第一篇:五年级下长方体知识点总结
长方体和正方体
6个面,8个顶点,12条棱
【概念】
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。最多能看到3个面
2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。最多能看到3个面
4、正方体是长、宽、高都相等的长方体,它是一种特殊的长方体。
注意:①两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!②表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!
③长方体的棱长总和=(长+宽+高)×4
长=棱长总和÷4-宽-高 宽=棱长总和÷4-长-高 高=棱长总和÷4-长-宽
④正方体的棱长总和=棱长×12棱长=棱长总和÷12
5、长方体或正方体6个面和总面积叫做它的表面积。
①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
②无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高×2 ③无底又无盖长方体表面积=(长×高+宽×高)×2 ④正方体的表面积=棱长×棱长×6 在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。所以做这样一个抽屉所要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有上面和底面。所以只要算四个侧面就可以 了。(1)具有六个面的长方体或正方体物品:油箱、罐头盒、纸箱子等;
(2)具有五个面的长方体或正方体物品:水池、鱼缸等;
(3)具有四个面的长方体或正方体物品:水管、烟囱等
1-捆扎物品
①两个面(通常上下面)十字捆扎一道,绳长=两个交叉十字的周长+接头长=2长+2宽+4高+接头长
②六个面十字捆扎一道,绳长=长方体棱长总和+接头长=4长+4宽+4高+接头长
例如:长方体礼盒的长,宽,高分别是20厘米,16厘米,5厘米.如果用绸带把它捆扎起来(打结处的绸带长10厘米),一共需要绸带多少厘米?
【知识点2】长方体表面求法的变形:
①贴商标类型:只求四周面积。四周商标面积=(底面周长+接头长)×高
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?
②游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为、10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖? ③抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽 3cm的抽纸口,做这款抽纸盒需要多少硬纸片?
④占地面积问题:只求底面面积。
例如:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米?
【知识点3】棱长变化对表面积的影响: 正方体
正方体的棱长扩大n倍,其棱长和也扩大n倍,表面积扩大n²倍体积扩大n³倍。长方体
长方体的长宽高同时扩大n倍,其棱长和也扩大n倍,表面积扩大n2倍,体积扩大n³倍。
(1)大正方体棱长是小正方体棱长的2倍,则大正方体表面积是小正方体表面积的()倍。
(2)一个长方体的长、宽、高都扩大4倍,它的表面积就()。
(3)一个正方体的棱长为4厘米扩大为2倍后,其棱长和为()米,表面积为()平方厘米比原来扩大了()。
(5)一个长方体长扩大2倍,高扩大4倍,体积扩大()倍。
6、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 公式:V=abh 长=体积÷宽÷高 a=V÷b÷h 宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h=V÷a÷b 正方体的体积=棱长×棱长×棱长 V=a×a×a=a³ a³读作“a的立方”表示3个a相乘,(即a·a·a)
7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。常用的容积单位有升和毫升也可以写成L和ml。1升=1立方分米1 毫升=1立方厘米 1升=1000毫升 计算公式相同 V=shV=abh 【体积单位换算】
高级单位-----→低级单位 低级单位-----→高级单位
长度单位:mm、cm、dm、m 相邻两个单位进率为10 面积单位:mm²、cm²、dm²、m² 相邻两个单位进率为100 体积单位:mm³、cm³、dm³、m³ 相邻两个单位进率为1000 容积单位:mL、L 相邻两个单位进率为1000 特别的:1mL=cm³ 1L=1dm³
① 物完全浸入水中:物体的体积=水面上升的体积=容器底面积×水面上升的高度; 水面上升的高度=物体的体积÷容器的底面积
② 重物部分浸入水中:水面现在的高度=水的体积÷(容器的底面积-重物的底面积)
第二篇:五年级下册数学知识点总结(下)
陈泰枢数学工作室资料(只供内部使用)
小学五年级数学下册复习教学知识点归纳总结
四、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= ≠0)。(例如:45a(bb4)55)79)
