新型生物脱氮工艺的简介

时间:2019-05-13 08:59:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新型生物脱氮工艺的简介》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新型生物脱氮工艺的简介》。

第一篇:新型生物脱氮工艺的简介

新型生物脱氮工艺的简介

摘要:水体中的氮素污染越来越严重。传统生物脱氮工艺在废水脱氮过程中发挥着重要的 作用,但也暴露出成本高、脱氮效率低等缺点。随着生物脱氮新技术如亚硝酸型硝化反硝化技术、厌氧氨氧化技术的发展,生物脱氮新工艺也越来越多的受到研究者的关注。本文主要介绍了亚硝化脱氮工艺(SHARON)、厌氧氨氧化工艺(ANMAMOX)、亚硝化-厌氧氨氧化组合工艺(SHARON-ANAMMOX)、全程自养脱氮工艺(CANON)、限制自养硝化反硝化工艺(OLAND)。分别阐述了各工艺的原理、影响因素、运行特性、应用状况等。最后,简单叙述了各工艺的区别和联系,对各种工艺的操作参数进行了比较和概括。关键词:SHARON;ANMAMOX;SHARON-ANAMMOX;CANON;OLAND

1.引言

传统的生物脱氮理论包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。传统生物脱氮工艺需要消耗大量的溶解氧、碳源,造成较高的运行成本。随着近代生物学和生物技术的发展,以及污水生物脱氮工程实践中出现的新的问题和现象,国内外学者提出了一些脱氮理论的新认识,并逐渐形成了生物脱氮新的理论。基于这些生物脱氮新理论,废水生物脱氮新技术也有了较快的发展。在亚硝酸型硝化反硝化技术和厌氧氨氧化技术发展的基础上,出现了一些新的生物脱氮工艺。这些生物脱氮工艺包SHARON、ANMAMOX、SHARON-ANAMMOX、OLAND、CANON等。

2.Sharon工艺

SHARON(single reactor for high ammonia removal over nitrite)即亚硝化脱氮工艺,是 荷兰Delft 技术大学1997 年提出并开发的一种新型生物脱氮技术[1]。其基本原理是在同一个反应器内,在有氧的条件下,自养型亚硝酸菌将NH4+转化为NO2﹣,然后在缺氧的条件下,异氧型反硝化菌以有机物为电子供体,以NO2﹣为电子受体,将NO2﹣转化为N2。其理论基础是亚硝酸型硝化反硝化技术,生化反应式可用下式(1)表示:

NH4+ + 0.75O2 + HCO3﹣→ 0.5 NH4+ + 0.5NO2﹣+ CO2 + 1.5H2O(1)

该工艺的关键是如何将氨氧化控制在亚硝酸阶段,并持久维持较高浓度的亚硝酸盐积累[2]。由于硝化过程中的两类细菌亚硝酸菌和硝酸菌的生长特性不同,对环境的要求也不同,这为将硝化控制在亚硝化阶段提供了条件[3]。SHARON 工艺使用单个无需污泥停留的完全混合反应器(CSTR)来实现,在较短的 HRT 和30~35℃的条件下,利用高温下硝酸菌的活性比亚硝酸的活性低,同时利用硝酸菌的

水力停留时间大于亚硝酸菌的水力停留时间,使水力停留时间介于两者之间,从而淘汰硝酸菌[4]。

经过小试、中试,第一个生产规模的运用SHARON工艺的Dokhaven污水处理场于1998年初在荷兰鹿特丹建成并投入运行。该SHARON的进水氨氮质量浓度为1g/L,进水氨氮的总量为1200kg/d,氨氮的去除率为85%。

SHARON 工艺与传统的的脱氮工艺相比,具有能够节省25%的氧气,节省40%的碳源、污泥产量少、反应器容积减少、反应时间短等优点。同时,它也存在一些问题,如反应时较高的温度不适合城市污水的处理,仅比较适合处理污泥硝化上清液和垃圾渗滤液等高氨高温废水,适合C/N 较低的废水,亚硝化产物NO2﹣是致癌、致畸、致突变物质,对受纳水体和人体健康有害。

3.Anammox工艺

ANAMMOX(anaerobic ammonium oxidation)即厌氧氨氧化工艺,是由荷兰DeLft 大学 1990 年提出的一种新型脱氮工艺。厌氧的条件下,微生物以NH4+为电子供体,NO2﹣为电子受体,把NH4+、NO2﹣转化为N2 的过程。其生化反应式可用下式(2)表示:

NH4+ + NO2﹣→ N2 + 2H2O(2)

Graaf[5]等通过同位素15N 示踪研究,提出了厌氧氨氧化可能的代谢途径,见下图1。他 认为ANAMMOX是通过生物氧化的途径实现的,过程中最可能的电子受体是羟(NH2OH),而羟胺本身是由亚硝酸盐产生的。

图1 Graaf 提出的ANAMMOX 工艺的可能途径[5] 厌氧氨氧化过程中起作用的微生物是Anammox菌。Anammox菌是专性厌氧化学无机 自养细菌,生长十分缓慢,在实验室的条件下世代期为2~3 周,厌氧氨氧化过程的生物产量很低,相应污泥产量也很低。

ANAMMOX工艺的影响因素主要集中在系统环境对Anammox菌的抑制。主要的影响 因素包括反应器的生物量、基质浓度、pH 值、温度、水力停留时间和固体停留时间等。

ANAMMOX工艺具有不少突出的优点:相对传统的脱氮过程,耗氧下降62.5%;不需外加碳源,节约成本;不需调节pH 值降低运行费用。但该工艺还存在以下几个方面的问题:工艺还没有实现实用化和长期稳定运行;Anammox细菌生长缓慢,启动时间长,为保持反应器内足够多的生物量,需要有效的截留污泥等[6]。

荷兰的研究者们于2002 年通过数学模型模拟设计出世界上第一个生产性规模的 ANMAMOX 反应器,该反应器建在荷兰鹿特丹Dokhaven污水处理厂内,主要用于污泥消 化液的脱氮处理。

4.SHARON-ANAMMOX工艺

SHARON-ANAMMOX工艺即为SHARON和ANAMMOX的组合工艺。SHARON作为硝化反应器,在此反应器内,含NH4+的污水中约50%的NH4+氧化成NO2﹣;ANAMMOX作为反化反应器,含NH4+和NO2﹣的SHARON 反应器的出水作为此反应器的进水,在此反应器内,厌氧条件下NH4+和NO2﹣被转化为N2 和H2O。生化反应式如下式(3):

NH4+ + 0.75O2 + HCO3﹣→ 0.5N2 + CO2 + 2.5H2O(3)

典型的SHARON-ANAMMOX工艺流程如下图2 所示。

图2 SHARON-ANAMMOX 组合工艺流程[7] SHARON-ANAMMOX工艺的中,反应的主要控制条件为温度、碱度和水力停留时间; 同时,Anammox反应器中不得有溶解氧的存在[8]。

SHARON-ANAMMOX工艺中发挥作用的细菌主要为氨氧化菌和Anammox 菌,两者均 为自养型细菌,因此该工艺无需外加碳源;同时还可以节约氧气约50%,污泥产量低,可 以节约90%以上的运行成本,具有很好的应用前景。

SHARON-ANAMMOX工艺主要适用于处理污泥上清液和高氨氮、低碳源工业废水。对污泥上清液而言,应用此工艺时并不需要调节pH 值,因为污泥上清液中含有HCO3﹣,当有一半的NH4+被转化后,污水中的碱度也几乎被耗光,从而导致反应器中pH 值下降,从而抑制硝化反应的进行,使SHARON反应器的出水中NH4+/NO2﹣保持在1.0 左右,为 ANAMMOX工艺中反应的发生创造条件[9]。

清华大学蒙爱红[10]利用CSTR反应器对亚硝化工艺处理高浓度氨氮自配废水进行了试 验研究,利用EGSB 反应器进行了厌氧氨氧化工艺的试验研究。在亚硝化—厌氧氨氧化串联运行后,亚硝化反应器的氨氮平均去除率为79%,厌氧氨氧化反应器中氨氮的去除率为 1%~45%,NO2﹣的平均去除率为60%~99.9%。

世界上第一个生产性SHARON-ANAMMOX工艺已于2002 年6 月在荷兰鹿特丹 Dokhaven污水处理厂正式运行,主要用于处理污泥消化上清液。

5.CANON工艺

新型生物脱氮工艺——CANON工艺(completely autotrophic ammonium removal over nitrite)即全程自养脱氮工艺,该工艺是指在单个反应器或生物膜内,通过控制溶解氧实现亚硝化和厌氧氨氧化,从而达到脱氮的目的。CANON工艺是基于亚硝化和厌氧氨氧化技术而发展的。

在限氧条件下,NH4+首先被好氧亚硝化菌氧化成NO2﹣,然后,厌氧氨氧化菌将NH4+和NO2﹣以及痕量的NO3﹣转化为N2。总化学反应式可用下式(4)表示:

NH4+ + 0.85O2 → 0.435N2 + 0.13NO3﹣+ 0.14H+ +1.3H2O(4)

