第一篇:火电厂循环水系统冷却特性优化--热力系统优化大论文
火电厂循环水系统冷却特性优化 课题背景
在全球化的视野下,能源问题已经成为国际政治、经济、环境保护等诸多领域的中心议题,甚至成为国际政治的中心。国家“十二五"规划提出要优化发展能源结构,火力发电仍作为我国电力结构的核心,2010年其装机容量占总装机容量的73.4%、发电量占到全国总发电量的80.8%。我国火电厂的煤耗量十分惊人,2010年全国火电机组平均供电煤耗为333 g/(kW•h),比世界先进水平高出20~30g/(kW•h),为此全国一年发电要多消耗标准煤约1亿t,按照2010年社会用电量和供电煤耗333g/(kW•h)计算,燃煤发电厂供电煤耗每降低1 g/(kW•h),每年就可节约标准煤3.4×106t,具有重大的经济效益。由此可见,优化能源结构,不仅要积极优化资源利用方式,也应该大力提高能源利用效率。
人们竭尽挖掘电厂节能潜能,节能降耗主要集中在三大主机设备及其复杂系统,通过理论研究和广泛应用,已取得很大的经济效益。但长期以来对循环水系统中冷却塔缺乏足够的重视,认为冷却塔的维护较为繁重复杂。由于缺乏对冷却塔节能潜力的认识,很多电厂忽略冷却塔维护和监督,对冷却塔改造的投入不足,导致冷却塔的冷却能力降低,出塔水温偏高,凝汽器真空下降,机组经济性降低。在一定循环水流量下,冷却塔出塔水温每降低1℃,200 MW机组满负荷运行时热效率提高0.328%左右,煤耗率降低1.107g/(kW•h),300 MW机组热效率则提高0.23%左右,煤耗率降低0.798 g/(kW•h)。目前我国火电厂的锅炉效率和汽轮机效率都已经达到90%以上,节能优化的空间已经不是很大,火电厂冷却塔冷却性能的好坏在很大程度上会直接影响电厂的经济性,如果能从对冷却塔冷却性能进行研究并对其进行节能改造,必将会带来比较明显的节能效果。
2电厂循环水系统和冷却塔概述
发电厂循环水系统及其相关设备主要包括汽轮机低压缸末级组、凝汽器、冷却塔、循环水泵、循环供水系统、空气抽出系统等组成。循环水系统是由凝汽器、冷却塔、循环水泵及相关阀门和管道组成。汽轮机低压缸末级组排出的乏汽在凝汽器中释放出汽化潜热,并将热量传递给了循环冷却水,使循环水温升高,循环冷却水在冷却塔中将其热量传递给了空气,使空气的温度升高,最终将热量释放在大气中。
凝汽器循环水入口水温将直接影响凝汽器真空,从而影响机组的循环内效 率。一般来说,循环水温越低,机组的内效率越高。而凝汽器循环水入口水温的高低与冷却塔的冷却性能关系密切。若冷却塔的冷却性能较差,凝汽器循环水的入口温度就会升高,不仅会影响机组效率,甚至会危及汽轮机运行的安全性。因此,冷却塔是汽轮发电机组重要的设备之一,其运行性能好坏直接影响电厂运行的安全性和经济性。
自从第一座冷却塔建成,至今已有百年的历史,由原始的开放式冷却塔到目前带有通风筒的冷却塔,风筒的形状也从圆柱形、多边锥形发展到当前普遍采用的双曲线型。冷却塔按通风方式分为:自然通风冷却塔、机械通风冷却塔、混合通风冷却塔;按热水和空气的接触方式分为:湿式冷却塔、干式冷却塔、干湿式冷却塔;按热水和空气的流动方向分为:逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔;其他型式有喷流式冷却塔和用转盘提水冷却的冷却塔等。
空气出口钢筋混凝土塔筒收水器配水系统竖井人字柱空气入口来自凝汽器的热水接冷却水泵空气入口集水池填料
图1火电厂自然通风双曲线逆流湿式冷却塔结构图
自然通风双曲线逆流湿式冷却塔是目前国内火电厂的主流塔型,以这种冷却塔为例,它主要由通风筒、配水系统、淋水装置(填料)、通风设备、收水器和集水池六个部分组成(如图1所示)。循环冷却水由管道通过竖井送入配水系统,这种分配系统在平面上呈网状布置,分槽式配水、管式配水或者槽管结合配水三种方式。通过喷溅设备将热水洒到填料上,经填料层后成雨状落入集水池,冷却后水被抽走重新使用。塔筒底部是进风口,用人字柱或交叉柱支承。冷空气从进风口进入塔内,经过填料下的雨区,流过填料和循环水进行热交换,通过收水器后从塔出口处排出。3电厂循环水系统各相关设备特性及其数学模型
凝汽器的真空对机组的经济性影响很大,其与环境温度、凝汽器特性、汽轮机负荷、循环水系统的水力特性等因素构成了一个复杂的系统。凝汽器内的压力降低,会使汽轮机中的可用焓降增大,从而增大汽轮发电机组的功率,但是循环冷却水量会增加,从而增加了循环水泵的耗功。汽轮机功率的增加值与循环水泵多消耗电能的差额为最大值时的真空称为机组的最佳真空。汽轮机组在最佳真空下运行的发电量最大,因此从本质上来讲就是寻求机组的最佳真空。首先应该建立优化运行的数学模型,然后给出其约束条件,运用优化理论和算法最终求得系统的最佳运行方式。
模型的优化目标是汽轮机的发电功率与循环水泵的耗电功率的差值为最大。
首先要对优化运行中所涉及到的汽轮机特性、凝汽器特性、循环水泵特性和管道阻力特性分别建立数学模型,得到优化运行的目标函数;通过其约束条件,从而最终得到循环水系统优化运行的数学模型。在发电厂运行时,循环水系统及其相关设备的运行特性是相互影响、彼此耦合的。
3.1汽轮机特性
汽轮机特性可以表述为当机组的其它设备运行参数一定时,在某一新蒸汽参数和流量下汽轮机组输出功率和排汽压力之间的关系,通常称之为汽轮机微增功率曲线。汽轮机的微增功率pt用下式表示:
ptf(p0,t0,D0,pk)
(3-1)
式中:p0,t0,D0和pk分别表示为主蒸汽的压力(kPa)、温度(℃)、流量(kg/s)和凝汽器压力(kPa);汽轮机微增功率随凝汽器压力变化曲线是机组循环水系统进行优化,并判定机组是否运行状况好的重要依据。
3.2凝汽器特性
凝汽器特性可表述为凝汽器压力与循环水入口温、循环水流量及汽轮机排汽量之间的关系,即:
pkf(tw1,Dw,Dc)
(3-2)
式中:tw1,Dw和Dc分别表示为循环水入口水温、循环水流量和汽轮机低压缸排气量。
