陶瓷垫片的焊接方法大全【干货】(优秀范文五篇)

时间:2019-05-13 09:45:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《陶瓷垫片的焊接方法大全【干货】》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《陶瓷垫片的焊接方法大全【干货】》。

第一篇:陶瓷垫片的焊接方法大全【干货】

陶瓷垫片的焊接方法

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.Ti(C,N)基金属陶瓷是一种颗粒型复合材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。Ti(C,N)基金属陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WC Co硬质合金,而其密度却只有硬质合金的1/2。

因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。

常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指

以期推动金属陶瓷与金属焊接技术的研究,进而推广这种先进工具材料在工业领域的应用。熔化焊

熔化焊是应用最广泛的焊接方法,该方法利用一定的热源,使连接部位局部熔化成液体,然后再冷却结晶成一体。焊接热源有电弧、激光束和电子束等。目前Ti(C,N)基金属陶瓷熔化焊主要存在以下两个问题有待解决:一是随着熔化温度的升高,流动性降低,有可能促进基体和增强相之间化学反应(界面反应)的发生,降低了焊接接头的强度;另一问题是缺乏专门研制的金属陶瓷熔化焊填充材料。

1)电弧焊

电弧焊是熔化焊中目前应用最广泛的一种焊接方法。其优点是应用灵活、方便、适用性强,而且设备简单。但该方法对陶瓷与金属进行焊接时极易引起基体和增强相之间的化学反应(界面反应)。由于Ti(C,N)基金属陶瓷具有导电性,可以直接焊接,对Ti(C,N)基金属陶瓷与金属电弧焊的试验研究表明是可行的,但需要解决诸如界面反应、焊接缺陷(裂纹等)和焊接接头强度低等问题。

2)激光焊

激光焊是特殊及难焊材料焊接的一种重要焊接方法。由于激光束的能量密度大,因此激光焊具有熔深大、熔宽小、焊接热影响区小、降低焊件焊接后的残余应力和变形小的特点,能够制造高温下稳定的连接接头,可以对产品的焊接质量进行精确控制。激光焊接技术已经成功应用于真空中烧结的粉末冶金材料。据报道,Mittweida激光应用中心开发了一种双激光束焊接方法。它用两束激光工作,一束激光承担工件的预热,另一束激光用于焊接。用这种双激光束焊接方法可以实现各种几何体的连接,并且不会降低原材料的强度和高温性能,焊接时间仅需数分钟。该方法可有效防止焊接过程中热影响区裂纹的产生,适用于Ti(C,N)基金属陶瓷与金属的焊接,但对工装夹具、配合精度及焊前准备工作要求较高,设备投资昂贵,运行成本较高,需要进一步提高其工艺重复性和可靠性。

3)电子束焊

电子束焊是一种利用高能密度的电子束轰击焊件使其局部加热和熔化而焊接起来的方法。真空电子束焊是金属陶瓷与金属焊接的有效焊接方法,它具有许多优点,由于是在真空条件下,能防止空气中的氧、氮等的污染;电子束经聚焦能形成很细小的直径,可小到Φ0.1~1.0mm的范围,其功率密度可提高到107~109W/cm2。因此电子束焊具有加热面积小、焊缝熔宽小、熔深大、焊接热影响区小等优点。但这种方法的缺点是设备复杂,对焊接工艺要求较严,生产成本较高。目前针对Ti(C,N)基金属陶瓷与金属的电子束焊接技术还处于实验阶段。钎焊

钎焊是把材料加热到适当的温度,同时应用钎料而使材料产生结合的一种焊接方法。钎焊方法通常按热源或加热方法来分类。目前具有工业应用价值的钎焊方法有:(1)火焰钎焊;(2)炉中钎焊;(3)感应钎焊;(4)电阻钎焊;(5)浸渍钎焊;(6)红外线钎焊。钎焊是Ti(C,N)基金属陶瓷与金属连接的一种主要焊接方法,钎焊接头的质量主要取决于选用合适的钎料和钎焊工艺。李先芬等对Ti(C,N)基金属陶瓷与45号钢采用铜基、银基钎料分别进行了火焰钎焊试验和在氩气保护炉中钎焊试验。火焰钎焊条件下,以H62为钎料的接头的平均剪切强度为37MPa,以BAg10CuZn为钎料的接头的剪切强度达114MPa,以BCuZnMn为钎料的接头的平均剪切强度49MPa;在氩气保护炉焊条件下,以H62为钎料的接头的平均剪切强度为37MPa,以Ag72Cu28为钎料的接头的平均剪切强度为51MPa。通过观察和分析钎焊接头的结合情况及剪切试验,表明Ti(C,N)基金属陶瓷具有较好的钎焊性。但由于接头界面处金属陶瓷中存在残余应力,导致剪切试验时均断在金属陶瓷上,且钎焊接头的剪切强度不高。张丽霞等采用AgCuZn钎料实现了TiC基金属陶瓷与铸铁的钎焊连接。近年来还利用非晶技术研制成功了新的含钛合金系,如Cu Ti、Ni Ti合金,可以直接用来钎焊陶瓷与金属,其接头的工作温度比用银铜钎料钎焊的要高得多。目前,金属陶瓷钎焊需要解决如何降低或消除界面处金属陶瓷中的残余应力和提高接头强度的问题。压焊

压焊时基体金属通常并不熔化,焊接温度低于金属的熔点,有的也加热至熔化状态,仍以固相结合而形成接头,所以可以减少高温对母材的有害影响,提高金属陶瓷与金属的焊接质量。