CANON工艺反应器中的微生物主要是亚硝化细菌和厌氧氨氧化菌以及少量的硝化细 菌和常规异氧菌。有研究表明,CANON工艺中反应的发生依赖于好氧氨氧化菌Anammox 菌两种自养微生物菌群在限氧条件下稳定的相互作用关系CANON 工艺对于含高氨氮、低有机碳的污水来说,是一个既经济又高效的选择。

CANON工艺中所涉及的微生物均为自养菌,无需外加碳源。另外,CANON工艺在单一的反应器中运行,且仅需微量曝气,从而减少占地面积和能耗。与传统的脱氮工艺相比,该工艺可减少63%的供氧量、100%的碳源。

Sliekers等人[11]2002 年研究了CANON 工艺在SBR反应器中的应用情况,同时研究了该过程中的微生物特性。在限氧条件下,并未发现亚硝酸氧化菌,只有在O2 不受限制时或 进水NH4+浓度较低时,反应器中才出现亚硝酸氧化菌。郝晓地[12]等人利用数学模拟技术对 CANON工艺的各个未知因素和影响因子进行理论分析,发现溶解氧和膜的氨表面负荷(ASL)是CANON工艺中两个重要的影响因子。Sliekers等人[13]在2003 年研究了CANON 在气提反应器中的应用情况,结果表明,气提反应器适用于CANON工艺。反应器中存在少量的活性很低的亚硝酸氧化菌,可能是由于反应器中O2 浓度过高所导致的。孟了等[14]利用SBR反应器处理垃圾渗滤液,实现了CANON工艺。当DO控制在1mg/L 左右,处理废液流量为600m3/d,进水氨氮<800mg/L 的条件下,氨氮的去除率>95%,总氮的去除率>90%。这些研究都为CANON 工艺的工程应用提供了有力的中试基础,对于如何在实际工程中控制其操作参数还有待进一步的深入研究。

6.OLAND工艺

OLAND(oxygen limited autotrophic nitrification denification,限制自养硝化反硝化工艺)工艺是限氧亚硝化与厌氧氨氧化偶联的一种新颖的生物脱氮反应系统[15]。其原理是首先在DO约为0.1~0.3mg/L的限氧条件下,好氧氨氧化菌将50%的NH4+转化为NO2﹣,使亚硝化阶段的出水比例稳定在NH4+/ NO2﹣=1:(1.2±0.2),从而为厌氧氨氧化阶段提供理想的进水,达到高效脱氮的目的。该工艺的反应式可用下式(5)表示:

NH4+ + 0.75O2 → 0.5N2 + H+ + 1.5H2O(5)

OLAND工艺和CANON工艺最大的差别在于前者在两个反应器中进行,而后者则在单 一反应器中完成。OLAND 工艺与传统脱氮工艺相比,可以节省供氧62.5%,节省碳源100%。该工艺的关键在于控制反应器中的溶解氧,这也是该工艺存在的主要问题,在混合菌群连续运行的条件下难以对氧和污泥的pH 值进行良好的控制[15]。

OLAND 工艺中,溶解氧是限氧亚硝化阶段的主要影响因素,而生物量和基质浓度、pH值和温度则影响厌氧氨氧化过程。

董远湘等[16]采用以多孔球悬浮填料为载体的限氧亚硝化生物膜处理高氨氮、低碳源的 废水,通过对DO 控制在0.5~1.0mg/L,实现硝化阶段出水中的氨氮与亚硝态氮的比例达到 最适值1:(1.2±0.2),从而为后阶段的厌氧氨氧化系统提供理想的进水;同时发现,在生物膜中进行氨氧化作用的主要为亚硝化杆菌(Nitrosomonas sp.)、亚硝化(Nitrosospira sp.)。张丹等[17]采用OLAND 工艺处理高氨氮、低COD 的废水,应用内浸式多聚醚砜中膜,实现了污泥的完全截留,通过控制DO 在0.1~0.3mg/L 之间,实现了硝化阶段出水中的氨氮与亚硝态氮的比例达到最适值1:(1.2±0.2)

7.结语

新的生物脱氮工艺相对于传统脱氮工艺来说,具有明显的优势,如:降低供氧能耗、无需外加碳源、减少反应器容积、节省运行费用等。新工艺中反应的发生过程往往需要特定的条件,如较高的温度,一定的pH 值,低碳源、高氨氮的进水等,这通常不适于处理常规的生活污水,而对特殊的废水如污泥消化上清液和垃圾渗滤液等来说,则具有良好的处理效果。目前,这些新工艺的发展才刚刚起步,对于其影响因素、过程控制、微生物特性等还不甚清楚。这些都需要进一步研究。参考文献: [1] 万金宝,王建永.基于短程硝化反硝化的SHARON 工艺原理及技术要点[J].工业水处理,2008,28(4):13-15 [2] 袁林江,彭党聪,王志盈.短程硝化反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31 [3] 林涛,操家顺,钱艳.新型的脱氮工艺——SHARON 工艺[J].环境污染与防治,2003,25(3):164-166 [4] 李振强,陈建中.废水脱氮新技术研究进展[J].广州环境科学,2005,20(3):16-19 [5] Van de Graaf A A,Bruijn P,Robertson L A,et al.Autotrophic growth of anaerobic ammonium-oxidationmicroorganism in a fluidized bed reactor[J].Microbiology.,1997,143:2415-2421

[6] 康海笑,陈建中,周明罗,等.废水厌氧氨氧化工艺(ANAMMOX)[J].广州环境科学,2004,19(3):14-16 [7] Than Khin,Ajit P Annachhatre.Noval microbial nitrogen removal process[J].Biotechnology Advance,2004,22(7):519-532 [8] 汪慧贞,吴俊奇,高志明.半硝化-厌氧氨氧化脱氮新工艺[J].环境工程,2001,19(5):7-9 [9] 叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006,132-133 [10] 蒙爱红,左剑恶.亚硝化-厌氧氨氧化工艺的试验研究[J].给水排水,2003,29(3):98 [11] A.Olav Sliekers,N Derwort,J L Campos,et al.Completely autotrophic nitrogen removal overnitrite in one single reactor [J].Water Res。,2004,36:2475~2482

[12] Xiaodi Hao,et al.Sensitivity analysis of a biofilm model describing a one-stage completely autotrophicnitrogen removal(CANON)process[J].Biotechnol Bioeng,2002,73(3):266-277 [13] A.Olav Sliekers,K A Third,W Abma,et al.CANON and Anammox in a gas-lift reactor[J].FEMSMicrobiology Letters,218(2003):339-344

[14] 孟了,陈永,陈石.CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水,2004,30(8):24-30 [15] 叶剑锋,徐祖信,薄国柱.新型生物脱氮工艺——OLANG工艺[J].中国给水排水,2006,22(4):6-8 [16] 董远湘,李小明,尹疆,等.溶解氧对OLANG生物膜反应器硝化性能的影响及其微生物种群动态研究[J].环境污染与防治,2005,27(8):561-564 [17] 张丹,徐慧,刘耀平,等.OLAND 生物脱氮系统运行及其硝化菌群的分子生物学检测[J].应用与环境生物学报,2003,9(5):530~533

第二篇:A2O生物脱氮除磷工艺与MBR工艺简介及焚烧发电厂渗滤液处理

A2O是Anaeroxic-Anoxic-Oxic的英文缩写,A2O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。工作原理

其工艺流程图如下图,生物池通过曝气装置、推进器(厌氧段和缺氧段)及回流渠道的布置分成厌氧段、缺氧段、好氧段。

在该工艺流程内,BOD5、SS和以各种形式存在的氮和磷将一一被去除。A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。在好氧段,硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。

工艺特点

(1)厌氧、缺氧、好氧三种不同的环境条件和种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。

(3)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。

(4)污泥中磷含量高,一般为2.5%以上。

一、MBR可提式暴起系统

可提升式垃圾渗滤液MBR生化段微孔曝气装置

由于垃圾渗滤液MBR段的曝气方式主要有微孔曝气和射流曝气两种,射流曝气相对于微孔曝气有三个缺点:1.投资成本高,2.能耗运行费用高,3.池内水温高。水温的升高,(超过38摄氏度,造成硝化速率降低),还需要配套冷却系统。另外射流曝气还存在曝气不均(曝气只向一个方向)的现象,有的区域曝气过量,有的区域曝气明显不足,这样可能造成生物膜被冲脱或因缺氧生物膜也者脱落,影响系统的生化性。

采用可提升式垃圾渗滤液MBR生化段微孔曝气装置,采用橡胶可变孔微空曝气,底盘设有止回阀装置,当管道系统停止供气时阻止混合液进入布气支管,这样可避免支管内进入混合液而被堵塞现在膜的材质,膜片具有抗附着表面的专用进口橡胶(EPDM)。