凝汽器内的蒸汽压力可由与之相对应的饱和蒸汽温度ts来确定,一般用pk表示,根据凝汽器热平衡及换热条件可知,蒸汽凝结温度ts为:
tstw1tt
(3-3)式中: tw1、t和t分别表示循环水入口水温、循环水温升和凝汽器端差(℃);
假设不考虑凝汽器与外界空气之间的换热,则排汽凝结放出的热量就等于循环冷却水带走的热量,由热平衡方程式:
DC(hchc)Dwcp(tw2tw1)
(3-4)
DC(hchc)520DC可得:ttw2tw1
(3-5)
DwcpDwt根据传热方程可得:
tekAc/(cpDw)1 其中:k为凝汽器总体传热系数,Ac为凝汽器的冷却面积,cp为循环水的定压比热,hc为汽轮机排汽的焓值,hc为凝结水焓值。
求出ts后,可根据下面经验公式求出凝汽器压力:
ts1007.46pk0.00981()
(3-6)
57.66由此可见,凝汽器压力pk可以说是饱和蒸汽温度ts的函数,也可以说是循环水入口温度tw1和循环水流量Dw的函数,因此在不同的tw1和Dw下可以求出一系列pk值。
3.3循环水泵特性
循环水泵作为提供循环冷却水的重要动力机械,循环水泵本身的运行方式决定着循环水流量的大小,循环水泵耗电功率越大,循环水量也就越大。循环水泵特性可以表示为循环水泵耗电功率与循环水量之间的关系,即:
ppf(Dw)
(3-7)
3.4冷却塔特性
冷却塔是实现低温放热的最终设备,它能否将循环水热量及时释放到大气中,是保证排汽压力稳定的重要环节,它通过出塔水温(即循环水入口温度)影响凝汽器压力,进而影响机组的经济性。冷却塔运行性能的优劣直接体现于冷却塔出口水温tw1(即凝汽器循环水入口温度)。目前,冷却塔热力计算比较普遍的计算方法是焓差法,利用焓差法可以计算出冷却塔出口水温。
其基本公式为:
N(tN()
(3-8)w1)
tw2cphhtw1dtAm
(3-9)
其中,N()为冷却塔所具有的冷却能力,表示在一定淋水填料及塔型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造几何尺寸、冷却水量等有关。表示冷却塔的冷却能力越大;N(tw1)冷却数越大,N(tw1)为冷却塔的冷却任务数,它与气象条件等因素有关,与冷却塔的几何构造无关,N(tw1)越大,说明冷却塔的冷却任务越重。tw2和tw1分别为冷却塔进出口水温;h为饱和空气的焓;h为湿空气的焓;cp为循环水的比热;是空气与水的质量比;A与m由试验确定。
根据工程实际与经验,可由下式求得:
3.6vmAmmDW
(3-10)
式中vm为塔内气流的平均速度,m/s;Am为淋水面积;m塔内气流的平均密度,kg/m3;DW为循环水流量。(3-8)式左边为:
N(tw1)tw2tw1cpdt
(3-11)hh(3-11)式采用辛普逊积分法来计算可以简化为:
N(tw1)cpt6[141]
(3-12)h2h1hmhmh1h2h1,hm,h2分别表示进塔空气、平均状态空气及出塔空气的比焓,kj/kg;h1、hm和h2表示空气温度分别为进塔水温、平均水温及出塔水温时饱和空气比焓,kj/kg。ttw2tw1。
进而可得出冷却塔出塔水温(即循环水入口温度)tw1即:
6Amtw1tw2
(3-13)
141cp()h2h1hmhmh1h23.5循环水冷却系统冷却特性对机组经济性的影响
根据电厂循环水系统各相关设备特性及其数学模型,可以建立汽轮机的发电功率与循环水泵的耗电功率的差值为最大值的优化目标函数模型。其数学模型如下:
Maxptpp
Maxf(p0,t0,D0,pk)f(Dw)
(3-14)
如果主蒸汽压力p0、温度t0和蒸汽流量D0不变的情况,同时不考虑环境温度的变化,那么机组的效率只与凝汽器背压pk有关,对于电厂发电效率来说,还与循环水泵耗电率有关,而循环水泵耗电率与循环水量有关,如果循环水量也不变,那么整个电厂效率只与凝汽器背压pk有关,而凝汽器背压pk是循环水入口温度tw1和循环水流量Dw的函数。
520Dc520Dc100kAc/(cpDw)DwDw(e1)pk0.00981()7.46
(3-15)
57.66由3-14式和3-15式可知,初参数一定时,影响机组发电效率只与循环水流
tw1量和出塔水温有关。循环水冷却系统冷却特性发生改变时,机组效率会与设计时发生偏离,产生一定的损失。单位质量蒸汽在汽轮机里少做的功为:
(3-16)
式中:ps,ts分别为设计时背压和背压时工况下的饱和温度,pk,tks分别为偏离设计工况时的背压压力和相对应的饱和温度。循环水冷却系统影响机组经济性的因素为循环水流量和出塔水温。
当循环水量增加,有利于凝汽器侧热交换,提高汽轮机的效率,但是会增加循环水泵耗功率,对于循环水冷却系统冷却塔来说,当出塔口处空气的相对湿度未达到饱和时,循环水量增加会使出塔空气逐渐趋于饱和,此时继续增加循环水量,过量的热水放出的热量就无法被空气吸收,出塔水温反而会升高,降低机组的经济性。
由3-15式可以看出循环水入口温度越高流量越小,凝汽器压力就越高,机组经济性就越差,如果其它条件不变的情况下,冷却塔出口水温升高1℃对机组经济性的影响如表3-1所示。
表1 出塔水温升高1℃对机组经济性的影响
机组容量/MW 机组负荷/MW 效率降低/% 煤耗率增加/(g/(kwh))热耗率增加/(kJ/(kwh))煤耗量增加(t/年)
904
1550
1676
1808
1940
30.28
32.44
23.39
21.63
13.54
125 0.31 1.033
200 200 0.328 1.107
300 300 0.23 0.794
350 350 0.242 0.738
600 600 0.21 0.462
根据表1的数据,出塔水温每升高1℃,对于300MW机组而言,每年多消耗标准煤1676吨,按照标煤平均价格为1000元/吨计算,每年运行费用增加160多万元人民币。截至到2011年底,全国总发电装机容量已经超过9亿kW,如果按9亿kW计算,出塔水温每升高l℃,如按300MW机组计算,可导致每年运行费用增加20.8亿元人民币,可见出塔水温的升高,造成的经济损失是相当可观的。