1)扩散焊

扩散焊是压焊的一种,它是指在相互接触的表面,在高温压力的作用下,被连接表面相互靠近,局部发生塑性变形,经一定时间后结合层原子间相互扩散而形成整体的可靠连接过程。扩散焊包括没有中间层的扩散焊和有中间层的扩散焊,有中间层的扩散焊是普遍采用的方法。使用中间层合金可以降低焊接温度和压力,降低焊接接头中的总应力水平,从而改善接头的强度性能。另外,为降低接头应力,除采用多层中间层外,还可使用低模数的补偿中间层,这种中间层是由纤维金属所组成,实际上是一块烧结的纤维金属垫片,孔隙度最高可达90%,可有效降低金属与陶瓷焊接时产生的应力。扩散焊的主要优点是连接强度高,尺寸容易控制,适合于连接异种材料。关德慧等对金属陶瓷刀刃与40Cr刀体的高温真空扩散焊接实验表明,金属陶瓷与40Cr焊接后,两种材料焊合相当好,再对40Cr进行调质处理,界面具有相当高的强度,焊接界面的抗拉强度达650MPa,剪切强度达到550MPa。扩散焊主要的不足是扩散温度高、时间长且在真空下连接、设备昂贵、成本高。近年来不断开发出了一些新的扩散焊接方法,如高压电场下的扩散焊,该方法借助于高压电场(1000V以上)及温度的共同作用,使陶瓷内电介质电离,在与金属邻近的陶瓷材料内形成了一薄层充满负离子的极化区。此外,由于材料表面的显微不平度,陶瓷与金属间只有个别小点相接触,大部分地区形成微米级的间隙。集结在微小间隙两侧的离子使这些地区的电场急剧升高,此外加电场可增加3~4个数量级。由于异性电荷相吸,使被连接的两种材料相邻界面达到紧密接触(其间距小于原子间距),随后借助于扩散作用,使金属与陶瓷得以连接。

2)摩擦焊

摩擦焊是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热,使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。摩擦焊广泛用于同类和异种金属的连接,对于不同类材料陶瓷与金属连接的摩擦焊尚属起步阶段。

3)超声波焊

超声波焊是通过超声波振动和加压实现常温下金属与陶瓷接合的一种有效方法。用此方法焊接铝与各类陶瓷均获得成功,而且接合时间仅需几秒钟。由于此方法的接合能是利用超声波振动,结合面不需要进行表面处理,设备较简单,缩短了焊接时间,其成本比钎焊法大幅度降低。该方法应用于金属陶瓷与金属的焊接还有待于进一步研究。中性原子束照射法

中性原子束照射法利用中性原子束照射金属与陶瓷的接合面,使接合面的原子“活化”。物质清洁的表面具有极佳的活性,然而物质表面往往沾有污物或覆盖着一层极薄的氧化膜,使其活性降低。该方法主要是对接合面照射氩等惰性气体的1000~1800eV的低能原子束,从表面除去20nm左右的薄层,使表面活化,然后加压,利用表面优异的反应度进行常温状态下接合,此方法可用于氮化硅等高强度陶瓷与金属的接合。自蔓延高温合成焊接法

自蔓延高温合成(Self propagatingHigh temperatureSyn thesis,缩写SHS)技术也称为燃烧合成(CombustionSynthe sis,缩写CS)技术,是由制造难熔化合物(碳化物、氮化物和硅化物)的方法发展而来的。在这种方法中,首先在陶瓷与金属之间放置能够燃烧并放出大量生成热的固体粉末,然后用电弧或辐射将粉末局部点燃而开始反应,并由反应所放出的热量自发地推动反应继续向前发展,最终由反应所生成的产物将陶瓷与金属牢固地连接在一起。该方法的显著特点是能耗低,生产效率高,对母材的热影响作用小,通过设计成分梯度变化的焊缝来连接异种材料,可以克服由于热膨胀系数差异而造成的焊接残余应力。但燃烧时可能产生气相反应和有害杂质的侵入,从而使接头产生气孔和接头强度降低。因此,连接最好在保护气氛中进行,并对陶瓷与金属的两端加压。日本的Miyamo to等首次利用SHS焊接技术,研究了金属Mo与TiB2和TiC陶瓷的焊接,试验利用Ti+B或Ti+C粉末作为反应原料,预压成坯后加在两个Mo片之间,利用石墨套通电发热来引发反应,成功地获得了界面结合完整的焊接接头。何代华等采用燃烧合成技术成功地制取了TiB2陶瓷/金属Fe试样,且焊接界面结合良好,中间焊料层Fe的质量百分含量较高时,界面结合优于Fe质量百分含量低的界面结合情况。孙德超等以FGM焊料(功能梯度材料)成功实现了SiC陶瓷与GH 4146合金的SHS焊接。目前SHS机理研究尚未成熟,设备开发和应用投资颇大,所以SHS焊接尚未工程化。液相过渡焊接法

液相过渡焊接(TransientLiquidPhase,缩写TLP)是介于溶焊和压焊之间的焊接方法。该技术综合了钎焊技术和扩散连接技术的优点,可制备服役温度不低于连接温度的高温接头。TLP连接技术的工艺TLP焊接与钎焊操作步骤相似,均需在待连接母材表面间放入熔