同时,由于曝气管直径较小,不易产生气泡聚集现象,水气混合状态更趋合理。因此,其氧的转移率高,比一般产品高15%。

采用该曝气装置可直接从池底提升至水面以上,即使有曝气头损坏或堵塞可提出池面维护检修。

该曝气系统曝气管路和牵引提升系统均采用316不锈钢,确保提升强度和水下腐蚀现象。确保系统正常降、落。

二、垃圾焚烧发电场垃圾渗滤液特色技术

针对垃圾焚烧发电厂的新鲜垃圾渗滤液,可生化性较好,而COD、氨氮、SS浓度相当高,水质复杂的特点,首先进行有效的预处理后进入MBR生化系统,然后进入纳滤/反渗透系统,浓缩液进行集中处理,处理出水全部达标,可回用绿化,甚至回用为工业用水。沼气收集处理可焚烧发电。

根据工程具体情况选择MBR的形式以及膜的搭配,有效节约投资与运行费用。

三、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅰ

垃圾渗滤液首先经过预处理,然后进入外置式加强型MBR系统,MBR出水进入纳滤和反渗透系统,出水达标排放或者回用。

外置式MBR系统一般用于垃圾渗滤液处理规模在200吨/天以上的工程中,主要有“一级A/O/N系统+二级A/O+外置式管式膜系统”组成。

对于规模比较大的垃圾渗滤液处理工程,特别设计了两级生化A/O,并且进行了强化,利用管式膜超滤出水,脱氮效率大大提高,这样对后续的纳滤/反渗透系统的负荷大大降低,对浓缩液的处理也相对容易。

四、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅱ

垃圾渗滤液经过预处理进入加强型内置式MBR系统,然后MBR出水经入纳滤和反渗透系统。本工艺特点是采用加强型内置式MBR系统,在MBR反应系统内,其中的大部分污染物被混合液中的活性污泥去除,再在外压作用下由膜过滤出水。这种形式的MBR反应器由于省去了混合液循环系统,并且靠抽吸出水,能耗相对较低;占地较分置式更为紧凑。缺点膜通量相对较低。

五、城市生活垃圾填埋场垃圾渗滤液处理特色技术Ⅲ

垃圾渗滤液经过预处理进入加强型外置式MBR系统,然后MBR出水经入催化氧化系统,最后通过反渗透系统。

本工艺特点是采用我公司新研发的催化氧化系统,通过催化氧化系统出水COD可控制在100mg/l左右,反渗透系统作为一个出水达标排放的保证措施,当催化氧化系统出水达标的时候,反渗透系统可以不启动,如果启动后,产生的浓缩液可以通过催化氧化系统有效处理。该系统处理污染物彻底,浓缩液产生量少。

第三篇:脱氮除磷技术

哈尔滨理工大学学士学位论文

目录

第1章

脱氮除磷简述------------------------2

第2章

生物脱氮除磷基本原理----------------3

2.1生物脱氮过程3 2.2生物除磷过程3

第3章

生物脱氮除磷工艺研究新方向---4 3.1SHARON工艺4 3.2CANON工艺--5 3.3DEPHANOX工艺---------------------------5 3.4BCFS工艺-----6 3.5厌氧氨氧化(ANAMMOX)工艺------7 3.6 A2NSBR工艺-7

第4章 结语-----9

哈尔滨理工大学学士学位论文

简述污水脱氮除磷工艺及研究进展

摘要

氮、磷去除率不达标造成水体的富营养化是世界各国面临的最大挑战之一,已被各国政府高度重视。传统的脱氮除磷工艺存在许多不足之处,经济、高效、低耗的可持续脱氮除磷工艺已成为污水处理的发展方向。本文简要介绍了生物脱氮除磷的基本原理和工艺:SHARON工艺,CANON工艺,2DEPHANOX工艺,BCFS工艺,ANAMMOX工艺,ANSBR工艺的机理和研究进展。同时指出经济、高效、低能耗的可持续脱氮除磷工艺是污水处理的发展方向。

关键词:污水处理;生物脱氮除磷;处理工艺;研究进展

第1章

脱氮除磷简述

近些年来,随着工农业生产的高速发展和人们生活水平的不断提高,含氮、磷的化肥、农药、洗涤剂的使用量不断上升。然而,我国现有的污水处理厂主要集中于有机物的去除,对氮、磷等营养物的去除率只达到10%-20%其结果远达不到国家二级排放标准,造成大量氮磷污染物进入水体,引起水体的富营养化。对我国的26个主要湖泊的富营养调查表明,其中贫营养湖1个,中营养湖9个,富营养湖16个,在16个富营养化湖泊中有6个的总氮、总磷的负荷量极高,已进入异常营养型阶段。其中滇池、太湖、巢湖流域,水体富营养化更为严重。同时,我国沿海地区多次出现赤潮现象。

我国新颁布的《污水综合排放标准》(GB8918-1996)对氮、磷都做了严格的规定,其中对氮:15mg/L(一级标准)、25mg/L(二级标准);对磷:0.5mg/L(一级标准)、1.0mg/L(二级标准)。因此,采用高效、节能、经济的氮磷去除工艺以及构筑物一体化建设必将是我国城市污水处理工艺的一个发展方向。

哈尔滨理工大学学士学位论文

第2章

生物脱氮除磷基本原理

2.1生物脱氮过程

生物脱氮通过氨化、硝化、反硝化三个步骤完成。

氨化反应:有机氮化合物在氨化细菌的作用下分解,转化为氨态氮。硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。

反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。

2.2生物除磷过程

生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。排出系统外,达到废水中除磷的效果。

哈尔滨理工大学学士学位论文

第3章

生物脱氮除磷工艺研究新方向

传统的生物脱氮除磷工艺如:生物除磷:A/O,A2/O,Bardenpho,UCT,Phoredox,AB等除磷工艺。生物脱氮:A/O,A2/O,Bardenpho,UCT,Phoredox,改进的AB,TETRA深度脱氮,SBR,氧化沟等脱氮工艺。

现有的生物脱氮除磷组合工艺主要是建立在传统生物脱氮除磷理论基础上进行构架组合的。传统生物脱氮除磷工艺中,具有较大差别的微生物在同一系统中相互影响,制约了工艺的高效性和稳定性;较多的工艺流程中包含多重污泥和混合液的回流,增加了系统的复杂性,提高了基建和运行费用;脱氮除磷过程中对能源(如氧、COD)消耗较多;剩余污泥富含磷,处理量较大。这些都不符合环境的可持续发展的要求。近年来,同时硝化反硝化现象、反硝化除磷现象、短程硝化反硝化脱氮工艺、厌氧氨氧化工艺等的发现和研究,为解决上述问题提供了有效的途径。

同时硝化反硝化技术的研究传统脱氮理论认为硝化反应在好氧条件下进行,而反硝化反应在厌氧条件下完成,两者不能在同一条件下进行。然而,近几年许多研究者发现存在同时硝化反硝化现象,尤其是有氧条件下的反硝化现象,确实存在于不同的生物处理系统中。如氧化沟、SBR工艺、间歇曝气反应器工艺。研究者对此进行了广泛的研究,提出了一些新的见解。其中,认为微生物的存在是其最主要的原因。如某些反应器流态上的特征,为同时硝化反硝化创造了可能的环境条件;另外,从微生物发展的角度看,存在着目前尚未被认识的微生物菌种(如好氧条件下的反硝化细菌)能使同时硝化反硝化现象发生,但对其机理的认识还未统一,尚处于探索阶段。

3.1 SHARON工艺

SHARON工艺是由荷兰Delft技术大学开发的新工艺,已经在荷兰鹿特丹的废水处理厂建成并投入运行。该工艺的核心是,应用硝酸菌和亚硝酸菌的不同生长速率,即在高温(30~35℃)下亚硝酸菌的生长速率明显高于硝酸菌这一固有特性,控制系统的水力停留时间和反应温度,从而使硝酸菌被自然淘汰,反应器中亚硝酸菌占优势,使氨氧化控制在亚硝化阶段。SHARON工艺适合于处理具有一定温度的高浓度(〉500mgN/L)氨氮污水。对该工艺来说,温度和pH值(最佳pH值6.8~7.2)都受到严格的控制,因此,低温低氨的城市污水如何实现亚硝酸型硝化值需进一步研究。

哈尔滨理工大学学士学位论文

3.2 CANON工艺

CANON工艺(生物膜内自养脱氮工艺)实质上是通过控制生物膜内溶解氧的浓度实现短程硝化反硝化,使生物膜内聚集的亚硝化菌和ANAMMOX微生物能同时生长,满足生物膜内一体化完全自养脱氮工艺实现的条件。亚硝酸氮在生物膜内的聚集是亚硝化的另一种形式。硝化细菌与亚硝化细菌对氧的亲和性的不同以及传质限制等因素影响两种微生物在细胞膜内的数量。在低DO/NH3-N比值的情况下,氧成为限制性基质,使硝化细菌与亚硝化细菌展开竞争。竞争的结果是亚硝酸氮在生物膜表层聚集。当氧向细胞膜内扩散并被消耗后,出现厌氧层,厌氧氨氧化细菌便能生长。随着未被亚硝化的氨氮与亚硝化后的亚硝酸氮扩散至厌氧层,ANAMMOX反应就发生。环境中的氨氮与溶解氧是决定CANON工艺的两个关键因素。CANON工艺目前在世界上还处于研究阶段,没有真正应用到工程实践中。SHARON工艺和CANON工艺都是经亚硝酸型生物脱氮工艺处理的,出水中可能含有较高的亚硝酸盐,运行时应加以严格的控制。