4结论
本文基于火电厂循环水系统各相关设备特性理论分析,建立了汽轮机的发电功率与循环水泵的耗电功率的差值为最大值的优化目标函数数学模型,算出了冷却塔出口水温升高1℃对机组经济性的影响。分析了冷却塔出口水温升高1℃,造成的经济损失是相当可观的,并指出了冷却塔的性能好坏会直接影响火电机组运行的安全性和稳定性。
第二篇:燃烧系统论文:火电厂锅炉燃烧优化方法分析与研究
燃烧系统论文:火电厂锅炉燃烧优化方法分析与研究
【中文摘要】目前我国仍以火电为主,火电在电力装机比重分别高达70%多,发电量比重分别高达80%多,火电厂耗煤占全国煤炭消耗量的50%以上,这就直接导致火电企业排放二氧化硫占全国排放量45%,排放的二氧化碳占全国碳排放量的40%。因此,火电企业,在低碳经济发展中面临着严峻的节能减排压力。锅炉燃烧过程,是一个极其复杂的物理化学反应过程。在火力发电厂的运行中,由于电网负荷、燃料成分含量等各种实际因素的影响,所以锅炉和机组的实际运行状态在不断的进行调整。在确保锅炉蒸汽的品质、产量和安全运行的同时,实现锅炉的经济运行,就必须要对锅炉的送煤、给水、给风等运行参数进行实时的优化调整和控制。目前国内一些电厂所采用的调节控制大多无法根据锅炉燃烧的特点达到最佳的运行工况。而且随着机组负荷变化,运行效率变化也非常大,很难保持机组运行在最佳运行状态。随机组长期运行,如果还是按原来运行控制基准,运行人员也会表现出不适应机组变化。基于种情况,锅炉的燃烧优化控制系统备受研究人员的关注。而火力发电厂要实现节能降耗,减少污染排放,加强锅炉燃烧侧的优化控制则是最行之有效的方法之一。本文研究了锅炉燃烧优化系统的两项关键技术:模型预测技术和最优搜索技术。并且参照一些国外的先进锅炉燃烧优化系统,讨论实时闭环控制的锅炉燃烧优化系统的软件结构及其技术特点。
【英文摘要】At present,China is still dominated by thermal
power.,and is about 75% of the total of Generation.But thermal power consumption accounts for more than 50% of national coal consumption.Led to emissions of sulfur dioxide is about 45% of the country’s total.While the emissions of carbon dioxide accounts for about 40% of the total.Therefore, thermal powers are facing greater pressure of energy saving in the low-carbon economy.Combustion process is a very complex physical and chemical reactions.The actual state of the boiler and crew is in the constant adjustment because of the change of grid load and so on when power plant is in operation.Therefore, to ensure that the steam quality, production and safe operation, and achieve the boilers and other equipment in the economic operation at the same time, we must optimize and adjust the operating parameters of the boiler which is in operation.Currently used by the regulation control are often not fully control for the characteristics of boiler operating the best conditions.Moreover, with the unit load changing , the change in efficiency operating is also very large, which can not keep unit operating in the best running curve.Over time, the original operational control basis will change ,and the experience of operating personnel will not meet the unit changes.In this case, optimization control system of the