低于母材的第三种材料(在TLP中常叫中间层 Interlayer,在钎焊中常叫钎料 Fillermetal);然后加热、保温。但两者扩散的充分程度、凝固的方式和最终所得接头的成分、组织的不连续程度都不同。与钎焊相比TLP焊接具有如下优点:①TLP接头在等温凝固完成后具有明显不同于母材与填充金属的成分,并在一定情况下分辨不出最终显微组织中的填充金属;②TLP接头比一般硬钎焊接头的强度高;③TLP接头的重熔温度高于钎焊接头而耐高温性能好。上述优点决定了它可用于先进材料的连接,在金属陶瓷与金属焊接技术中有着广阔的应用前景。段辉平等采用Ti Cu和Ti Ni复合焊料,利用TLP连接技术成功地制备了无焊接缺陷的TiAl/IN718合金接头。

综上所述,尽管适合于Ti(C,N)基金属陶瓷与金属焊接的方法有多种,但每种方法都有其自身的优缺点和局限性,如采用扩散焊焊接的接头界面受限且易在接头形成有害复合碳化物(η相);钎焊存在结合强度和使用温度较低等问题;熔焊易产生脆性开裂且缺乏合适的焊接材料。有些方法还处于实验研究阶段,一时还难以实用化。在选择焊接方法时,要从实际出发,即从金属陶瓷与金属复合构件的使用要求出发,确实保证连接质量及其稳定性,并力求降低生产成本。综合考虑焊接及工艺等方面的因素,活性钎焊、扩散焊、部分瞬间液相连接、SHS焊接技术最有希望成为金属陶瓷与金属焊接工艺中重点开发的研究项目。金属陶瓷与金属的焊接是一个全新的领域,内容新颖而又异常丰富,今后随着该种材料的广泛应用和应用范围的不断扩大,其焊接技术方法和工艺的研究将成为国内外普遍关注而亟待解决的研究课题。

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!

更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

第二篇:新型陶瓷成型方法(范文)

新型陶瓷成型方法——凝胶注模成型

宋任娇 08120188

一.前言

随着陶瓷工业的发展及其在现代工业领域中应用的不断扩大,对陶瓷成型方法的要求也越来越高,上述传统陶瓷成型工艺由于存在不同的缺点,已难以满足工艺要求,为满足航天、汽车、电子、国防等行业的市场需求[1],人们要求采用高性能陶瓷的成型方法所成型的坯体应当具有高度均匀性、高密度、高可靠性以及高强度,并在形状的复杂程度上要求更高。因此,陶瓷原位凝固成型技术便应运而生了。

原位凝固胶态成型[3,2]就是指颗粒在悬浮体中的位置不变,靠颗粒之间的作用力或悬浮体内部的一些载体性质的变化,使悬浮体从液态转变为固态。在从液态转变为固态的过程中,坯体没有收缩或收缩很小,介质的量没有改变。在这类成型方法中,首先要制备稳定悬浮的浆料,然后通过各种途径使颗粒之间产生一定的吸引力而相互聚集,形成一个密实的坯体,并保持一定的强度和形状,由此可制成高密度的素坯。原位凝固胶态成型与其它胶态成型工艺之间的区别主要在于凝固技术的不同,这将会导致对浆料性质要求的差异和整个工艺过程的差异。

国内外的陶瓷学者不断总结经验,将胶体化学和表面化学的理论引入到陶瓷浆料的成型技术中,并利用各种物理的辅助手段,在传统的注浆成型的基础之上发展起来了多种新型的胶态成型技术,如:离心注模成型[3]和压滤成型[4]等成型方法。在80年代末90年代初,凝胶注模成型首次使用较低含量的有机物使陶瓷浓悬浮体实现原位凝固,进而在90年代掀起了陶瓷原位凝固胶态成型研究的热潮。

目前,原位凝固胶态成型工艺主要包括:凝胶注模成型工艺(Gelcasting)、直接凝固注模成型(Direct Coagulation Casting)[5]、温度诱导絮凝工艺(TemperatureInduced Flocculation)[6]、胶态振动注模成型(Colloid VibrationCasting)[7]和快速凝固注射成型(Quickset Injection Molding)[8]。

二.凝胶注模成型原理及工艺

凝胶注模成型技术是传统的注浆工艺与有机化学高聚合理论的完美结合,它通过引入一种新的定型机制,发展了注浆工艺。其原理是通过制备低粘度(<1Pa·s)、高固相体积分数(>50vol%)的浓悬浮体,在其中掺入低浓度的有机单体、交联剂,在催化剂和引发剂的作用下,使浆料中的有机单体与交联剂交联聚合成三维网状结构,将大部分水封于网络中而使浆料立即原位凝固,从而使陶瓷坯体原位定型[20]。然后进行脱模、干燥、去除有机物、烧结,即可获得所需陶瓷零件。其原理见图1.1。

该工艺与其它原位凝固胶态成型工艺的相同点是需要制备低粘度、高固相体积分数的浓悬浮体,不同点在于浓悬浮体的凝固技术不同,这将会导致坯体性能的差异[21-24]。

凝胶注模成型分为两类:一种是水溶性凝胶注模成型(aqueous Gelcasting),另一种是非水溶性凝胶注模成型(Non aqueous Gelcasting)[25]。前者适用于大多数陶瓷成型场合,后者主要适用于那些与水发生反应的系统的成型。该技术首先发明的是有机溶剂的非水凝胶注模成型,随后作为一种改进,又发明了用于水溶剂的水凝胶注模成型,并广泛应用于各种陶瓷中,非水溶性凝胶注模成型采用有机溶剂,要求溶剂有较低的蒸汽压。水溶性凝胶注模成型更进一步,有许多优点[26,27]:(1)成型过程与传统方法类似,简便易行;(2)干燥过程更加容易;(3)降低了预混液的粘度;(4)对环境污染小。因此,该方法被广泛应用。