3.3 DEPHANOX工艺

DEPHANOX工艺是为满足DPB所需的环境要求而开发的一种强化生物除磷工艺。DEPHANOX除磷脱氮工艺流程如图" 所示。工艺在厌氧池与缺氧池之间增加了沉淀池和固定膜反应池。固定膜反应池的设置可以避免由于氧化作用而造成有机碳源的损失和稳定系统的硝酸盐浓度。污水在厌氧池中释磷,在沉淀池中进行泥水分离。含氮较多的上清液进入固定膜反应池进行硝化,污泥则跨越固定膜反应池进入缺氧段,完成反硝化和摄磷。工艺的优点在于能解决除磷系统反硝化碳源不足的问题和降低系统的能源(曝气)消耗,而且可缩小曝气池的体积,降低剩余污泥量,尤其适用于处理低COD/TKN的污水。由于进水中氮和磷的比例是很难恰好满足缺氧摄磷的要求,这给系统的控制带来了困难。此外,目前聚磷菌反硝化试验研究中都不同程度添加乙酸作为碳源,乙酸是诱导聚磷菌释磷的最佳碳源,由于很难真实模拟城市污水的处理情况,因此对于反硝化聚磷茵的筛选富集具有重要意义。该工艺离生产应用尚有一段距离。

图1 DEPHANOX工艺流程图

哈尔滨理工大学学士学位论文

3.4 BCFS工艺

BCFS工艺是荷兰Delft技术大学Kluyver生物技术实验室研究开发的、为最大程度从工艺角度创造DPB富集条件的一种变型UCT工艺。其工艺流程如图2所示。在这种改良的UCT工艺脱氮除磷处理系统中,污泥能够利用硝酸盐作为电子受体,在缺氧环境条件下同时进行反硝化作用和超量聚磷。

从工艺流程上看,BCFS工艺较UCT工艺创新之处在于:(1)BCFS工艺在主流线上增加了两个反应池:即在UCT工艺的厌氧和缺氧池之间增加一个接触池,在缺氧池和好氧池之间增加一个缺氧/好氧混合池。在主流线中的厌氧池以推流方式运行,相当于一个厌氧选择池,可保持较低的污泥指数(SVI)。增设的接触池可起到第二选择池的作用,所需的容积很小,但可较好地抑制丝状菌的繁殖。增设的第二个反应池混合池,可形成低氧环境以获得同时硝化与反硝化,从而保证出水中含较低的总氮浓度。(2)BCFS工艺增设在线分离、离线沉淀化学除磷单元。BCFS工艺通过增加磷分离工艺,避开了生物除磷的不利条件(因满足硝化而使泥龄过长;进水中COD/P的比值过低)。同时,在线进行磷的化学沉淀会因沉淀剂在污泥中聚集而影响硝化菌活性。因此,该工艺又将厌氧池末端富磷上清液抽出,以离线方式在沉淀单元内投以铁盐和镁盐予以回收。以生物除磷辅以化学除磷这种工艺充分利用了PAOs/DPB对磷酸盐具有很高亲和性的这一特点,很容易获得极低的出水正磷酸盐浓度,并能在保证良好出水水质的前提下,大大降低COD的用量。(3)与UCT工艺相比,BCFS工艺增设了两个内循环QB和QC(见图2)。从好氧池设置内循环QB到缺氧池,能辅助回流污泥向缺氧池补充硝酸氮,内循环QC使好氧池与混合池间建立循环,以增加硝化或同时硝化反硝化的机会,为获得良好的出水氮浓度创造条件。

BCFS工艺在荷兰已成功运用于工程实践中,除了具有节能低耗的优点外,还能保持稳定的处理水质,使出水总磷≤0.2mg/L总氮≤0.5mg/L。

图2 BCFS工艺流程图

哈尔滨理工大学学士学位论文

3.5 厌氧氨氧化(ANAMMOX)工艺

ANAMMOX工艺由荷兰Delft技术大学Kluyver生物技术实验室研究开发。工艺在厌氧状态下,以NO2-,NO3-作为电子受体,将氨转化为氮气。厌氧氨氧化是自养的微生物过程,不需投加有机物以维持反硝化,且污泥产率低。此外还可以改善硝化反应产酸、反硝化反应产碱而均需中和的情况,这对控制化学试剂消耗、防止可能出现的二次污染具有重要意义。该工艺适用于高氨废水和低COD/TKN废水的处理。

ANAMMOX工艺与SHARON工艺结合,对污泥消化出水进行了研究。这种联合工艺的自养脱氮工艺流程见图3。试验结果表明,氨态氮的去除率达到83%,并且联合工艺几乎不需要外加碳源。可见在氧气需要量和外加碳源上,该联合工艺明显优于传统的生物脱氮工艺。ANAMMOX及其与SHARON的联合工艺完全突破了传统生物脱氮工艺的基本概念,从一定程度上解决了传统硝化一反硝化工艺存在的问题,但需要进一步的研究才能使之成功地运行于实际工程。

图3 SHARON与ANAMMOX相结合的自养脱氮工艺流程图

3.6 A2NSBR工艺

A2NSBR工艺由厌氧/兼氧序批式反应器(A/A/OSBR)和硝化序批式反应器(N-SBR)组成,这两个反应器的活性污泥完全分开,只将沉淀后的上清液相互交换,见图4。进水和回流污泥混合后进人厌氧池,在此聚磷菌吸收易于降解的有机物进行PHB储备,同时释磷;随后进入沉淀池泥水分离:富集氨氮的上清液进入侧流好氧池进行硝化反应,而含有大量PHB的DPB污泥则同硝化液一起进入主流缺氧反应池,在此以硝态氮为电子受体进行反硝化除磷。

与Dephanox工艺一样,A2NSBR可分别控制聚磷菌和反硝化菌的泥龄,有利于它们的各自优化。两个反应器的沉淀上清液相互交换,保证了原水中85%~90%的COD在A2O-SBR的厌氧段被活性污泥快速吸附或降解并用于该段厌氧释磷和缺氧段反硝化。在N/P比最优的情况下,比传统工艺节省50%的COD,除磷率接近100%,脱氮率约90%。

哈尔滨理工大学学士学位论文

图4 A2NSBR工艺流程图

哈尔滨理工大学学士学位论文

第4章

本文对生物脱氮除磷的机理及目前较先进的脱氮除磷技术进行了简要概述。由于水体富营养化是一个严重的长期问题,而我国对生物脱氮除磷的研究起步较晚,目前进行了脱氮除磷处理的污水处理厂并不多。因此,开发经济有效、节能、简便且能同时脱氮除磷的适合我国国情的工艺尤为重要。由于生物法运行费用较低,效果稳定,综合处理能力强,因此生物脱氮除磷工艺在我国将有很大的应用前景,且应更加深入的探讨生物脱氮除磷的机理。

第四篇:大型火电厂脱氮技术

低NOX煤粉燃烧技术概述

摘 要:本文共分为四大部分:从当前火电厂脱氮的结设备构特点及组成,工作原理,燃烧方式,控制方法以及在火电厂中的应用前景等方面进行了浅显的描述。其中重要是对该设备的主要原理和控制方法,控制性能及特点方面进行了阐述。

关键词:结构特点、工作原理、燃烧方式、控制方法。

Abstract: This paper is divided into four parts: from the current circulating fluidized bed power plant characteristics of the structure and composition,working principle,and combustion of pulverized coal-fired boiler contrast,the control method and the application of thermal power plants in areas such as prospects for the simple description.One important is the boiler control system for the main control methods to control aspects of performance and features,and explains Key words: current circulating、bed power plant、combustion of pulverized、boiler control system.一 引言

近年来能源利用造成的环境污染越来越严重,其中矿物燃料的燃烧所排放出来的氮氧化物(NOX)己成为环境污染的一个重要方面。NOX是N2O、NO、NO2、N2O3、N2O4和N2O5的总称。我国能源以煤为主。燃煤所产生的大气污染物占污染物排放总量的比 例较大,其中NOX占67%[1]。有关资料表明,电站锅炉的NOX排放量占各种燃烧装臵NOX排放量总和的一半以上,而且80%左右是煤粉锅炉排放的[2]。国家环保局于2003年12月23日发布的《火电厂大气污染物排放标准》(GB13223—2003)中对于第三时段燃煤电厂执行的排放浓度限值为:当Vdaf<10%时,NOx 排放浓度限值为1100 mg/m3;当10%20%时,排放浓度限值为450 mg/m3。据调查[3],我国燃煤电站固、液态排渣煤粉炉NOX排放质量浓度范围分别为600~1200 mg/m3和850~1150 mg/m3。因此,降低NOX排放的任务非常紧迫。