boiler combustion has been more and more attented.In order to achieve saving energy, reducing pollution of thermal power , enhancing optimal control of combustion side of unit is one of the most direct and effective method.In this paper,we desguss two key technologies boiler combustion Optimization System: prediction model technology and optimal search technology.And reference to overseas advanced combustion optimization system discuss the software architecture and technical characteristics of the real-time closed-loop control of the boiler combustion optimization system.【关键词】燃烧系统 神经网络 遗传算法 目标函数 【英文关键词】combustion control system neural networks genetic algorithm objective function 【目录】火电厂锅炉燃烧优化方法分析与研究5-6绍9-10Abstract6
第1章 绪论9-15
摘要1.1 背景介1.3 燃烧优化闭1.2 锅炉燃烧优化现状10-11环控制技术11-13键点13
1.4 成功实施燃烧优化闭环控制软件的关
第2章 锅炉燃烧特性的2.2 电站锅炉燃烧过1.5 本章小结13-15
2.1 概述15神经网络模型15-30程建模的要求15-1717-19
2.3 人工神经网络基本原理
2.3.2 2.3.1 人工神经网络的数学模型17-18人工神经网络的特点18-192.4 BP 神经网络模型设计
19-242.4.1 BP 神经网络模型19-22
2.4.3 模型的层数22-232.4.5 代价函数和激励函数232.5 BP 算法的改进24-25
2.4.2 模型的输2.4.4 模型的拓2.4.6 学习2.6 BP 网络的泛
2.8 入与输出22扑结构23速率23-24化能力25-26本章小结29-30术30-43简介31-3233-34骤35-36
2.7 神经网络模型的训练过程26-29
第3章 基于预测模型的锅炉燃烧最优搜索技
3.2 遗传算法3.3.1 编码3.1 最优搜索技术综述30-313.3 遗传算法的步骤32-363.3.2 适应度34-35
3.3.3 遗传算法的基本步
3.4 遗传算法在3.3.4 遗传算法的收敛性36锅炉燃烧优化中的应用36-4236-37小结42-4343-48
3.4.1 锅炉燃烧优化模型
3.5 本章3.4.2 遗传算法的设计和应用37-42
第4章 锅炉燃烧闭环优化系统探讨4.1 锅炉燃烧优化软件结构43
4.2 国外先进锅炉燃烧优化系统现状43-47优化控制系统44-45最优化技术45-464646-4748-5048-49
4.2.1 Power Perfecter 锅炉燃烧
4.2.2 ULTRAMAX 生产过程的在线辨识与4.2.3 GNOCIS PLUS 燃烧优化系统4.2.4 NeuSIGHT 神经网络燃烧优化闭环控制系统4.3 本章小结47-485.1 研究工作总结485.3 展望49-50
第5章 总结5.2 今后研究的重点
攻读硕
参考文献50-52
致谢士学位期间发表的学术论文及其它成果52-53
53-54详细摘要54-62
第三篇:液压系统优化设计论文
1液压泵站的液压原理
新的系统选用2台37kW电机分别驱动一台A10VSO100的恒压变量泵作为动力源,系统采用一用一备的工作方式。恒压变量泵变量压力设为16MPa,在未达到泵上调压阀设定压力之前,变量泵斜盘处于最大偏角,泵排量最大且排量恒定,在达到调压阀设定压力之后,控制油进入变量液压缸推动斜盘减小泵排量,实现流量在0~Qmax之间随意变化,从而保证系统在没有溢流损失的情况下正常工作,大大减轻系统发热,节省能源消耗。在泵出口接一个先导式溢流阀作为系统安全阀限定安全压力,为保证泵在调压阀设定压力稳定可靠工作,将系统安全阀调定压力17MPa。每台泵的供油侧各安装一个单向阀,以避免备用泵被系统压力“推动”。为保证比例阀工作的可靠性,每台泵的出口都设置了一台高压过滤器,用于对工作油液的过滤。为适当减小装机容量,结合现场工作频率进行蓄能器工作状态模拟,最终采用四台32L的蓄能器7作为辅助动力源,当低速运动时载荷需要的流量小于液压泵流量,液压泵多余的流量储入蓄能器,当载荷要求流量大于液压泵流量时,液体从蓄能器放出,以补液压泵流量。经计算,系统最低压力为14.2MPa,实际使用过程中监控系统最低压力为14.5MPa,完全满足使用要求。顶升机液压系统在泵站阀块上,由于系统工作压力低于系统压力,故设计了减压阀以调定顶升机系统工作压力,该系统方向控制回路采用三位四通电磁换向阀,以实现液压缸的运动方向控制,当液压缸停止运动时,依靠双液控单向阀锥面密封的反向密封性,能锁紧运动部件,防止自行下滑,在回油回路上设置双单向节流阀,双方向均可实现回油节流以实现速度的设定,为便于在故障状态下能单独检修顶升机液压系统,系统在进油回路上设置了高压球阀9,在回油回路上设置了单向阀14。该液压站采用了单独的油液循环、过滤、冷却系统设计,此外还设置有油压过载报警、滤芯堵塞报警、油位报警、油温报警等。
2机械手机体阀台的液压原理