下面以常用的丙烯酰胺-亚甲基双丙烯酰胺凝胶体系为例,介绍有机单体聚合的原位固化机理。在该系统中,一般选用丙烯酰胺(AM)为单体,双官能团单体亚甲基丙烯酰胺(MBAM)为交联剂,过硫酸铵(APS)为引发剂,根据高分子化学相关理论,单体自由基会经过以下反应:

1)链引发反应

这是形成单体自由基的过程,首先是引发剂 APS 分解,形成初级自由基,这是一个吸热反应,反应活化能高,反应速率小;然后是初级自由基引发单体成为单体自由基,见反应式(2),下列各式均用 M·表示初级自由基。

式(3)初级自由基引发 MBAM 形成自由基

初级自由基引发单体形成单体自由基的过程是放热反应,反应活化能低,所以生成的初级自由基很快生成单体自由基,但是引发反应阶段存在许多副反应,这些副反应会消耗引发剂,使引发剂效率低。初级自由基还会很快和一些阻聚性物质作用,失去反应活性,氧就是一种效果明显的阻聚物,氧和自由基(包括初级自由基、单体自由基、链自由基,用 Mx·表示)反应,生成比较不活泼的过氧自由基:

过氧自由基本身与其它自由基结合终止,不能再引发凝胶反应。制备凝胶注模成型坯体时,如果浆料是暴露在空气中聚合,成型后坯体与空气接触处未固化,坯体干燥后固化层会起皮、剥离。所以凝胶注模成型时最好能在充 N2的环境下进行。但在本研究中由于实验设备的原因,坯体成型都是在空气环境下进行,成型后的坯体表面会产生一层薄薄的没有凝胶的固化层,轻轻扫刮就可以将其去掉。

链引发反应是控制整个聚合反应的关键,也是影响聚合体系分子量的主要因素。

2)链增长反应

链增长反应即链引发所产生的自由基与单体分子迅速重复加成,形成链自由基的过程,式(5)表示式(2)生成的自由基与单体 AM 发生的反应,式(6)表示式(3)生成的自由基与单体 AM 的反应,链增长反应的特点是反应活化能低,反应放热量大,可达 84kJ/mol[28]。凝胶时间就是根据这个阶段放出的热量引起体系温度的升高来测定。

3)链终止反应

两个链自由基的独电子可以相互结合终止,形成大分子:

三.凝胶注模成型特点

凝胶注模成型工艺的优点为[29-31]:

(1)可适用于各种陶瓷材料,坯体中有机物含量较少,其质量分数一般为3%~5%,但强度较高,一般在10MPa以上。可对坯体进行机加工(车、磨、刨、铣、钻孔、锯等),从而取消或减少烧结后的加工,是一种净尺寸成型技术。由于坯体的组分和密度均匀,因而在干燥和烧结过程中不会变形,烧结体可保持成型时的形状和尺寸比例,成型各种复杂形状和尺寸的陶瓷零件。

(2)由于定型过程和注模操作是完全分离的,定型是靠浆料中有机单体原位聚合形成交链网状结构的凝胶体来实现的,所以成型坯体组分均匀、密度均匀、缺陷少。与传统干法成型技术相比,它降低了大气孔的数量,并改善气孔的分布,提高坯体的均匀性,从而有利于烧结致密化和强度的提高。

(3)浆料的凝固定型时间较短且可控。根据聚合温度和有机物的加入量不同,凝固定型时间一般可控制在5~60min。

(4)所用陶瓷浆料为高固相(不小于50vol%)、低粘度(小于1Pa·s)。浆料的固含量是影响成型坯体的密度、强度及均匀性的因素,粘度的大小关系到所成坯体形状的好坏及浆料的排气效果。这也是应用该技术的难点和能否成功的关键。

因此该技术明显优于流延法和注浆法等传统的湿法成型技术。目前该工艺的研究受到国内外研究部门和工业界的极大重视,具有广泛的应用前景,由于粉末冶金材料的成型工艺与陶瓷材料的相似性,也可以把此工艺应用于粉末冶金工艺中。

而与陶瓷其它湿法成型工艺相比较,凝胶注模也具有明显的优势。

四.凝胶注模成型工艺的重点和难点(1)高固含量、低粘度浆料的制备。影响固含量的主要因素是粉料在介质中的胶体特性如Zeta电位、粘度,因此可通过选用合适的分散剂,调节pH获得理想的浆料[32,33]。(2)陶瓷浆料的可控固化。在应用凝胶注模成型工艺的过程中,陶瓷浆料的可控固化是一个棘手的问题,这使得人们不得不进行陶瓷浆料固化特性的研究。人们通过对浆料胶凝点的测试来研究其固化特性。对于胶凝点,塑料工业已有了成熟的定义和测试方法标准(如美国的SPI标准和日本的JIS标准)美国橡树岭实验室的Young A C等人研究了预混液温度随凝胶反应发生时间的变化,定义了反应的诱导期,并且指出了凝胶开始发生的时间和温度——胶凝点[34]。国内科研人员也定义了陶瓷浆料的凝胶点,并且设计了测定凝胶点的试验装置,系统研究了影响胶凝点的各种因素。

(3)排胶对坯体强度及其显微结构的影响。研究发现,在排胶过程中,随着排胶温度的升高,坯体强度及其显微结构发生阶段性的变化。低于200℃时,坯体强度稍有下降;350~500℃时,由于坯体内部高分子网络逐渐软化、分解,其强度显著下降;高于500℃时,由于坯体内部局部烧结,强度则逐渐回升[35]。

