高中数学专题2.12 已知函数增或减,导数符号不改变(原卷版)

2020-09-09 11:20:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《高中数学专题2.12 已知函数增或减,导数符号不改变(原卷版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学专题2.12 已知函数增或减,导数符号不改变(原卷版)》。

专题12

已知函数增或减,导数符号不改变

【题型综述】

用导数研究函数的单调性

(1)用导数求函数的单调区间

求函数的定义域→求导→解不等式>0得解集→求,得函数的单调递增(减)区间.

一般地,函数在某个区间可导,>0在这个区间是增函数

一般地,函数在某个区间可导,<0在这个区间是减函数

(2)单调性的应用(已知函数单调性)

一般地,函数在某个区间可导,在这个区间是增(减)函数≥。

常用思想方法:

函数在某区间上单调递增,说明导数大于或等于零恒成立.,而函数在某区间上单调递减,说明导数小于或等于零恒成立.

[来源:Zxxk.Com]

【典例指引】

例1.已知函数,.

若曲线在点处的切线经过点,求实数的值;

若函数在区间上单调,求实数的取值范围.

例2.已知函数.(x>0)

(1)当时,求函数的单调区间;

(2)若在上是单调增函数,求实数a的取值范围.

例3.已知函数.[来源:学科网ZXXK]

(1)若曲线在点处的切线的倾斜角为,求实数的值;

(2)若函数在区间上单调递增,求实数的范围

【同步训练】

1.已知函数.

(1)若的图像在处的切线与轴平行,求的极值;

(2)若函数在内单调递增,求实数的取值范围.

2.已知函数.

(1)若在上递增,求的取值范围;

(2)证明:.

3.已知函数.

(1)若曲线与曲线在它们的公共点处具有公共切线,求的表达式;

(2)若在上是减函数,求实数的取值范围.

4.设函数.

(1)若时,取得极值,求的值;

(2)若在其定义域内为增函数,求的取值范围.

5.己知函数,.

(I)求函数上零点的个数;

(II)设,若函数在上是增函数,求实数的取值范围.

6.已知函数的切线方程为y=3x+1.

(1)

若函数处有极值,求的表达式;

(2)

若函数在区间[-2,1]上单调递增,求实数b的取值范围.

7.已知函数.

(1)若函数的图象在处的切线斜率为1,求实数的值;

(2)若函数在上是减函数,求实数的取值范围.

[来源:Zxxk.Com]

8.(本题15分)已知函数.

(I)若在处的切线方程为,求的值;

(II)若在上为增函数,求得取值范围.

[来源:Zxxk.Com]

9.已知函数

(I)讨论函数的单调性;

(Ⅱ)若函数在区间上单调递减,求实数的取值范围.

10.已知函数.

(1)求曲线在点处的切线方程;

(2)若函数在上单调递增,求实数的取值范围.

11.已知函数

(Ⅰ)若在上单调递减,求的取值范围;

(Ⅱ)讨论的单调性.

[来源:Zxxk.Com]

12.已知函数.

(1)当时,判断的单调性;

(2)若在上为单调增函数,求实数的取值范围.

下载高中数学专题2.12 已知函数增或减,导数符号不改变(原卷版)word格式文档
下载高中数学专题2.12 已知函数增或减,导数符号不改变(原卷版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