对于每台机械手都单独配置一套机体阀台,机体阀台采用集成阀块设计,通过整合优化液压控制系统,将各相关液压元件采用集约布置方式,使全部液压元件集中安装在集成阀块上,元件间的连接通过阀块内部油道沟通,从而最大限度地减少外部连接,基本消除外泄漏。机体阀台的四个出入油口(P-压力油口,P2-补油油口,T-回油油口,L-泄漏油口)分别与液压泵站的对应油口相连接。压力油由P口进入机体阀台后,经高压球阀1及单向阀2.1后,一路经单向阀4给蓄能器6供油以作为系统紧急状态供油,一路经插装阀3给系统正常工作供油。为保证每个回路产生的瞬间高压不影响别的工作回路,在每个回路的进出口都设置了单向阀,对于夹钳工作回路因设置了减压阀16进行减压后供油,无需设置单向阀。对于小车行走系统,由比例阀12.1控制液压马达21的运动方向,液压马达设置了旋转编码器,对于马达行走采用闭环控制,以实现平稳起制动以及小车的精准定位。为避免制动时换向阀切换到中位,液压马达靠惯性继续旋转产生的液压冲击,设置了双向溢流阀11分别用来限制液压马达反转和正转时产生的最大冲击压力,以起到制动缓冲作用,考虑到液压马达制动过程中的泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀9.1和9.2从补油管路P2向该回路补油,为实现单台机械手的故障检修,在补油管路P2上设置了高压球阀8,为实现检修时,可以将小车手动推动到任意检修位置,系统设置了高压球阀5.2。对于双垂直液压缸回路,由比例阀12.2控制液压缸22的运动方向,液压缸安装了位移传感器,对于液压缸位置采用闭环控制,实现液压缸行程的精准定位,液压缸驱动四连杆机构来完成夹钳系统的垂直方向运动;为防止液压缸停止运动时自行下滑,回路设置了双液控单向阀13.1,其为锥面密封结构,闭锁性能好,能够保证活塞较长时间停止在某位置处不动;为防止垂直液压缸22因夹钳系统及工件自重而自由下落,在有杆腔回路上设置了单向顺序阀14,使液压缸22下部始终保持一定的背压力,用来平衡执行机构重力负载对液压执行元件的作用力,使之不会因自重作用而自行下滑,实现液压系统动作的平稳、可靠控制;为防止夹钳夹持超过设计重量的车轮,在有杆腔设置了溢流阀15.1作为安全阀对于夹钳液压缸回路,工作压力经减压阀16调定工作压力后由比例阀17控制带位置监测的液压缸23的运动,来驱动连杆机构完成夹钳的夹持动作,回路设置了双液控单向阀13.2,来保证活塞较长时间停止固定位置,考虑到夹钳开启压力原小于关闭压力(液压缸向无杆腔方向运动夹钳关闭),在液压缸无杆腔回路上设置了溢流阀15.3,调定无杆腔工作压力,当比例换向阀17右位工作时,压力油经液控单向阀13.2后,一路向有杆腔供油,一路经电磁球阀18向蓄能器19供油,当夹钳夹住车轮,有杆腔建立压力达到压力继电器20设定值后,比例换向阀17回中位,蓄能器19压力油与有杆腔始终连通,确保夹持动作有效,当比例换向阀17左位工作时,蓄能器19压力油经电磁球阀18与有杆腔回油共同经过比例换向阀17回回油口。紧急情况下,电磁换向阀7得电(与系统控制电源采用不同路电源),将蓄能器6储存的压力油,一路经单向阀9.11供给夹钳液压缸23,使夹钳打开,同时有杆腔回油经电磁球阀18,单向阀9.9回回油T口;一路压力油经节流阀10,单向阀9.3使液压马达21带动小车向炉外方向运动,液压马达回油经比例换向阀12.1,单向阀9.5回回油T口。以确保设备能放下待取车轮,退出加热炉内部,保护设备安全。
3结论
全液压装出料系统经优化设计,系统的装机容量由100kW下降到37kW,大大降低能源消耗,适应了当今绿色发展的要求。由于系统采用备用泵设计,确保了系统的长期稳定运行;蓄能器的大量使用,保证了系统的流量和压力满足生产实际的要求;集成阀块的设计方式,减少了系统下泄漏的几率,降低了油液消耗,保护了环境;紧急回路的设计,可以有效保护设备的使用安全。该技术成果具有向同类加热炉装出料机构推广应用经济价值。
第四篇:农业装备系统优化论文(李德举)
农 业 装 备 系 统 优 化
学院:机电工程学院
班级:06农机(1)班 姓名:李德举 学号:0604107006
浅谈农业装备系统
摘要:农业装备系统通过合理的配置农业机器来降低作业成本,给农民带来了大量的经济利益。同时,优化农业装备系统,使得效益得以最大化,也是新阶段农业技术人员面临的一项重大任务。本人对农业装备带来的成果以及今后的发展方向做了简要阐述。关键词:农业装备,农业装备科技,优化,创新
农业机械化农业现代化的重要标志,农业装备系统优化程度是衡量一个国家和地区农业发展水平的重要标准。只有发展农业装备实现农业机械化,提高农村劳动生产力,才能有效的推进农业产业化和现代化建设。农业装备是实现农业产业结构调整和农村劳动力转移的根本保证。
今年,各地政府高度重视农业机械化的发展,提出了农业机械化要实现追赶跨越式发展,各地农业局提出了,发展农业机械化必须紧紧抓住中央“购置补贴”政策这一历史机遇,加大装备力度实现跨越式发展,全国农业机械化事业获得了很大的发展,促进了农业生产力迅速发展和农民增产增收。全国部分县实现了村村有农机。通过农业购置补贴的项目,农业机械发展空白乡大中型拖拉机、微耕机、手扶拖拉机、起垄机等各型耕耙作业机械。农业机械化跨越式发展迅速提升了农机装备水平,极大地提高全市农业劳动生产力,新增的农机装备、农机具需要大量的农机操作手,农机化的发展将转移出大量农村劳动力,我国许多地区致力于不断拓展劳动力转移等技能培训,保证农民能科学、规范操作使用农机具,提高农机具的作业效率,使农村人力资源通过技术技能培训成为全市技术技能型劳动力产业。
建立现代农业装备优化体系有利于合理配置产业发展各个环节的科技资源和研发力量,形成完善的产业链,提高资金使用效益。
农业装备科技进步是发展现代农业的决定性力量,农业发展的根本出路在科技,最大的潜力也在科技。今后要深入推进农业装备科技体制机制创新,强化现代农业装备技术体系建设,加快农业装备科技创新与应用,促进农业装备科技成果加快向现实生产力转化。加强农业装备科技自主创新,强化技术集成配套,力争在农业高产、优质、专用等品种培育方面取得突破。
农业装备是为农业生产发展服务的,农业不仅具有食品保障功能,而且具有就业增收、生态保护、观光休闲、文化传承等功能。发展现代农业装备,必须把发展粮食生产放在现代农业装备系统建设的首位,同时注重开发农业装备的多种功能,积极发展农业特色经济,向农业的广度和深度进军,促进农业装备系统不断优化升级,构建现代农业产业体系,促进农业增产和农民增收。与此同时,要鼓励农民和社会力量投资现代农业装备,充分发挥农民在建设新农村和发展现代农业中的主体作用,引导农民发扬自力更生精神,增加生产投入和智力投入,提高科学种田和集约经营水平。要综合运用税收、补助、参股、贴息、担保等手段,为社会力量投资建设现代农业装备系统创造良好环境。