五.凝胶注模成型工艺的应用情况分析

水溶性凝胶注模与传统的注浆工艺在制浆上类似,且使用的分散剂一样。该成型方法对设备也没有特殊要求,使用该工艺已成功制备出氧化铝、熔融石英、氧化锆、碳化硅、氮化硅、高铝矾土以及它们的复合材料,以及镍基高温合金、BaFe12O19磁性材料、不锈钢、钨、铝合金、金红石电容器等[36]。该工艺制备的部件可作为汽车零件、铸造成型用模壳和模芯、导弹头整流罩和光学装置等[37,38]。导弹整流罩过去多使用耐热微晶玻璃,虽然Si6-zAlzOzN8-z很早就被认为是耐热微晶玻璃的替代产品,但该类材料在很长一段时间内没有合适的工艺把它商品化,而采用凝胶注模成型工艺可以将其制备成近净尺寸的价格适中的导弹整流罩[39],从而使Si6-zAlzOzN8-z材料在美国“麻雀”和常规导弹上得到推广应用。凝胶注模成型工艺的优势为生产形状复杂的部件,如轴直径为50mm,叶片尖端厚度仅为1.5mm的涡轮转子[19]。该转子坯体平均密度为理论密度的53.7%,坯体各部分密度偏差仅在0.2%以内。凝胶注模成型工艺在制备多孔陶瓷方面也显示出良好的前景。据文献[40,41]报道,采用该工艺制备的刚玉质多孔陶瓷于1550℃×5h烧结后的收缩率低于6%;气孔率为40~50%;平均气孔尺寸为3.65μm。由于凝胶注模成型所得到的坯体强度高,故可用金属或便宜的塑料材料作模具来制作大型形状简单的部件,如制造一个直径为60cm、厚度为2.5cm的圆环形部件。如上述部件采用机压,则需要投入较大的模具费。尽管凝胶注模成型是一种近尺寸的成型技术,但生坯具有可加工强度仍然重要,如制备带螺纹且多孔的复杂部件,仅靠模具设计很难达到设计要求,即使能够达到要求,制造成本也会非常昂贵。由于凝胶注模成型工艺的实用性和先进性,世界各国对它均显示出浓厚的研究兴趣。主要的研究方向是研制新型高效无毒的凝胶体系[42]、开发凝胶注模新的应用领域[43-46]、发展新型无缺陷凝胶注模工艺等[47-49]。利用凝胶注模工艺可成型的材料包括单相体系材料和复相体系材料,所研究的粉体尺寸从微米、亚微米到纳米,成型坯体的形状可以从简单的块体到复杂形状的部件,如薄壁和厚壁的管子、密封环、活塞、转子等。由于其工艺先进,我国不少学者对它十分重视,相继对该工艺进行了深入研究[50-52]。

六.凝胶注模成型工艺研究进展

凝胶注模成型技术是20世纪90年代初一种全新的陶瓷材料湿法成型技术。该工艺与传统的湿法成型工艺相比,具有设备简单、成型坯体组分均匀、密度均匀、强度高、缺陷少、不需脱脂、不易变形、易成型复杂形状零件及使用性很强等突出优点,受到国内外学术界和工业界的极大重视。凝胶注模成型技术已经被称为成型技术史上的一次革命[19]。而且由于凝胶注模成型工艺对于原料的塑性没有要求,可望成为解决瘠性原料成型的新途径。参考文献:

[1] 陈学文,刘维良,陈建华.高性能陶瓷原位凝固成型技术的研究进展.陶瓷学报,2005,26(4):290-291 [2] Binner J G P, McDermott A M, Yin Y, et al.In situ coagulation moulding: a new route for high quality, net-shape ceramics.Ceramics International, 2006,32(1):29–35 [3] Husman W, Graule T, Gaucklerl L J.Centrifugal slip casting of zirconia(TZP).European Ceramic Society, 1994,13(1):33-35 [4] Moreno R, Salomoni A, Stamenkovic I.Influence of Slip Rheology on Pressure casting of Alumina.European Ceramic Society, 1997, 17(2-3):327-331 [5] Graule T J,Baader F H.Shaping of ceramic green compacts direct from suspension by enzyme catalyzed reaction Ceram Forum Int.Bet DKG,1994,71(6):317-323 [6] Bergstrom L.Method for Forming Ceramic Powders by Temperature Induced Flocculation.US Patent 5340532, 1994-8-23 [7] Lange F.F,Valamakanni B V.Method for Preparation of Dense Ceramic Products.US Patent 5188780,1993-2-23 [8] Xie Z P,Yang J L,Huang Y.The Efect of Silane Additionon Fluidity and Green Strength for Ceramic Injection Moulding.Mater Sci Lett, 1997, 16:1286-1288