54、真分数:分子比分母小的分数叫做真分数,真分数小于1。(例如:假分数:分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。(例如:带分数:由非零整数部分和真分数两部分组成的分数叫做带分数,带分数大于1(例如:45)61123)
5、假分数化成带分数:用分子除以分母,所得商作整数部分,余数作分子,分母不变。(例如: 33217带分数化成假分数:用整数部分乘以分母加上分子作分子,分母不变。(例如:5)
336、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。
8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法: ①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。
⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
9、最简分数:分子和分母只有公因数1的分数叫做最简分数。(也就是分子和分母互质)
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。(约分是分子和分母分别除以他们的最大公因数)
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(通分也就是把几个分数的分母化成他们的最小公倍数)
13、特殊情况下的最大公因数和最小公倍数:
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。
14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;(例如:43)551122同分子的分数,分母大的分数反而小,分母小的分数反而大。(例如:;)
5671315、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„,去掉小数点作分子,能约分的必须约成最简分数;
分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
16、最简分数的分母只含有质因数2和5(或单独有2或5时),这个分数一定能化成有限小数,否则就只能化成无限小数。
17、分数化简包括两步:一是约分; 二是把假分数化成整数或带分数。
18、最大公因数和最小公倍数的求法用短除法。例如:
陈泰枢数学工作室资料(只供内部使用)
五、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。例如:
3141 88822、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。
例如:31945 862424243、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
4、带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。(例如:731314425235(75)()22;9-4=844)5353151555555、分数加减简便计算:整数加减法的有关运算定律在分数加减法中同样适用。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法性质:a-b-c = a-(b+c); a-(b+c)= a-b-c
六、统计与数学广角
1、众数:一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数的求法:①、按大小排列。②、如果数据的个数是单数,那么最中间的那个数就是中位数;如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、复式折线统计图:可以清楚的看出两者的变化情况并比较,可以更方便的分析两个数量增减变化的情况.44、打电话的最优方案:
2341①、逐个法:所需时间最多 432②、分组法:相对节约时间
34③、同时进行法:最节约时间 443
七、数学广角
数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次 4~9个物体,保证能找出次品需要测的次数是2次 10~27个物体,保证能找出次品需要测的次数是3次 28~81个物体,保证能找出次品需要测的次数是4次 82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次
第三篇:长方体和正方体的知识点整理
长方体和正方体知识整理
一、【概念】
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
长方体
正方体
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4
L=(a+b+h)×4
长=棱长总和÷4-宽
-高
a=L÷4-b-h
宽=棱长总和÷4-长
-高
b=L÷4-a-h
高=棱长总和÷4-长
-宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷126、长方体或正方体的长、宽、高同时扩大几倍,棱长总和会扩大相同的倍数。