二 氮氧化物产生的机理

氮氧化物是造成大气污染的主要污染源之一。通常所说的氮氧化物NOx 有多种不同

形式:N2O、NO、NO2、N2O3、N2O4 和 N2O5,其中NO 和NO2 是重要的大气污染物。

我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx 排放的主要来源之一。

研究表明,氮氧化物的生成途径有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生 成NOx;(3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH 等反应生成NOx。在这三种形式中,快速型NOx 所占比例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。控制NOx 排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量;二次措施是将已经生成的NOx通过技术手段从烟气中脱除。

三 低NOX煤粉燃烧技术

煤粉燃烧过程中影响NOX生成的主要因素有:①煤种特性,如煤的含氮量、挥发分含量、燃料中的固定碳/挥发分之比以及挥发分中含H量/含N量之比等;②燃烧区域的温度峰值;③反应区中氧、氮、一氧化氮和烃根等的含量;④可燃物在反应区中的停留时间。

由此对应的低NOX燃烧技术的主要途径有如下几个反面:①减少燃料周围的氧浓度。包括:减少炉内过量空气系数,以减少炉内空气总量;减少一次风量和减少挥发分燃尽前燃料与二次风的混合,以减少着火区的氧浓度。②在氧浓度较少的条件下,维持足够的停留时间,使燃料中的氮不易生成NOX,而且使生成的NOX经过均相或多相反应而被还原分解。③在过量空气的条件下,降低温度峰值,以减少热力型NOX的生成,如采用降低热风温度和烟气在循环等。④加入还原剂,使还原剂生成CO、NH3和HCN,它们可将NOX还原分解。具体的方法有:燃料分级燃烧、空气分级燃烧、烟气再循环、低NOX燃烧器、低氧燃烧、浓淡偏差燃烧等,以下对各种低NOX燃烧技术分别介绍。3.1 燃料分级燃烧

燃料分级燃烧,又称燃料再燃技术(Returning Technology)。是指在炉膛(燃烧室)内,设臵一次燃料欠氧燃烧的NOX还原区段,以控制NOX的最终生成量的一种“准一次措施”。NOX在遇到烃根CHi和未完全燃烧产物CO、H2、C和CnHm时会发生NOX的还原反应。利用这一原理,把炉膛高度自下而上依次分为主燃区(一级燃烧区)、再燃区和燃尽区。再燃低NOX燃烧将80%—85%的燃料送入主燃区,在空气过量系数α>1的条件下燃烧,其余15%—20%的燃料则在主燃烧器的上部某一合适位臵喷入形成再燃区,再燃区过量空气系数<1,再燃区不仅使主燃区已生成的NOX得到还原,同时还抑制了新的NOX的生成,进一步降低NOX。再燃区上方布臵燃尽风(OFA)以形成燃尽区,以使再燃区出口的未完全燃烧产物燃烧,达到最终完全燃烧目的。再燃燃料可以是各类化石燃料,包括天然气、煤粉、油、生物质、水煤浆等。上世纪80年代,三菱重工第一次将再燃技术用于全尺皴锅炉。随后在全世界取得了长足的发展。

一般,采用燃料分级的方法可以达到30%以上的脱销效果,最高脱效率可达70%,在主燃烧器采用低NOX燃烧器抑制NOX生成的基础联合使用燃料分级燃烧可以进一步降低的NOX排放量。再燃法脱除NOX的影响因素主要有再燃燃料的种类、再燃比例、再燃区的空气过量系数、再燃区温度条件以及再燃区停留时间等。随着技术的进步,如今又发展出了先进再燃技术,它是将再燃技术与氨催化还原技术相结合一种高效控制NOX排放的技术,这种技术是将氨水或者尿素作为氨催化剂加入到再燃区域或者燃尽区,进一步降低NOX。同时,如果将无机盐(尤其是碱金属)助催化剂通过不同的方式一同喷入,将更有利于NOX的还原,实验显示,先进再燃可以降低NOX排放量85%左右,具有非常好的优势。由先进再燃的原理可知,所有影响燃料再燃脱硝效果的因素也会影响先进再燃,除此之外,催化剂及驻催化剂对其影响也很重要,主要是氮催化剂(氨或尿素)喷入位臵及喷入量的影响及无机盐(碱金属)助催化剂喷入方式的影响。

再燃技术的主要特点是:①不仅最大限度地控制NOX的排放,而且使锅炉燃烧更加稳定,尤其是低负荷运行性能得到改善,并可提高锅炉运行效率;②可以避免炉内结渣、高温腐蚀等其它低NOX燃烧技术带来的不良现象;③该技术只需在炉膛适当位臵布臵几个喷口即可,系统简单,投资较少;④无一次污染。3.2 空气分级燃烧

空气分级燃烧技术是美国在20世纪50年代首先发展起来的,它是目前应用较为广泛的低NOX燃烧技术[4]。它的主要原理是将燃料的燃烧过程分段进行。该技术是将燃烧用风分为一、二次风,减少煤粉燃烧区域的空气量即一次风量,提高燃烧区域的煤粉浓度,推迟一、二次风混合时间,这样煤粉进入炉膛时就形成一个过量空气系数在0.8左右的富燃料区,使燃料在富燃料 区进行欠氧燃烧,使得燃烧速度和温度降低,从而降低NOX的生成。欠氧燃烧产生的烟气再与二次风混合,使燃料完全燃烧。

最终空气分级燃烧可使NOX生成量降低30—40%。该技术的关键是风的分配,一般一次风占总风量的25%-35%。若风量分配不当会增加锅炉的燃烧损失,同时引起受热面的结渣腐蚀等问题。分级燃烧可以分成两类。一类是燃烧室(炉内)中的分级燃烧;另一类是单个燃烧器的分级燃烧。在采用分级燃烧时,由于第一级燃烧区内是富燃料燃烧,氧的浓度降低,形成还原性气氛。而在还原性气氛中煤的灰熔点会比在氧化性分为中降低100~120℃,这时如果熔融灰粒与炉壁相接触,容易发生结渣,而且火焰拉长,如果组织不好,还会容易引起炉膛受热面结渣和过热器超温,同时还原性分为还会导致受热面的腐蚀。空气分级再燃的影响因素主要有:第一级燃烧区内的过量空气系数α1,要正确地选择第一级燃烧区内的过量空气系数,以保证这一区域内形成富燃料燃烧,经可能的减少NOX的生成,并使燃烧工况稳定;温度的影响、二次风喷口的位臵的确定、停留时间的影响、煤粉细度的影响等。

分级燃烧系统在燃煤锅炉上应用有较长的历史,单独使用大约可降低20~40%的NOX。通常增大燃尽风分额可得到较大的NOX脱除率。目前该技术与其他初级控制措施联合使用,已成为新建锅炉整体设计的一部分。在适度控制NOX排放的要求下,往往作为现役锅炉低NOX排放改造的首选措施。3.3 烟气再循环 烟气再循环也是常用的降低NOX排放量的方法之一,该技术是将锅炉尾部约10%—30%低温烟气(温度在300℃—400℃)经烟气再循环风机回抽(多在省煤器出口位臵引出)并混入助燃空气中,经燃烧器或直接送入炉膛或是与一次风、二次风混合后送入炉内,从而降低了燃烧区域的温度,同时降低了燃烧区域氧的浓度,最终降低NOX的生成量,并具有防止锅炉结渣的作用。但采用烟气再循环会导致不完全燃烧热损失加大,而且炉内燃烧不稳定,所以不能用于难燃烧的煤种,如无烟煤等。另外,利用烟气再循环改造现有锅炉需要安装烟气回抽系统,附加烟道、风机及飞灰收集装臵。投资加大,系统也叫复杂,对原有设备改造时也会受到场地条件等的限制。

由于烟气再循环使输入的热量增多,可能影响炉内的热量分布,过多的再循环烟气还可能导致火焰的小稳定性及蒸汽超温,因此再循环烟气量有一定的限制。烟气再循环法降低NOX排放的效果与燃料种类、炉内燃烧温度及烟气再循环率有关,延期砸循环率是再循环烟气量与不采用烟气再循环时的烟气量的比值。经验表明:当烟气再燃循环率为15%~20%时,煤粉炉的NOX排放浓度可降低25% 左右。燃烧温度越高,烟气再循环率对NOX脱除率的影响越大。但是,烟气再循环效率的增加是有限的。当采用更高的在循环率时,由于循环烟气量的增加,燃烧会趋于不稳定,而且未完全燃烧热损失会增加。因此电站锅炉的烟气再循环率一般控制在10%~20%左右。在燃煤锅炉上单独利用烟气再循环措施,得到的NOX脱除率<20%。所以,一般都需要与其他的措施联合使 用。

3.4 低NOX燃烧器

常规煤粉燃烧器可以将煤粉和空气快速混合,并能产生高的火焰温度,达到高的燃烧强度和燃烧效率,遗憾的是这些条件也易于产生较多的NOX。通过设计特殊的燃烧器结构来改变燃烧器出口处的风粉配比,可以将前述的空气分级、燃料分级和烟气再循环等降低NOX排放控制技术的原理用于燃烧器。通过燃烧器就能同时实现燃烧、还原、燃尽三个过程,从而设计出低NOX燃烧器。它可以用来控制煤粉与空气的混合特性,改善火焰结构,降低燃烧火焰的峰值,从而降低NOX排放。由于低NOX燃烧器能在煤粉的着火阶段就抑制NOX的生成,对后期控制NOX的排放量十分有利,因此低NOX燃烧器得到了广泛的开发和利用。在低NOX燃烧器设计方面,一些西方发达国家的许多锅炉制造公司在这方面进行了大量的改进和优化工作,并取得很大的成就,开发了不同类型的低NOX燃烧器,主要有:

1、阶段燃烧型低NOX燃烧器

该燃烧器设计使喷口喷出的煤粉分阶段燃烧从而降低NOX的生成。在燃烧器出口区域形成一个还原性气氛的富燃料着火燃烧区,逐步与喷出的二次风相混合,由于二次风风量及旋流动量小,与煤粉混合较慢,使得燃烧过程推后,减缓了煤粉的着火燃烧。所以这种燃烧器有效地降低了NOX的生成。较有代表性的有:巴.威公司的DRB型双调风低NOX燃烧器[7],德国巴布科克((Deutche Babcock)公司的WB、WSF、DS型燃烧器[8],德国斯 坦缪勒(Steinmuller)公司设计的SM低NOX燃烧器[8],福斯特惠勒(Foster Wheeler)公司的CF/SF低NOX燃烧器[9],美国瑞丽斯多克(Riley Stoker)公司的CCV型低NOX燃烧器[7]等。

2、浓淡偏差型低NOX燃烧器

浓淡燃烧器是通过将一次风所携带的煤粉在燃烧器内部分成浓淡两股射出,由于煤粉射流分成了浓淡两股,浓的一侧由于煤粉气流空气量小,为还原性气氛所以生成的NOX较少,淡侧由于燃料较少,燃烧温度较低,所以也可抑制了NOX的生成。浓淡燃烧器如今己发展了多种,根据浓淡分离的不同,有采用弯管离心原理分离式、撞击分离式、旋风分离式以及百叶窗式等等。如:美国ABB-CE公司开发的宽调节比WR型燃烧器、日本三菱公司的PM型低NOX燃烧器、德国EVT公司的Vapour燃烧器、我国自行设计的燃烧器如多功能船形体煤粉燃烧器、钝体燃烧器、浓淡型燃烧器等。

一些公司还将低NOX燃烧器与炉内初级控制措施,如空气分级、燃料分级、烟气再循环等组合在一起,构成一个低NOX燃烧系统。这些低NOX燃烧系统不仅仅有效改善燃烧条件,还能大幅降低NOX排放量。据美国福斯特惠勒公司(Foster Wheeler)报告显示,他们的低NOX燃烧系统可实现50~65%的NOX脱除率。国内在低NOX燃烧技术方面的研究虽然起步较晚,但也积累了许多成熟的经验,尤其是基于浓淡燃烧技术和分级燃烧技术开发出的各种低NOX燃烧器都取得了可喜的实绩。

哈尔滨工业大学经过10余年的努力,开发研制成功水平浓 缩煤粉燃烧器、水平浓淡风煤粉燃烧器、径向浓淡旋流煤粉燃烧器、不等切圆墙式布臵直流煤粉燃烧器等“风包粉”系列浓淡煤粉燃烧技术。华中理工大学煤燃烧国家重点实验室利用一维炉和数值模拟相结合的方式,研制开发出了高浓度煤粉燃烧技术。清华大学力学系贾臻教授研制的煤粉浓缩燃烧器,可使NOX降低到200mg/m3左右,这在世界同类技术中处于领先地位。此外,西安交通大学的夹心风直流燃烧器,浙江大学的可调式浓淡燃烧器都有降低NOX,的排放量的作用。3.5 低氧燃烧

这种方法就是使燃烧过程尽量接近理论空气系数(α =1)的条件下进行,使烟气中的过剩氧量减少,从而降低燃烧过程中NOX的生成量。在低过量空气系数范围的条件下运行,可使用较少的燃料。因此认为,低过量空气运行可以作为减少氮氧化物的形成和燃料消耗量的基本改进燃烧方法之一。实际锅炉采用低氧燃烧时,不仅降低NOX排放量,而且锅炉排烟热损失减少,对提高锅炉热效率有利,但是,如果炉内氧的浓度过低,低于3%以下时,会造成CO浓度的急剧增加,从而大大增加机械未完全燃烧热损失,同时也会引起飞灰含碳量的增加,导致机械未完全燃烧损失增加,从而使燃烧效率降低,使锅炉的燃烧经济性降低,而且炉内壁面附近还可能形成还原性气氛造成炉壁结渣和腐蚀。因此在确定低氧燃烧的过量空气量范围时,必须兼顾燃烧效率、锅炉效率较高和NOX等有害物质最少的要求。这是一种经过充分证明的、有效的降低NOX的基本方法,一般情况下,该措施可以 使NOX排放降低15%—20%。3.6 浓淡偏差燃烧

浓淡偏差燃烧是近几年来国内外采用的一种降低锅炉燃烧排放NOX的燃烧技术。该方法原理是对装有两个燃烧器以上的锅炉,使部分燃烧器供应较多的空气(呈贫燃料区),即燃料过淡燃烧;部分燃烧器供应较少的空气(呈富燃料区),即燃料过浓燃烧。无论是过浓或者过淡燃烧,燃烧时α都不等于1,前者α﹥1,后者α﹤1,故又称非化学当量比燃烧或偏差燃烧。

对NOX生成特性的研究表明,NOX的生成量和一次风煤比有关,一次风煤比在3~4kg/kg煤时,NOX生成量最高;偏离该值,不管是煤粉浓度高还是低,NOX的排放量均下降。因此如果把煤粉流分离成两股含煤粉量不同的气流,即含煤粉量多的浓气流C1和含煤粉量少的淡气流C2,分别送入炉内燃烧,对于整个燃烧器,其NOX生成量的加权平均值与燃用单股C0浓度煤粉流相比,生成的NOX要低。

四 燃煤电厂降低NOx排放的燃烧技术

研究表明,氮氧化物的生成途径有三种:(1)热力型NOx,指空气中的氮气在高温下氧化而生成NOx;(2)燃料型NOx,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成NOx;(3)快速型NOx,指燃烧时空气中的氮和燃料中的碳氢离子团如CH 等反应生成NOx。在这三种形式中,快速型NOx 所占比 例不到5%;在温度低于1300℃时,几乎没有热力型NOx。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。控制NOx 排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOx 生成量(前面已经叙述);二次措施是将已经生成的NOx通过技术手段从烟气中脱除。

4.1.1 炉膛喷射法

实质是向炉膛喷射还原性物质,可在一定温度条件下还原已生成的NOx,从而降低NOx 的排放量。包括喷水法、二次燃烧法(喷二次燃料即前述燃料分级燃烧)、喷氨法等。

喷氨法亦称选择性非催化还原法(SNCR),是在无催化剂存在条件下向炉内喷入还原剂氨或尿素,将NOx 还原为N2 和H2O。还原剂喷入锅炉折焰角上方水平烟道(900℃~1000℃),在NH3/NOx 摩尔比2~3 情况下,脱硝效率30%~50%。在950℃左右温度范围内,反应式为:

4NH3+4NO+O2→4N2+6H2O 当温度过高时,会发生如下的副反应,又会生成NO: 4NH3+5O2→4NO+6H2O 当温度过低时,又会减慢反应速度,所以温度的控制是至关重要的。该工艺不需催化剂,但脱硝效率低,高温喷射对锅炉受热面安全有一定影响。存在的问题是由于温度随锅炉负荷和运行周期而变化及锅炉中NOx 浓度的不规则性,使该工艺应用时变得 较复杂。在同等脱硝率的情况下,该工艺的NH3 耗量要高于SCR 工艺,从而使NH3 的逃逸量增加。

4.1.2 烟气处理法

烟气脱硝技术有气相反应法、液体吸收法、吸附法、液膜法、微生物法等几类。

在众多烟气处理技术中,液体吸收法的脱硝效率低,净化效果差;吸附法虽然脱硝效率高,但吸附量小,设备过于庞大,再生频繁,应用也不广泛;液膜法和微生物法是两个新型技术,还有待发展;脉冲电晕法可以同时脱硫脱硝,但如何实现高压脉冲电源的大功率、窄脉冲、长寿命等问题还需要解决;电子束法技术能耗高,并且有待实际工

程应用检验;SNCR 法氨的逃逸率高,影响锅炉运行的稳定性和安全性等问题;目前脱硝效率高,最为成熟的技术是SCR 技术。表1所示为烟气脱硝技术比较。

4.2 SCR 法技术特点

在众多的脱硝技术中,选择性催化还原法(SCR)是脱硝效率最高,最为成熟的脱硝技术。1975 年在日本Shimoneski 电厂建立了第一个SCR 系统的示范工程,其后SCR技术在日本得到了广泛应用。在欧洲已有120 多台大型装臵的成功应用经验,其NOx 的脱除率可达到80~90%。日本大约有170 套装臵,接近100GW 容量的电厂安装了这种设备。美国政府也将SCR 技术作为主要的电厂控制NOx 技术。SCR 方法已成为目前国内外电站脱硝比较成熟的主流技术。