第三篇:焊接工艺方法总结

焊接工艺方法总结

 焊接电源极性类

1.微束等离子弧焊应采用具有垂直陡降外特性的电源。

2.焊机型号ZXG-200中的Z表示弧焊整流器,X表示下降特性,G表示硅整流器,200表示额定焊接电流。

3.手弧焊、埋弧焊、钨极氩弧焊应该采用具有陡降形状的电源外特性。

4.手工氩弧焊焊接铝及铝合金时时常采用交流电源。

 焊接检验

1.宏观断口分析,截取试样的加工方法有:铣、刨、锯。不能用气割。

2.钛与钛合金焊接产生的气孔主要是:氢气孔。

3.当气孔尺寸在0.5mm以下时,可以不计点数。

4.角焊缝的计算高度为焊接缝内接角形的高。

5.拉伸试样的抗拉强度应等于或高于产品图样的定值,试样才算合格。

6.气密性检验时,往往是在焊缝外表面涂肥皂水进行。

7.根据试验的要求,冲击试验试样的缺口可开在焊缝、热影响区、熔合线上。

8.消氢处理是在焊后立即将焊件加热到250-350摄氏度范围内,保温2-6小时后空冷。

9.焊接的无损检验通常包括:射线探伤、磁粉检验、渗透检验、超声波探伤和涡流探伤。

10.检查气孔、夹渣等立体缺陷最好的方法是射线探伤。

 二氧化碳气体保护焊-CO2焊-二保焊

1.CO2气体保护焊最常用的焊丝是H08Mn2SiA。

2.CO2气体保护焊时焊丝伸出长度一般为焊丝直径的10倍,且不超过15mm。

3.CO2气体保护焊的生产率比手弧焊高2.5-4倍。

4.CO2气体保护焊加氧气的比例是20%-25%

5.CO2气体保护焊用的最多 的脱氧剂是硅、锰。

6.CO2气体保护焊焊接回路串联电感可以改善电弧燃烧不稳定,飞溅大的问题。

7.CO2气体保护焊用的二氧化碳气体纯度不得低于99.5%

8.CO2气体保护焊用的二氧化碳气体的含水量及含氮量不应超过0.1%

 各种材料的焊接工艺、手法及注意事项

1.为了减少珠光体耐热钢与低合金钢焊接冷裂纹;可采取:焊前严格控制氢的来源,焊前预热,焊后缓冷。有点说法是采用小线能量进行焊接是不正确的。

2.焊接不锈复合钢板应采用三种不同的焊条来焊同一条焊缝。

3.焊接奥氏体不锈钢和铝合金时,应特别注意不能采用小的焊接速度。

4.Q235-A钢与16Mn钢焊接时,应选用E50系列焊条。

5.使用酸性焊条焊接薄板时,为了防止烧穿,可采用直流反接法。

6.用焊条电弧焊焊接Q235钢时,可选用型号为E4303的焊条;埋弧焊时可选用低锰或无锰的焊丝配高锰高氟型焊剂;CO2气体保护焊时,可选用H08Mn2Si型焊丝。

7.焊接18MnMoNb钢材用的焊条是E7015-D2;焊接装配点固前应局部预热到150~200°C

8.焊接16Mn钢用E5015焊条。

9.氩弧焊焊接珠光体耐热钢不需预热。

10.氩气与氧气混合焊接不锈钢时,氧气含量为1%~2%

11.采用超低碳焊丝焊接奥氏体不锈钢的目的是防止产生晶间腐蚀。

12.防止焊缝出现白口的具体措施是降低冷却速度和增加石墨化元素。

 焊工重要知识点汇总

1.搭接接头主要用于非受压部件与受压壳体的连接。

2.B类接头的工作应力是A类接头工作应力的1/2倍。

3.同一种材料,当进行单面焊时,其弯曲合格角度要比双面焊小。

4.焊缝的计算高度为焊接缝内接角形的高。

5.拉伸试样的抗拉强度应等于或高于产品图样的定值,试样才算合格。

6.散热法不适用于焊接淬硬性高的材料。

7.TS202是一种专门供水下焊接一般结构钢用的焊条,它能在海水和淡水中焊接,药皮有防水涂层。对低合金结构钢焊缝金属的性能最有害的脆化元素是:S、P、O、N、H等,这些元素必须严格控制。

8.口角度越大,则熔合比越小。

9.电弧电压主要影响焊缝的熔宽。

10.焊接烟尘中的主要成分是:金属氧化物、氟化物、有害气体。

11.用碱性焊条焊接时,焊接区周围的气体是氧化碳CO2和CO。

12.开坡口的目的是为了保证焊透。

13.钢的含碳量大于0.6%时属于比较难焊的焊接材料

14.不锈钢产生晶间腐蚀的危险温度是450~850°C

 焊后处理

1.需要进行消除焊后残余应力的焊件,焊后应进行高温回火.2.焊件高温回火时产生的裂纹叫在热裂纹。

3.将钢加热到适当温度,保温一段时间,然后缓慢冷却的热处理工艺称为退火。

4.为了消除合金铸锭及铸件在结晶过程中形成的枝晶偏析,应采用扩散退火。

5.工件出现硬度偏高这种退火缺陷时,补救办法是:调整加热温度和冷却参数,重新进行一次退火。

6.退火后硬度偏高,多数是因为冷却过快。

7.对于过共析钢消除要消除严重的网状二次渗碳体,以利于球化退火,则必须进行正火。

8.中温回火的温度是350°C—500°C

9.中温回火的组织是回火屈式体。

10.淬火钢回火温度超过300°C时,硬度降低。

11.化学热处理的基本过程是:分解、吸收和扩散。

12.后热是焊后立即将焊件加热到250~350°C

13.对于厚壁容器,加热和冷却的速度应控制在50~150°C每小时

14.常用的普低钢焊后热处理的温度一般在600~650°C

15.珠光体耐热钢焊后热处理的方式是高温回火。

第四篇:古陶瓷鉴定方法

古陶瓷鉴定方法

经常听专家讲:“该器物器型、胎质、纹饰、工艺、款识……与某某朝完全一致,鉴定为某某朝真品”或“该器物青花发色艳丽、纹饰生动、流畅,但胎质、工艺等与某某朝有较大差异,故鉴定为现代赝品,古陶瓷鉴定方法。”听起来很是有理,但细一思量,又有不少疑问。疑问一,如果仿制科学进步到能仿制出与某某朝完全一致的东西怎么办呢?如今,人类都能在太空漫步,何况是重金诱-惑下的仿制呢?这并非没有可能。疑问二,如果某一器物是那一时代的另类,或者是特殊地方窑,与该朝标准器有较大区别怎么办?疑问三,极贵重的东西往往数量较少,甚至是孤品,而我们又没有其标准怎么办?这就是标型学的不足。