另外,加快农业装备系统创新,大力提高农业装备系统创新与推广水平,也是新时期的一项新任务。科技创新是突破资源和市场对我国农业双重制约的根本出路。必须着眼增强农业装备系统自主创新能力,加快农业科技成果转化应用,提高科技对农业增长的贡献率,促进农业集约生产、清洁生产、安全生产和可持续发展。要顺应世界科技发展潮流,着眼于建设现代农业,大力推进农业装备系统科技自主创新,加强原始创新、集成创新和引进消化吸收再创新,不断促进农业装备系统集成化、劳动过程机械化、生产经营信息化。要加大农业装备系统科技投入,建立农业装备系统科技创新基金,支持农业基础性、前沿性科学研究,力争在关键领域和核心技术上实现重大突破。大力普及节水灌溉技术,扩大测土配方施肥的实施范围和补贴规模,提高农业资源和投入品使用效率。要适应农业规模化、精准化、设施化等
要求,加快开发多功能、智能化、经济型农业装备设施,重点在田间作业、设施栽培、健康养殖、精深加工、储运保鲜等环节取得新进展。要依托重大农业科研项目、重点学科、科研基地,加强农业装备系统科技创新团队建设,培育农业科技高层次人才特别是领军人才。要稳定和壮大农业科技人才队伍,加强农业技术推广普及,开展农民技术培训,积极探索农业装备科技成果进村入户的有效机制和办法,形成以技术指导员为纽带,以示范户为核心,连接周边农户的技术传播网络。要加快农业装备科技成果转化,促进产学研、农科教结合,支持高等学校、科研院所同农民专业合作社、龙头企业、农户开展多种形式技术合作。优化农业机械化区域布局,促进农业机械装备结构优化。根据农业生产实际情况,以地貌形态、农业气候、土地利用结构、区域生产专业化为主要指标,依据发展农业的自然经济条件的相对类似性、现代化农业发展方向的相对一致性,坚持农业区划原则,按照因地制宜、分类指导、经济有效、保护环境的原则,进一步优化区域布局,促进农业机械化发展,进一步优化农机装备结构,积极转变农业机械增长方式,坚持农机装备结构调整与农业产业结构调整相适应,以增量调整带动存量优化,以存量优化促进结构升级,走数量、质量和效益并重、协调发展的道路。坚持在发展中调整优化结构,在结构调整中保持快速发展。在确保农业机械总量稳步增长的前提下,着力调整大中型机械与小型机械、动力机械与配套机械、种植业机械与农村其他各业所需机械的比例。这样才能更好的发挥农业装备系统最大的效能,促进农作物种植结构调整,针对粮食作物、经济作物和饲料作物的区域种植特点,所提供的先进适用的耕作、种植、植保、管理和收获加工的机械与装备;促进农业结构调整、发展畜牧、水产养殖业,所提供的先进适用的饲养加工成套技术装备;为促进农村经济结构调整,大力发展农产品加工业,所提供的先进适用的成套技术装备;为促进农村劳动力就业结构的调整、推进高新技术与劳动密集型产业相结合的现代农业的发展和提高我国农产品国际竞争力,所提供的果蔬、花木等种养、加工、保鲜、储运等设施与设备;为促进农业产业化经营和推动农业机械专业化服务所提供的先进适用的技术装备。
世界上先进的现代化农机装备为世界各地的粮食供应做出了突出贡献,农机装备的作用是有目共睹的。黑龙江垦区建立健全的以深松为主,垄、平、卡相配套,松、旋、耙相结合的蓄水保墒的现代耕作制度取代了传统的连年平翻。按照现代农业发展的需要,近年来,全垦区重点推广应用了与现代农业装备相适应的土壤深松、精密播种、秸秆还田、水稻插秧、侧深施肥、航化作业,以及节油、节水、节肥、节种、节药等20多类100多项农机新技术和新机具,彻底变革了传统的农业生产方式。
北大荒最大的红星现代农机服务中心为我们又一次呈现了农业装备优化的丰硕成果。这里以“立足精准农业,发展现代农机”为理念,通过采用GPS全球卫星定位系统、GIS全球地理信息系统和RS卫星遥感系统,利用网络信息技术,实现所属全部机车统一标准,统一计划,统一调度,统一核算,使农机管理由原来的分散式、粗放式管理转变到现在的“集中化、信息化、网络化”管理。网络成为种植户、有机户、管理人员三方共享的信息源,在第一时间将当日农业生产动态、信息以手机短信的方式传递给每一个驾驶员。
农业装备为增产增收立下了汗马功劳,而对农业装备系统优化这个复杂的工程问题进行研究的工作人员,更是在幕后做出了卓越的努力。但是放眼我国,农业装备的程度与世界发达国家相比还较低,农业装备系统优化的道路还很长。作为一名即将走出校门的大学生,积极参与农业装备的研究与开发,形成新的农业装备系统的优化方案,也是我们农机专业的学生的责任。
第五篇:系统优化教学设计
系统优化教学设计
组员:2014级4班 罗世淋201409140428 罗智 201409140429
一、教材内容分析
1.教材的地位和作用
系统优化是系统分析的深入,也是系统的结构和系统分析的综合,又是系统设计的基础,更是系统设计过程中的重要环节,它是是本书的重要内容之一。本内容是让学生“理解系统优化的意义,能结合实例分析影响系统优化的因素”。2.教学重点:系统优化的方法和一般步骤。
二、学情分析
进入系统的内容,学生的兴趣明显比前期活跃,显然系统分析的深入符合高二学生的智力发展需求。但是,学生在对某个系统的分析容易陷入原有的逻辑思维,而不能很好地应用系统的思想和方法分析和解决问题,不能很好理解系统优化的约束条件和影响系统优化的因素。因此,系统优化的约束条件和影响系统优化的因素成了本节教学内容上的难点。
三、教学目标
能结合生产生活中的实例,理解系统优化的意义,并能结合实例分析影响系统优化的因素。
四、教学资源准备
“技术与设计2”配套教具旋转木马30套(江苏南京宝高公司提供)、多媒体
五、教学流程
六、教学过程:
(一)引入新课(系统分析,承上启下)
情景设置:有一个农夫带一条狼、一只羊和一筐白菜过河。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。请你帮农夫解决难题?