4.2.1 原理及流程

SCR 技术是还原剂(NH3、尿素)在催化剂作用下,选择性地与NOx 反应生成N2和H2O,而不是被O2 所氧化,故称为“选择性”。主要反应如下:

4NH3+4NO+O2→4N2+6H2O 4NH3+2NO2+O2→6N2+6H2O SCR 系统包括催化剂反应室、氨储运系统、氨喷射系统及相关的测试控制系统。SCR工艺的核心装臵是脱硝反应器,有水平和垂直气流两种布臵方式,如图1 所示。在燃煤锅炉中,烟气中的含尘量很高,一般采用垂直气流方式。

4.2.2 主要影响因素

在 SCR 系统设计中,最重要的运行参数是烟气温度、烟气流速、氧气浓度、SO3浓度、水蒸汽浓度、钝化影响和氨逃逸等。烟气温度是选择催化剂的重要运行参数,催化反应只能在一定的温度范围内进行,同时存在催化的最佳温度,这是每种催化剂特有的性质,因此烟气温度直接影响反应的进程;而烟气流速直接影响 NH3 与 NOx 的混合程度,需要设计合理的流速以保证 NH3 与 NOx 充分混合使反应充分进行;同时反应需要氧气的参与,当氧浓度增加催化剂性能提高直到达到渐近值,但氧浓度不能过高,一般控制在 2%~3%;氨逃逸是影响 SCR 系统运行的另一个重要参数,实际生产中通常是多于理论量的氨被喷射进入系统,反应后在烟气下游多余的氨称为氨逃逸,NOx 脱除效率随着氨逃逸量的增加而增加,在某一个氨逃逸量后达到一个渐进值;另外水蒸气浓度的增加使催化剂性能下降,催化剂钝化失效也不利于 SCR 系统的正常运行,必须加以有效控制。

4.2.3 催化剂的选择

SCR 系统中的重要组成部分是催化剂,当前流行的成熟催化剂有蜂窝式、波纹状和平板式等。平板式催化剂一般是以不锈钢金属网格为基材负载上含有活性成份的载体压制而成;蜂窝式催 化剂一般是把载体和活性成份混合物整体挤压成型;波纹状催化剂是丹麦HALDOR TOPSOE A/S 公司研发的催化剂,外形如起伏的波纹,从而形成小孔。加工工艺是先制作玻璃纤维加固的TiO2 基板,再把基板放到催化活性溶液中浸泡,以使活性成份能均匀吸附在基板上。各种催化剂活性成分均为WO3 和V2O5。表2 为各种催化剂性能比较。4.2.4 还原剂的选择

对于SCR 工艺,选择的还原剂有尿素、氨水和纯氨。尿素法是先将尿素固体颗粒在容器中完全溶解,然后将溶液泵送到水解槽中,通过热交换器将溶液加热至反应温度后与水反应生成氨气;氨水法,是将25%的含氨水溶液通过加热装臵使其蒸发,形成氨气和水蒸汽;纯氨法是将液氨在蒸发器中加热成氨气,然后与稀释风机的空气混合成氨气体积含量为5%的混合气体后送入烟气系统。表3 为不同还原剂的性能比较。4.2.5 选型性还原脱硝技术

选择性还原脱硝技术包括选择性非催化还原(SNCR)法、选择性催化还原(SCR)法和SNCR/ SCR 混合法。在这些方法中SNCR 的主要优点是投资及运行费用低,缺点是对温度依赖性强,脱硝率只有30%~50%,氨的逃逸量大。实际工程中应用最多的是SCR 法。SNCR/ SCR 混合法是种有前景的烟气脱硝技术,但牵涉的系统更多,对技术的要求更高。

五 火电厂脱氮的技术定位原则

为满足环境的要求,对于烟气脱氮确定了以下的技术定位原则:

(1)立足于SCR 烟气脱硝技术。作为目前最成熟、效率最高的脱硝技术,应尽快技术引进、消化吸收;

(2)在全面掌握SCR 技术的基础上,以SNCR 技术作为技术突破口和再增长点,使SNCR/SCR法或SCR与其他低NOx燃烧技术混合法作为下阶段的技术发展方向。最佳脱硝技术的选择取决于现有的燃烧系统(常规的或低NOx)、燃料、炉膛结构、锅炉布臵、实际和目标NOx 水平和其他因素;

(3)研究并开发适合我国国情的催化剂。针对我国高灰、高重金属的煤燃料,开发出自主知识产权的催化剂和低温运行的催化剂。据悉,国内一些研究机构一直致力于催化剂的研究,利 用我国蕴量丰富的稀土资源来生产SCR 催化剂,提高了SCR催化剂的活性,降低了生产成本。我们可以组合国内资源,利用已有的研究成果,尽快把它商业化和产业化;

(4)烟气脱硝的流场分析和理论研究。SCR 法关键是催化剂的选择和烟气流场优化;SNCR 法关键是炉膛内温度场的研究。可利用CFD 数学模拟和实体物理模型来系统研究温度场和流场;

(5)建立示范工程进行现场研究。采用与国外技术方和国内其他相关部门联合先在商业锅炉上进行脱硝示范点建设,在装臵运行过程中,进行性能试验和数据收集。

六 总结

不同的燃煤锅炉,由于其燃烧方式、煤种特性、锅炉容量以及其他具体条件的不同,在选用不同的低NOX燃烧技术时,必须根据具体的条件进行技术经济比较,使所选用的低NOX燃烧和锅炉的具体设计和运行条件相适应。不仅要考虑锅炉降低NOX的效果,而且还要考虑在采用低NOX燃烧技术以后,对火焰的稳定性、燃烧效率、过热蒸汽温度的控制、受热面的结渣和腐蚀等可能带来的影响。对不同低NOX燃烧技术可根据实际情况家和使用,以降低NOX的排放量。同时,根据自己电厂的特点选择适当的烟气脱氮技术,满足环保需求

参考文献: 曾汉才.燃烧与污染[M}.武汉:华中理工人学出版社,1992 2 方立军.高正阳.殷立宝等.无烟煤与贫煤的混煤NOx排放特性试验研究.2001, 32(9): 11~14 3 曾汉才.大型锅炉高效低NOx燃烧技术的研究[J].锅炉制造,2001, 3(I):1~11 4 Spliethoff H.et, al.Low-NOx formation for pulverized coal a comparison of air staging and reburning, Inst.Energy’s Int.Conf.Combust.Emiss.Control Proc.Inst.Energy Conf.2 nd, 61~70, 1995 Leithner R, Lendt B, Miilen H.Reduction of the Emission in Coal-Fired Boilers, Coal Combustion.Science and Technology of Industrial and Utility Application.New York: Hemisphere Publishing Corporation,1998 6 高晋生,沈本贤,煤燃烧中NOx的来源和抑制其生成的有效措施,煤炭转化, 1994, 17(3)53-57 7 毛健雄,毛健全,赵树民。煤的清洁燃烧。北京:科学出版社,1998 8 吴生来,郝振亚.德国低NOx煤粉燃烧器.热力发电,1997,(5): 51-56 9 果然,石艳君。低NOx燃烧技术综述。锅炉制造,2003.28(3)21

第五篇:泾川县职称论文发表网-厌氧氨氧化生物脱氮工艺污水处理厂论文选题题目

云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

泾川县职称论文发表网-厌氧氨氧化生物脱氮工艺|污水处理厂论文选题题目

泾川县职称论文发表网-以下是厌氧氨氧化生物脱氮工艺|污水处理厂职称论文发表选题参考题目,均采用云论文发表选题题目软件,经过大数据搜索对比精心整理而成,各职称论文发表题目均为近年来所发表论文题目,可供厌氧氨氧化生物脱氮工艺|污水处理厂职称论文发表选题参考题目,也可以作为厌氧氨氧化生物脱氮工艺|污水处理厂毕业论文撰写选题参考。

更多论文选题,论文发表题目可登陆“云发表”网站自主选择!