标型学是以纪年墓葬出土,或已有定论的器物为标准器,利用类比推理得出结论的一种鉴定方法。目前在文物鉴定中普遍使用此方法。鉴定程序是:当被鉴定物出现时,鉴定者马上在头脑中调动库存资料比对,根据比对结果作出判断。(参阅《中国考古学通论》)

首先,从理论上讲,标型学使用的类比推理、结论不具有必然性,即使被鉴定物与标准器特征完全吻合,也不能确定其真伪,这也是高仿品能混进大型知名拍卖会的原因。同时,即使两者在某些特征上不吻合,也不能必然否定其真假,只能说结论是或然的。其次,从当前实际看,标型学主要依赖于鉴定者经验,还停留在眼学阶段,不可避免地会受到鉴定者主观影响。除经验知识、品德以外,甚至健康原因、情绪等都会影响鉴定结果,所以各位专家意见不一就不足为怪了。再次,许多特定器物的标型难以确定。比如汝窑,事实上现存传承有序的汝窑器以及汝官窑窑址出土的汝器、瓷片,两者之间也不完全一致,古董鉴定《古陶瓷鉴定方法》。又比如争论极多的元青花,在鬼谷子下山大罐拍出2亿多后,人们更是议论纷纷,其主要原因就在于标型不一致。最后,标型要大量积累,并存入大脑中,这也不是一般人所能为的。

总的来说,标型学对鉴定常规器、官窑器是有一定作用的(标型比较统一),而对鉴定非标准器,特殊地方窑就有一定局限了。

为了克服标型学的缺陷,人们尝试用科学仪器测量鉴定法,如:热释光测定、碳14测定、荧光光谱分析等,仪器测量法完全避免了人的主观性,其结论是客观的,定量的。但是,又带来新的问题。首先,一些科学鉴定法仍需要大量标型样品,而只要需要标型样品,就不能完全避免标型学固有的缺陷。其次,科学鉴定法只能对鉴定对象样品的结果负责,但鉴定样品的真伪并不一定就是被鉴定对象整体的真伪,如对胎土样品鉴定为明代,并不能确证该瓷器就是明代。因为可能出现老胎新彩,接底、换头等可能。再次,科学鉴定法结论往往有一定局限性,如在时间上只能定在某时间段内,这对于鉴定清以前器物基本可以,但鉴定近现代器物就有局限了。不管是热释光,还是碳14,对鉴定文-革器就无能为力了。最后,对科学仪器鉴定也可以作做假。如用老瓷片磨细作胎土对付碳14法,用人工辐射对付热释光法等。

除了以上鉴定法外,还有“野战派”最爱用的“痕迹学”,笔者自身属于不入流的野战人士,不揣冒昧,将野战常用的痕迹法详述于下,就教于方家。

痕迹大至可以分为两种:历史痕迹和工艺痕迹。

先说历史痕迹,历史痕迹是器物岁月历炼的结果,如果排除了人为伤痕的因素,即可证明器物的历史性。历史痕迹又可分为增加和减少,即岁月使器物增加或减少了某些东西,传世器物和出土器的历史痕迹是不同的。(至于窖藏、库藏笔者没有体会,故存而不述。)

第五篇:焊接质量控制方法

白车身焊接质量控制方法

在汽车生产的四大工艺冲压、焊接、涂装和总装中,焊接工艺起着承上启下的作用,焊接质量的好坏,不但对车身的安全性有密切的关系,同时对车身内外饰件的装配和车身外观质量等方面都起着至关重要的作用。据统计,一辆白车身焊点数量将达到5300~5600个,因此做好电阻点焊焊接强度的控制,对保证焊接质量起着非常重要的作用。

为保证白车身的焊接质量,必须要建立起相应的质量保证体系。如前期焊接质量策划、焊接过程监控和焊后检验等手段。前期焊接质量策划主要包括焊接设备的选型、焊接工艺方法的评定和检验项目的确定。焊接过程监控则主要是利用计算技术对电阻点焊过程的焊接参数进行实时监控。监控信息必须与焊接质量有密切的关系,呈一定的函数关系并有期望的准确度;信噪比要足够高,信号再现性好,检测手段易实现等特点[1]。

目前常用的监控方式有:①温度监控;②超声波信号监控;③声发射监控;④点阻焊接参数监控;⑤焊点热膨胀监控[2]。其中对电阻点焊焊接参数监控方式有恒流控制法、恒压控制法和恒功率控制法等。但由于过程监控需要使用大量在线计算,除对计算机硬件要求较高外,日常维护花费也较大。

目前,生产中应用普遍还是对焊接工艺装备的日常工艺参数监控的方法。焊后检验主要包括无损检测、破坏性检测和非破坏性检测等。下面简单说一下日常焊接工艺参数监控方法和焊后检验。