学生 :
1、农夫带着羊首先过河,农夫回来;
2、农夫与狼过河,农夫与羊回来;
3、农夫搬白菜过河,农夫回来;
4、农夫与羊一起过河。
教师提问:说说你们对该系统分析的过程?
学生:问题的突破口在——狼与白菜能够共存!农夫、狼、羊、白菜和船组成了这个系统。系统中各要素是一个整体,都依赖农夫过河;最大的问题是“船很小,只够农夫带一样东西过河”和“没有农夫看管,则狼要吃羊,羊要吃白菜”的冲突。我们联系已知条件,做了一系列的分析实验,但是比较其他方案不能实现所有要素都安全过河。最后得出以上方案。
教师:你们的思维过程很有价值,很清晰。而且在系统分析的过程中抓住了系统分析的三大原则——整体性、科学性、综合性。
现实生活中,有很多产品在不断更新,系统在不断的升级。做任何事情我们都追求更好,希望投入尽可能少,回报越多越好。为了使系统达到最优的目标所提出的各种解决方法,称为最优方法。但是有很多复杂系统,实施方案五花八门、干扰因素四面八方,我们不可能的逐个比较权衡,或者漫无目的瞎蒙。因此我们有必要进行定性定量的科学分析,寻找系统最优值。
(二)新课教学
1.案例分析:
案例一 :“农作物种植系统的优化——农作物间作套种”
槟榔林套种香草兰收益高
香草兰——香料之王,是藤本植物,需要有支柱攀缘,并要求适度的荫蔽。测定结果表明50%的荫蔽度有利于香草兰的生长发育。荫蔽有两种,一种是死荫蔽,通过修建人工荫棚的办法(用遮光网)达到控制荫蔽度的目的。这种方式需要水泥柱或石柱作为香草兰棚架或攀缘的支柱。另一种是活荫蔽:可选择天然树木或人工种植的椰子、槟榔等作物为活支柱,以控制活支柱树冠来调节种植园的荫蔽度。园地的选择要选择近水源且排水良好、有机质含量高、比较肥沃疏松的微酸性土壤;台风主风方向有良好屏障比较静风的向阳缓坡地或平地。
2002年,符良接受了中国热带农业科学院香料饮料研究所专家的建议,在槟榔林下套种了20亩香草兰种苗,通过对香草兰的水肥管理,使槟榔的产量较纯槟榔林提高15-20%。经过精心培育,现在棵棵香草兰上挂满了沉甸甸的豆荚。预计20亩香草兰到11月份总收入可达285000元。现场一位管理人员给记者算了一笔帐,40亩槟榔园年收入72万元左右,间种可使槟榔增收8万,再加上香草兰的收入,每亩土地较单纯种槟榔增收约9000元!经发酵生香的商品香草兰豆荚含有250多种发挥性芳香族成分及有机酸、糖、树脂、矿物质等丰富成分,香气独特,留香时间长达2~3年,被广泛用于高档食品和饮料的配香原料,在发酵业、化妆及医药等领域均有应用,具有用途广、经济价值高的特点。目前国内售价为1000~1200元人民币/千克。
教师提问:符良为什么选择活荫蔽种植,而不采纳传统的死隐蔽种植?
学生A:一块地种槟榔又种香草兰,提高了土地利用率;
学生B:对香草兰的水肥管理,使槟榔的产量较纯槟榔林提高;
学生C:槟榔可作为活支柱供香草兰攀爬,节省了石柱的费用;
学生D:槟榔叶子还可以遮光,节省遮光网的费用;
„„
教师总结:活荫蔽的改良不仅增产、增收还提高了土地利用率,可见活荫蔽系统比死荫蔽系统,功能更强大,效果更优。
教师提问:香草兰套种的收益如此诱人,我们为何不把香草兰套种到稻田里、麦田里,甚至套种到沙漠中与杨树为友呢?
讨论交流,小组汇报„„
X组:香草兰与水稻的生长土壤环境不同,不能套种;小麦的生长气候要求又有差异也不能套种;沙漠风沙大且土壤也不适合香草兰生长。香草兰种植受生长特性、地理环境、气候和天气等条件的约束,并不适宜随处种植,而且与矮个植物种植也没有体现出遮阳的优势或者节约石柱费用等优势,另外由于营养需求的差异,即使能共存在一块地如果没有实现增产目的,套种的系统优化没也就没有太大的意义„„
教师总结:系统优化的效果是理想的,但是不同情况的系统优化会遇到不同的约束条件,应该采取不同的手段和方法应对,使系统的目标在一定的条件中达到最大值。系统的优化都是为了发掘有限资源的无限潜能,使资源获得充分的利用,体现更高的价值,实现投入最小,效果最佳的目的。
又例如:云南一些山区农民的甘蔗生长缓慢,减产已成定局.为了减少旱灾损失,乘雨水来临之际,在甘蔗田套种玉米。
例如:建筑材料的改进也是一项优化技术,以往建筑物的墙体多采用实心砖,现在采用了空心砖,在保证强度、隔热隔音效果的同时,节省了材料。
„„
教师:案例中,目标与土地的单位面积农作物收益和之间的关系在技术中我们称为——目标函数;农作物的生长特性、条件、气候等因素对作物套种起着限制作用,并且是不能人为解决的,称为——约束条件;套种的技术水平、田间管理、病虫防治等对产量产值有直接影响,即影响因素,可见影响因素是可以人为调节的。最优方法通常是在一定人力、物力、财力资源条件下,使经济效果(如产值、利润等)达到最大,并使投入的人力、物力达到最小的方法。
教师:在生活中,我们经常会遇到一些复杂的数字问题,纯定量分析是不够的,我们常常是借助数学手段定量与定性结合的分析比较,寻求最优方案。这种用数学公式、图表等描述客观事物的特征模型的思想就是建模思想,建立的模型就叫数学模型。它是真实系统的一种抽象。
案例二:利润问题
某家具厂要安排一周的计划,产品是桌子和椅子。制作一张桌子需4平方木板及20小时工时,制作一张椅子需6平方木板及18小时工时;每周拥有木材板料600平方,可用工时400小时;每张桌子利润50元,每只椅子利润60元。按合同每周至少要交付8张桌子和5张椅子。假定所有产品都能销售,那么该每周生产桌子和椅子分别为多少时,利润最大?