关键词:城镇规划设计公司,建筑高工论文发表,环境规划论文

1……AAO 污水处理工艺中厌氧氨氧化效能及微生物交互作用 2……分子生物技术在厌氧氨氧化工艺研究中的应用 3……厌氧氨氧化结构体、形态与功能 4……厌氧氨氧化强化技术的研究进展

5……彭永臻团队首次实现短程反硝化 有望推动厌氧氨氧化的应用和发展 6……厌氧氨氧化反应影响因素研究进展

7……铝盐化学除磷对SBR工艺生物脱氮除磷的影响

1/6 云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

8……ABR工艺ANAMMOX耦合短程硝化协同脱氮处理城市污水 9……一段式厌氧氨氧化工艺亚硝酸盐氧化菌抑制方法研究进展 10……厌氧氨氧化工艺处理含海水污水的亚硝态氮抑制及反应动力学 11……厌氧氨氧化功能微生物PCR-DGGE分析方法优化 12……生活污水SNAD颗粒污泥快速启动及脱氮性能研究 13……磷酸盐对高基质厌氧氨氧化反应器脱氮性能的影响 14……晚期垃圾渗滤液厌氧氨氧化脱氮性能及其污泥特性 15……城市污水A~2/O移动床生物膜工艺菌群结构分析 16……有机碳源对SNAD工艺脱氮性能及微生物种群结构的影响

17……缺氧/好氧移动床生物膜反应器短程脱氮工艺深度处理煤化工废水性能 18……中常温变化对PN-ANAMMOX联合工艺脱氮效果的影响 19……UASB 反应器中厌氧氨氧化菌脱氮效果及运行条件

20……伊乐藻-固定化脱氮微生物技术对入贡湖河道脱氮机制的影响 21……镉离子对厌氧氨氧化脱氮性能的影响

22……功能微生物强化生物流化床工艺处理工业园区废水的研究 23……温度降低对厌氧氨氧化脱氮效能及污泥胞外聚合物的影响 24……温度对厌氧氨氧化与反硝化耦合脱氮除碳的影响 25……高效厌氧氨氧化颗粒污泥脱氮特征及EPS分层特性 26……气升式生物反应器用于废水脱氮的组合工艺研究 27……污水厂提标改造中A2/O工艺研究与应用趋势 28……序批式厌氧反应器厌氧氨氧化渗滤液脱氮试验研究 29……厌氧氨氧化反应器的启动及其脱氮性能研究

2/6 云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

30……厌氧氨氧化颗粒污泥的培养及影响因素

31……低浓度氨氮废水单级自养脱氮EGSB反应器的快速启动 32……微生物燃料电池在污水生物脱氮中的研究进展 33……HABR反应器硫酸盐型厌氧氨氧化启动特性研究

34……主成分分析结合BP神经网络对短程生物脱氮中氮的近红外光谱研究 35……A2N2系统反硝化除磷性能的优化及稳定运行 36……PLA/木薯厌氧渣复合材料的制备工艺* 37……厌氧消化过程稳定性与微生物群落的相关性 38……改性凹凸棒土对废水脱氮除磷研究

39……基于结构和工艺流程革新的AO工艺提标改造简

40……5种水生植物的脱氮除磷效果及其对水体胞外酶活的影响简 41……污泥转移SBR工艺污泥膨胀及恢复过程中EPS的动态变化简 42……金属改性树脂吸附脱氮工艺及动力学研究 43……SBR处理渗滤液深度脱氮的影响因素研究

44……上流式厌氧污泥床反应器中厌氧氨氧化脱氮性能的研究 45……部分亚硝化-厌氧氨氧化工艺联合形式、应用及脱氮效能评析 46……“厌氧氨氧化在污水处理中的研究与应用”专题 序言 47……城镇污水处理技术升级的挑战与机遇

48……新加坡最大回用水处理厂污水短程硝化厌氧氨氧化脱氮工艺 49……盐度对厌氧氨氧化(Anammox)生物脱氮效率的影响研究 50……同步半硝化-厌氧氨氧化颗粒污泥工艺在低氨氮污水脱氮的应用 51……厌氧氨氧化工艺的应用进展

3/6 云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

52……电絮凝-半短程硝化-厌氧氨氧化组合工艺处理裂化催化剂废水 53……原污泥直接启动厌氧氨氧化装置试验研究

54……降温过程对ANAMMOX工艺城市污水处理系统中微生物群落的影响 55……MBR-SNAD工艺处理生活污水效能及微生物特征 56……一体化生物脱氮技术研究进展

57……基于ANAMMOX处理低C/N废水高效脱氮联合工艺研究进展 58……一种新型污水处理厂升级改造工艺的研究 59……两种典型滤料厌氧氨氧化效果与工艺运行优化 60……一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动 61……高氨氮废水的前置厌氧氨氧化脱氮研究 62……碱性载体对负载型CoO催化剂催化性能的影响

63……S2-/NO3--N对硫自养反硝化与厌氧氨氧化耦合脱氮除硫启动的影响 64……A~2/O工艺中污泥基团内生成N_2O的微生态特性 65……高氨氮对具有回流的PN-ANAMMOX串联工艺的脱氮影响 66……厌氧氨氧化与反硝化协同脱氮处理城市污水 67……A~2O与V型滤池组合工艺强化脱氮除磷性能分析 68……日本污水脱氮除磷深度处理工艺分析 69……进水方式对厌氧氨氧化反应器脱氮效能的影响

70……硫自养反硝化与厌氧氨氧化耦合工艺中微生物群落结构和多样性研究 71……pH对厌氧氨氧化反应脱氮效能的影响 72……碱度和pH值对CANON工艺脱氮效果的影响 73……活性污泥法单级自养脱氮工艺的启动及污泥特性

4/6 云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

74……基于SBBR的单级自养脱氮快速启动 75……污染河道水质强化脱氮生化工艺研究

76……A/O交替运行钢渣基复合滤料生物滤池处理模拟生活污水脱氮除磷特性 77……厌氧氨氧化污水处理工艺及其实际应用研究进展 78……污水处理系统中厌氧氨氧化菌分布及影响因素 79……厌氧氨氧化脱氮工艺研究进展 80……厌氧氨氧化工艺的应用现状和问题

81……半短程亚硝化与厌氧氨氧化联合脱氮工艺微生物特征研究进展 82……厌氧/缺氧/好氧生物接触氧化处理低碳氮比污水的物料平衡 83……厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺 84……厌氧氨氧化技术应用研究进展

85……厌氧氨氧化(Anammox)工艺的强化方法研究进展

86……部分亚硝化-厌氧氨氧化联合工艺处理高氨氮废水研究进展 87……ANITAMox自养脱氮MBBR反应器的启动及运行 88……制革废水的厌氧氨氧化 ABR 脱氮工艺研究 89……一体化厌氧氨氧化工艺处理垃圾渗滤液的性能研究 90……厌氧氨氧化菌微生物特性研究进展 91……厌氧氨氧化菌细胞的超微结构及功能

92……常温下UASB/生物膜厌氧氨氧化反应器脱氮试验 93……厌氧氨氧化耦合脱氮系统中反硝化细菌研究

94……MBR-CANON工艺处理生活污水的快速启动及群落变化 95……基于竖流式一体化反应器实现自养生物脱氮研究

5/6 云发表,专业论文发表网站!http://www.xiexiebang.com/

面向作者直接收稿,省去中间环节,价格更低,发表更快,收录更快!

96……清潭污水处理厂-级A提标改造工程脱氮除磷特性分析 97……长期保藏对厌氧氨氧化污泥脱氮性能的影响 98……短程硝化/厌氧氨氧化一步法自养脱氮中试研究 99……污水生物处理实际工艺中氧化亚氮的释放:现状与挑战 100……高氮负荷冲击后海洋厌氧氨氧化生物反应器的重启

6/6

下载新型生物脱氮工艺的简介word格式文档
下载新型生物脱氮工艺的简介.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大型城市污水处理厂除氮脱磷工艺之循环式活性污泥法

    大型城市污水处理厂除氮脱磷工艺之循环式活性污泥法(C-TECH) 摘 要:循环式活性污泥法(Cyclic Activated Sludge Technology,简称C-TECH工艺)是间隙式活性污泥法(SBR法)的一种......

    催化氧化脱硫醇工艺注意事项

    催化氧化脱硫醇工艺注意事项1.工艺简述催化氧化脱硫醇(脱臭)是将液化石油气、催化汽油或航空煤油用磺化酞菁钴(或聚酞菁钴)碱液为催化剂,用抽提和氧化方法将其中的硫醇转化为无臭......

    养殖水体氨氮及生物控制措施[范文]

    养殖水体氨氮及生物控制措施 1 养殖水体氨氮的积累及毒害 1.1 水体的氮素循环 构成氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。......

    UV喷涂及UV脱漆简介

    UV喷涂及UV脱漆简介 UV漆 是Ultraviolet Curing Paint 的英文缩写,即紫外光固化油漆,也称光引发涂料,光固化涂料。与PU、PE、NC等油漆以成膜物质命名方式不同,UV漆是以油漆的固......

    合成氨工艺简介

    合成氨工艺控制方案总结 一 合成氨工艺简介 中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、......

    工艺收藏品简介

    工艺收藏品简介 琉璃 琉璃的主要成分为SiO2(即 二氧化硅)、氧化铝和矽(xi 硅元素的旧称,例如"矽肺病"就是现在水泥厂因为吸入肺里水泥(硅的化合物)而导致的职业病.)加助溶剂氧化铅......

    工艺简介及其说明

    工艺简介及其说明: 1. 本工艺主目的: 铜件酸洗钝化及喷漆前预处理. 2. 除油粉与水配方为1:50,加热至60-80度,再经2道清水清洗 3. 酸洗初始配方为:硫酸:硝酸:水:盐酸=65:25:15:2ml/l 补始......

    主要炼油工艺简介

    主要炼油工艺简介 常压蒸馏和减压蒸馏 常压蒸馏和减压蒸馏习惯上合称常减压蒸馏,常减压蒸馏基本属物理过程。原料油在蒸馏塔里按蒸发能力分成沸点范围不同的油品(称为馏分),这些......