(如长、宽、高各扩大2倍,棱长总和就会扩大到原来的2倍)。
二、【长方体和正方体的表面积】
1、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)长方体表面积=
长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
正方体的表面积=
棱长×棱长×6
S=a×a×6=
6a22、表面积的常用单位有:
平方米、平方分米、平方厘米
相邻两个面积单位之间的进率是100
1m2
=100dm2
dm2
=100
cm2
1m2
=10000
cm23、生活实际
油箱、罐头盒等都是6个面;游泳池、鱼缸、粉刷教室等都只有5个面;水管、烟囱等都只有4个面。
4、长方体或正方体每截断一次会增加两个截面,所以这时的两个物体的表面积大于原来物体的表面积。
5、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
三、【长方体和正方体的体积】
1、体积:物体所占空间的大小叫做物体的体积。(就是看物体含有多少个体积单位)
2、常用的体积单位有:
立方米(m3)、立方分米(dm3)、立方厘米(cm3)
①
棱长是1
cm的正方体,体积是1
cm3
②
棱长是1
dm的正方体,体积是1
dm3
③
棱长是1
m的正方体,体积是1
m3
相邻两个体积单位之间的进率是1000
m3
=1000
dm3
1dm3=1000
cm3
m3
=1000000
cm3
长方体的体积=
长×宽×高
V=abh
长=
体积÷宽÷高
a=V÷b÷h
宽=
体积÷长÷高
b=V÷a÷h
高=
体积÷长÷宽
h=
V÷a÷b
正方体的体积=
棱长×棱长×棱长
V=a×a×a
=a³
3、容积:
容器所能容纳物体的体积,叫做它的容积。
4、容积单位有:
升(L)、毫升(mL)
L
=
1000
mL5、容积单位和体积单位的关系:
L
=
dm3
mL
=
cm36、容积的计算:
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。(所以物体的体积大于它的容积)。
7、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
8、排水法:(计算不规则物体的体积)
①
容器的底面积×上升那部分水的高度。
计算方法
物②
放入体后的体积—原来水的体积
上升被浸没物体的体积等于那部分水的体积
9、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
×进率
10、a3读作“a的立方”表示3个a相乘,(即a·a·a)
÷进率
【体积单位换算】 高级单位(大)
低级单位(小)
低级单位(小)
高级单位(大)
进率: 1立方米=1000立方分米
1立方米
=1000000立方厘米
1立方分米=1000立方厘米
1升=1000毫升
1立方厘米=1毫升
1立方分米=1升;
1平方米=100平方分米
1平方米
=10000平方厘米
1平方分米=100平方厘米
1平方千米=100公顷=1000000平方米;
1米=10分米
1米=100厘米
1分米=10厘米
1千米=1000米
第四篇:人教版五年级下册长方体和正方体的复习知识点
长方体和正方体的复习知识点
1.我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。
※举例:长方体:砖块、箱子„„/正方体:魔方、骰子„„
2.(1)长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的2个面完全相同,相对的4条棱长度相等。长方体有12条棱,8个顶点。
(2)相交于一个顶点的三条棱分别叫做长方体的长、宽、高。
3.正方体是由6个完全相同的正方形围成的立体图形。正方体有6个面,12条棱,8个顶点,6个面都是正方形,面积都相等,12条棱长度都相等。
4.正方体可以看成是长、宽、高都相等的长方体。我们可以用上图来表示长方体和正方体的关系。
5.长方体或正方体6个面的总面积,叫做它的表面积。
长方体或正方体底面的面积叫做底面积(占地面积)。底面积=长×宽
※举例:表面积即为长、正方体展开图总面积。
6.日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
※举例:粉刷房间、贴瓷砖、包装礼盒、油漆水管、制作玻璃鱼缸(求面的大小)„„
注意:求几个面。
7.求长方体、正方体表面积的公式:
S长方体=(长×宽+长×高+宽×高)×2S正方体 = 棱长×棱长×6
=2(a·b+a·h+b·h)=6a²
8.物体所占空间的大小叫做物体的体积。
※举例:手指尖约占了1立方厘米的空间,即它的体积约为1立方厘米。
9.计量体积要用体积单位,常用的体积单位有:立方厘米、立方分米和立方米,可以分别写成cm³、dm³、m³。※举例:一个粉笔盒的体积约为1 dm³。
10.求长方体、正方体体积的公式:
V长方体=长×宽×高V正方体=棱长3
=a b h=a³
=底面积×高=底面积×高
11.在工程上,“1m³”的土、沙、石等均简称“1方”。
※举例:建一游泳池,约要挖土6000方。
12.体积单位间的进率:1dm³ =1000 cm³1m³ =1000 dm³
※举例:1.36 dm³ =1360 cm³4.573m³ =4573 dm³