教师提问:这里,系统需要进行最优化的目标是什么?
学生:获得利润最大值。
教师提问:利润受到哪些人为可调节的因素影响?
学生:每周生产桌子和椅子的数目。
教师提问:在这个利润问题的系统中,又存在哪些不能人为解决的约束条件呢?
学生:制作一张桌子需4平方木板及20小时工时,制作一张椅子需6平方木板及18小时工时;每张桌子利润50元,每只椅子利润60元。
教师:若把利润最大值用 表示,变量每周生产桌子数用 表示,每周生产椅子数用 表示,请你根据已知条件,列出求解最优化问题的有关数学式子。
其中(1)式体现了目标与产量、利润总和之间的关系,也就是目标函数。(2)(3)(4)(5)式则体现了约束条件。
教师:数学思维很清晰!下面就请大家算一算 的解,找出最大利润值。
„„
学生:算不出来!
教师引导:仔细观察这四个约束条件的式子,找出数据中体现出受限最大的约束条件是哪个?
学生:工时!
教师:好,请你将最主要的约束条件(3)与目标函数式(1)联系起来,看看你能不能发现影响因素 与最优值 的关系。
学生:生产椅子所需工时少利润大,生产桌子所需工时多利润反而小!生产的椅子越多利润越大。
教师:那我们干脆不生产桌子了,专门生产椅子,可不可以?
学生:不行,至少要生产8张桌子!
教师:哦,原来还有约束条件(3)的限制。那好我们就生产8张桌子,算一算意义子最多可以生产多少张?
学生:13张!
教师:8张桌子,13张椅子。把你们经过一番分析计算选择的这两个变量的解代入约束条件看看是否超出了约束条件的限制范围。
学生:都在约束条件范围内。
教师:再利用这两个变量的解,算一算利润最大值是多少?
学生:1180元。
教师:我们再随意找几对满足约束条件的 的解带入目标函数检验一下,1180是不是利润最大值。如:(每个小组分别用一对计算)
学生交流:
教师总结:以上计算表明,我们找到经过数学方法求出的就是最优值!回忆我们求解的过程,最优化方法解决问题的一般步骤:
(1)提出系统需要进行最优化的问题,收集有关资料和数据;
(2)建立求解最优化问题的有关数学模型,确定变量,建立有关约束条件,分析模型;
(3)选择合适的最优化方法;
(4)求解方程;
(5)最优解的验证和实施。
这种用数学公式、图表等描述客观事物的特征模型的思想就是建模思想,建立的模型就叫数学模型。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。是我们在解决问题时,常用的一种方法。
2.应用:学生探究(2人一个小组)
要求学生分组利用提供的大、中、小三个大小不同的齿轮将上节课完成的旋转木马进行系统优化,看谁的木马转的又快又稳。
学生进行探究„„
A组:将传送带传送改为大齿轮带动,三个齿轮传送;
B组:将传送带传送改为中齿轮带动,三个齿轮传送;
C组:将传送带传送改为小齿轮传送,三个齿轮传送;
D组:齿轮与传送带一起赞成传送系统„„
小组比赛交流。
学生体会:皮带传送系统在木马旋转时,皮带容易出轨,同时因为速度太大使系统容易散架。针对这个问题,利用有限的资源,将皮带传送换成齿轮传送后,发现齿轮传送比皮带传送速度更快更牢固;再更换三种齿轮的带动比较,又发现大齿轮带动时,动力更足速度加大了稳固性能也增强了。
(三)小结
最优方法通常是在一定人力、物力、财力资源条件下,使经济效果(如产值、利润等)达到最大,并使投入的人力、物力达到最小的方法。
最优化方法解决问题的一般步骤:
(1)提出系统需要进行最优化的问题,收集有关资料和数据;
(2)建立求解最优化问题的有关数学模型,确定变量,建立有关约束条件,分析模型;
(3)选择合适的最优化方法;
(4)求解方程;
(5)最优解的验证和实施。
(四)课后探究
假如学校有2个学生食堂,正常情况下每个食堂能容纳500人就餐,近两年,学校规模扩大,就餐人数增加,每个食堂就餐人数达670人,每到就餐高峰期,学生就排着长队等待就餐。
如何减少学生就餐排队时间?提出解决这一问题的几种途径,并选择最经济、最有效可行、最容易实现的方案。运用系统分析方法,分步骤说明你的思考过程。
七、教学反思
苏教版教材的案例选择切题,但是有部分案例离我们所处的实际甚远。在教学的过程中我选用了教材中技术类的案例,拓展了我们对技术的视野;但是生活案例我倾向于改用我们身边的例子,大家熟悉,分析起来有亲切感、简单易懂又激发了学生自主参与的乐趣,刚好我校种有香草兰。故在本案例中将“麦、棉、瓜、玉米套种”案例换成“槟榔与香草兰套种”,实践证明效果很好,学生很感兴趣。本节课内容较多,学生探究活动时间就比较紧