焊接工艺参数的日常监控

在前期焊接质量策划中,控制计划规定对产品性能和产品质量有影响的各项焊接工艺参数有:焊接电流、焊接时间和电极压力等。

首先由焊接车间每月末编制下个月的测量计划,编制完成后交工艺部和品质部进行审核,审核无异议后,由品质部安排人员实施检测计划,在检测过程中若发现异常状况,焊接车间应进行产品追溯排查,同时通知工艺人员进行参数确认工作,调整输入参数后,再进行产品试焊,确认调试后焊接质量,直到符合标准要求为止,并将修改后焊接参数进行保存。其中对关键工位的检测频次做到1次/周,普通焊接工位为1次/2周。焊后检验

焊接后检验主要包括焊点强度质量检验和焊点外观质量保证。

3.1 焊点强度质量检测。焊后检验分为破坏性检验和非破坏性检验。破坏性检验是对需要检测的焊点进行破坏检测的方式。非破坏性检测主要是由生产线各工位对可錾焊点进行质量检验的方法。通常非破坏性检测可以发现简单的焊接缺陷,如虚焊、弱焊等。非破坏性检测一般安排5次/班,首次规定在开班正式生产前进行,并将检测的试片保存。在生产过程中每间隔一定时间,再安排余下的检测试验。如果发现焊接质量不合格的焊点应立即采取措施进行控制,并对前序的产品进行追溯。

破坏性检测是对整个车身焊点进行逐一检查,比较全面,可以发现所有不合格的焊点。但是,经破坏性检测后的车身只能做报废处理,且抽样频率较低,不利于问题的及时发现和处理。

目前对焊点强度的检测正向无损检测方式发展,无损检测就是在不损害或不影响被检测对象使用性能的前提下,通过射线、超声波、红外线和电磁等物理方法对焊接质量进行检测的方法。其原理主要是通过利用物质的声、光、电和磁场效应,对被检测对象中是否存在缺陷进行判断,同时还能对缺陷的大小、位置等信息进行采集。由于无损检测具有非破坏性,操作方便、快捷等优点,已被广泛应用到生产实际中。

3.2 焊点外观质量保证。对焊点进行的外观检查。焊点外观缺陷主要有:焊点扭曲、焊点压痕过深、烧穿、未焊透和毛刺飞溅等。根据焊点在车身所处的区域确定焊点外观质量等级。整车焊点外观等级分为3级,每级允许存在的焊点外观缺陷的数量和严重程度有所差别。

根据对焊点强度检测和外观质量的检查,可以计算出被检车身焊点的质量水平值(NQST)。以此可以衡量和控制车身焊点强度质量。NQST(焊点质量水平)值=缺陷焊点数/总焊点数x100%[3]。NQST完成后,应及时组织相关部门召开NQST分析会,将焊点的缺陷问题进行分类并划分责任部门,各责任部门按照PDCA(plan计划,do执行,check检查,action行动,又叫质量环)模式对问题进行整改,并进行验证。通过对产品质量的改进和整改措施的执行,会不断降低NQST的值,提升车身焊点综合质量。结束语

通过建立和实施焊接质量保证体系,做好对焊接前质量策划、焊接过程中焊接参数的监控和焊后质量的检验工作,能有效的保证白车身焊接质量,提升产品竞争水平。

下载陶瓷垫片的焊接方法大全【干货】(优秀范文五篇)word格式文档
下载陶瓷垫片的焊接方法大全【干货】(优秀范文五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    焊接方法及工艺要点(5篇)

    6.焊接方法及工艺 6.1 焊条电弧焊 6.1.1 填充材料 知识点:焊条选择原则 重点内容:①碳钢与低合金钢:等强原则,即选用熔敷金属强度级别与母材相同或相近的焊条,同时综合考虑焊缝的......

    焊接方法的工艺分析

    摘 要 表面美观以及使用可能性多样化且耐腐蚀性能好的不锈钢材料近年来得到了广泛使用,而不锈钢薄板相比与其他材料的优点也得到了广泛的使用,因为对于钢板来言,主要的连接技......

    铝合金焊接方法总结(合集5篇)

    铝合金的焊接技术 铝及其合金因具有良好的耐蚀性、导电性、导热性以及高的比强度而广泛应用于工业领域,铝合金的产量仅次于钢铁的。近年来,随着铝合金在汽车制造、造船、国防......

    焊接方法及设备复习总结

    第一章 1. 名词解释 1) 焊接电弧焊接电弧是由焊接电源供给能量,在具有一定电压的两电极之间或电极与母材之间的气体介质中产生的强烈而持久的气体放电现象。 2) 热电离气体粒......

    【超级干货135种微信加人方法】之一

    【超级干货135种微信加人方法】 想学实操请看到最后 每天尝试几种方法,天天坚持,想不成功都难,不信你就试试。 第一种就是 同行互推 假如她是卖另一个品牌的化妆品,她在她的朋......

    电弧焊机的焊接方法五篇范文

    焊接铸铁要求一些特殊的程序。这是一项艰巨的任务,可以有两种意见没有。不像其他大多数钢,铸铁,具有更大的碳含量在2%至4%。这将导致最铸铁脆性使其难以焊接。如果遵循下列程序可......

    其他焊接方法简介,常用金属材料的焊接教案

    金属工艺学电子教案(34) 【课题编号】 34-15,3 【课题名称】 其他焊接方法简介,常用金属材料的焊接。 【教材版本】 郁兆昌主编.中等职业教育国家规划教材—金属工艺学(工程技术......

    焊接方法与设备试卷及答案

    A卷 一.填空题。(每题1分,共10分) 1.熔化极电弧焊熔滴过渡形式主要有_______过渡、________过渡、________过渡和渣壁过渡。 2.无论是何种位置的焊接,电弧气体吹力总是_______熔滴......