料。而门窗框与墙间的缝隙可用弹性松软型材料(如毛毡)、弹性密闭型材料(如聚乙烯泡沫材料)、密封膏以及边框设灰口等密封;框与扇的密封可用橡胶、橡塑或泡沫密封条以及高低缝、回风槽等;扇与扇之间的密封可用密封条、高低缝及缝外压条等;扇与玻璃之间的密封可用各种弹性压条等。
(3)改善住宅门窗的保温性能。户门与阳台门应结合防火、防盗要求,在门的空腹内填充聚苯乙烯板或岩棉板以增加其绝热性能;窗户最好采用钢塑复合窗和塑料窗,这样可避免金属窗产生的冷桥,可设置双玻璃或三玻璃,并积极采用中空玻璃、镀膜玻璃,有条件的住宅可采用低辐射玻璃;缩短窗扇的缝隙长度,采用大窗扇,减少小窗扇,扩大单块玻璃的面积,减少窗芯,合理地减少可开启的窗扇面积,适当增加固定玻璃及固定窗扇的面积。设置“温度阻尼区”。在住宅中,将北阳台的外门、窗全部用密封阳台封闭起来,外门设防风门斗,防止冷风倒灌,楼梯间设计成封闭式的,对屋顶上孔进行封闭处理等措施均能收到良好的节能效果。
5、建筑垃圾的综合利用
近几年,我国在建筑垃圾开发利用方面投入了相当大的资金, 不少地区将建筑垃圾作为一种再生资源,对固体废弃物加以筛分、破碎后制成建筑垃圾砖或用作路基垫层及地基垫层;对不可处理垃圾则堆山造景加以利用。
6、其他节能建筑材料
太阳能是人类可以利用的最丰富、最洁净、最理想的能源,随着太阳能光电转换技术的不断突破,在建筑中利用太阳能成了可能。
参考文献:
[1] 曲毅,仝艳时.浅谈外墙保温材料对建筑防火的影响[J].安全, 2008,(11).[2] 张彩凤,张炳传.建筑保温技术的发展趋势[J].安徽水利水电职业技术学院学报, 2007,(04).[3] 张浩.应大力推广外墙外保温技术[J].才智, 2008,(07).[4] 朱岩.谈新型建筑材料对建筑工程造价管理的影响――以墙体材料为例[J].才智, 2009,(14).[5] 于志勇,秦忠鹏.关于外墙保温技术及节能材料探讨[J].才智, 2011,(11).注:文章内所有公式及图表请用PDF形式查看。
第五篇:新型节能环保产品有什么
如今,节能环保是当代环境保护首当其冲的措施,诚然,节能环保产品也受到了广泛的关注,很可惜,人们关心越大,失望也越大,结果,人们对新型节能环保产品持淡然态度。这一次,人们应该感到高兴了,因为,经过考察,市场上新出了一种产品,名叫能量源,它作为一种新型节能环保产品,它的功能,无比强大,它很好的诠释了节能环保产品的内容。让我们来看看能量源的具体功能吧,能量源是能量科技第一品牌,能量源·整水机的使命就是把长寿村水引到身旁。能量源·整水机系列产品是建立在世界卫生组织“健康水理论”基础上研制出来的最高科技产品。能量整水是净水、活水、整水完整统一、缺一不可的健康水。能量整水是新型节能环保产品,它让老百姓喝上健康、有营养、小分子团的水,能量源·整水机是目前市场上独一无二的功能最全,档次最高,性价比最优的前沿科技领航的功能水设备,是现代都市人享受高品质生活首选的健康产品,新型节能环保产品就具有这些独领风骚的特性。
沃鑫能量源凭什么在众多新型节能环保产品中独领风骚呢,关键还是在于它对社会的贡献,它就好比是彩电,既然彩电能取代黑白电视,那它怎么就不能取代传统水资源呢。沃鑫国际集团在沪建立了中国大学生创业工程孵化基地,专门安排大学生在您所在的社区,为您提供公益性便民服务,可将优质的能量整水免费送到您的面前,不仅供您现场品尝,而且还可以将能量源·整水机安装到您的家里或单位,并免费使用三个月,如对水质满意可以留下,不满意可以退回,不收一分钱。“真金不怕火炼,好货不怕检验”,经过您的切身体验,先试后买,可以让您买着放心,用着舒心,新型节能环保产品相信它。
沃鑫能够在新型节能环保产品中独领风骚,靠的是信誉,靠的是强大的功能,新型节能环保产品有能量源,定能为社会做出杰出的贡献。