13.箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
※举例:一个汽车油箱约能容纳40L油,即它的容积为40L。
14.计量容积,一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。
※举例:一个烧杯约能装水500ml。
15.容积单位间及容积单位和体积单位间的进率:
1L=1000ml1L=1dm³ 1ml=1cm³
※举例:520ml=0.52L5.67L=5.67 dm³ =5670cm³
16.形状不规则的物体可以用排水法求得它们的体积。
※举例:一个烧杯中原有水200毫升,放入西红柿后水位上升至350毫升处,则西红柿的体积就是水面上升的那部分水的体积:350-200=150(ml)=150(cm³)
第五篇:冀教版五年级下数学知识点总结
冀教版五年级下数学知识点总结
一 图形的变换
一、轴对称: ①将图形沿着一条直线对折,如果直线两侧的部分能完全重合,这样的图形叫做轴对称图形,这条直线叫做它的对称轴。②找对称轴方法:用对折的方法找对称轴。③正方形4条对称轴,等边三角形3条对称轴,等腰三角形1条对称轴,等腰梯形1条对称轴,长方形2条对称轴,圆无数条对称轴,线段1条对称轴,角1条对称轴。④画轴对称图形另一半的方法:
1、找出所给图形的关键点,如图形的顶点、相交的点、端点等。
2、数出或量出图形的关键点到对称轴的距离。
3、在对称轴的另一侧找出关键点的对称点。
4、按所给图形的形状连接各对称点,画出图形另一半。⑤轴对称图形上每对对称点到对称轴的距离相等。
二、平移:①平移就是将一个物体或图形按一定的方向一动一定的距离。②平移后它们的形状、大小、方向都不改变。③平移2要素:移动的方向和移动的距离。④平移了几格不是看两个图形之间空了几个方格,而是看对应点或对应线段平移了几个方格。④画平移图形方法:一找:找出图形关键点(或关键线段)二数:以关键点(关键线段)为参照点(参照线段),数出平移的格数。三描:按指定方向和格数把参照点(参照线段)平移到新位置,描出各对应点(或画出对应线段)。四连:把各对应点按照原图形顺次连接,就得到平移后的图形。
三、旋转:①物体绕着某一点运动叫做旋转。②旋转的方向:与表针的转动方向一致的叫做顺时针方向,与表针转动方向相反的叫做逆时针方向。③旋转三要素:旋转点:物体旋转时所绕的点(轴)叫做旋转点。旋转方向:顺时针和逆时针。旋转角度:物体旋转前后,物体对应点与旋转中心连线的夹角就是旋转角度。④旋转的性质:图形旋转后,图形的对应点、对应线段都旋转相应的角度,对应点到旋转点的距离相等。⑤旋转的特征:图形旋转后,形状、大小都没有变化,只是位置和方向变了。⑥在方格纸上画简单图形旋转90度后图形步骤:1.确定旋转角度的大小和旋转方向2.确定每对对应点与旋转中心构成的旋转角3.确定旋转后图形的其他对应点4.顺次连接上述各对应点
二、异分母分数加减法
真分数与假分数:
①分数与除法的关系:分数的分子相当于除法里的被除数,分母相当于除法里的除数,分数线相当于除法里的除号,分数的大小(分数的值)相当于除法里的商。区别:分数是一种数,除法是一种
运算。它的关系用字母表示为:
②分子比分母小的分数叫真分数,真分数小于1;分子比分母大(或相等)的分数叫假分数,假分数大于或等于1。
③分数的基本性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
④最简分数:分子和分母只有公因数1的分数叫最简分数。分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
⑤同分数加减法的计算法则:分母不变,把分子相加减。
⑥异分母加减法的计算法则:先通分,再按照同分母加减法的计算法则进行计算。⑦由一个整数(0除外)和一个真分数合成的数叫做带分数。带分数大于1。⑧带分数读法:“整数部分”又“分数部分”如一又四分之三。
⑨带分数写法:先写整数部分在写分数部分,分数线与整数中间对齐。
⑩假分数化成带分数方法:用假分数的分母作带分数的分母,假分数分子除以分母,商是带分数的整数部分,余数是分数部分的分子;带分数化成假分数方法:用带分数分数部分的分母作假分数的分母,用分母和整数部分的乘积再加上原来的分子作分子。整数化成假分数方法:整数(0除外)都可以化成分母是任意自然数(0除外)的假分数。用指定的分母作假分数分母,用分母和整数的乘积作假分数的分子。分数大小的比较:
①把异分母的分数化成和原来分数相等的同分母的分数,叫做通分
②通分时用两个分数的分母的最小公倍数作同分母进行通分,计算比较简便。③当两个数是倍数关系时,较大的一个数就是这组数的最小公倍数如12和24的最小公倍数是24;当两个数互为质数或相邻的自然数时,这组数的最小公倍数是它们的乘积.如7和5的最小公倍数是35;5和6的最小公倍数是30.互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。④求两个数的最大公因数和最小公倍数的异同:都是用短除法分解质因数;都是用这两个数的公有的质因数连续去除(一般是从最小的开始),一直到所得的商互质为止。不同点是:求最大公因数只把所有除数相乘;求最小公倍数把所有的除数和最后的上连乘起来。
分数和小数的互化:
①分数化成小数:分子除以分母,除不尽的一般保留两位小数。假分数化成小数:分子除以分母,除不尽的一般保留两位小数;带分数化成小数:先把带分数的分数部分化成小数,再加上整数部分;
②小数化成分数:先把一位两位三位„„小数化成分别分母是10,100,1000,„„的分数,在约分成最简分数。整数部分不为0的小数化成分数时,整数部分不为0的小数化成分数时,整数部分不变,只化小数部分,整数部分与小数部分化成的分数合起来即可。③一个最简分数,如果分母除了2和5之外,还含有其他质因数为因数,这个分数就不能化成有限小数。④常用的分数与小数间的互化。
异分母分数加减法:①异分母分数加减法计算“三字决”----通算约:通:先通分,把异分母分数化成同分母分数;算:按照同分母分数加减方法计算:分母不变,分子相加减;约:结果能约分的要约成最简分数②分数和小数混合运算:如果分数能化成有限小数,把分数化成有限小数再计算比较简单;如果分数不能化成有限小数,就必须把小数化成分数再计算。③分子都是
1、分母是两个相邻自然数(0除外)的两个分数相加,这两个分数的和也是一个分数,和的分母是两个分母的积,分子是两个分母的和。分子都是
1、分母是两个相邻自然数(0除外)的两个分数相减,这两个分数的和也是一个分数,和的分母是两个分母的积,分子是两个分母的差。④带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
分数加减混合运算:①异分母分数连加计算方法:可以按从左到右顺序一次相加,也可将所有分数一次性通分,再相加,计算结果要化成最简分数。②分数加减混合运算:没有括号的,按从左到右顺序依次计算;有括号先算括号里的。简便计算部分
加法结合律:(a+b)+c=a+(b+c)加法交换律:a+b=b+a减法的性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。a+(b-c)=a+b-c a-(b-c)=a-b+c
三、长方体和正方体
①长方体棱长之和:(长+宽+高)×4 正方体棱长之和:棱长×12 ②长方体表面积=(长×宽+长×高+宽×高)×2 正方体表面积=棱长×棱长×6 ③并不是所有物体都有6个面:
(1)6个面:长方体或正方体:油箱、罐头盒、纸箱等(2)5个面:长方体或正方体:水池、鱼缸等(3)4个面:长方体或正方体:通风管等
④物体截成几段,增加一个截口就增加2个截面(增加面的个数=截口数×2)
四、分数乘法
一、分数乘整数①分数的意义:求几个相同加数和的简便运算。②分数乘整数:分母不变,分子于整数相乘的积作分子。(能约分的要先约分再计算,可使计算简便。乘得的积要化成最简分数)③“求一个数的几分之几是多少”:(1):找准单位“1”(2)想出数量关系式:单位“1”x分率=分率对应量(3)根据数量关系列式解答 分数乘分数:①分数乘分数的意义就是求一个数的几分之几是多少。②分数乘分数计算方法:分子相乘的积作分子,分母相乘的积作分母③先约分再计算,计算结果化成最简分数。④判断大小:1)一个数(0除外)乘大于1的数,积大于这个数。2)一个数(0除外)乘小于1的数(0除外),积小于这个数。(3)一个数(0除外)乘1,积等于这个数。混合运算:
①如果只有加减法或乘除法,按从左到右顺序依次计算;既有乘除又有加减,先算乘除后算加减,有括号先算括号里的。
②乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c = a×c + b×c 倒数:①倒数的意义: 乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。②(1)a是非0自然数时,它的倒数是1/a.自然数(0和1除外)的倒数都小于它本身。(2)真分数的倒数都大于1.假分数的倒数都大于或等于1。③分数的倒数:交换分子分母的位置即可。
④带分数的倒数:先化成假分数再交换分子分母位置。
⑤小数的倒数:先化成真分数会假分数,再交换分子分母位置。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
找单位“1”的方法:
(1)从含有分数的关键句中找,注意“的”前“比”后的规则。(2)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。(3)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(4)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
(5)分率与量要对应。①多的比较量对多的分率; ②少的比较量对少的分率; ③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率 ⑩总量的比较量对总量的分率;
五、长方体和正方体的体积
1、体积和体积单位:①物体所占空间的大小叫做物体的体积。常用的体积单位立方厘米、立方分米、立方米 长方体和正方体的体积:
长方体的体积=长×宽×高 V=abh 正方体的体积=棱长×棱长×棱长V=a3 长方体(或正方体)的体积=底面积×高 V=Sh(计算时一定要先统一单位长度)体积单位之间的进率:
①物体浸没在水中时,所排开的水的体积就是物体的体积。②高级单位换成低级单位,用高级单位的数乘进率,低级单位换成高级单位,用低级单位的数除以进率。
容积:①一个容器所能容纳的物体的体积叫做这个容器的容积。容积的计算方法与体积计算方法相同,但是要从里面测量数据。不是所有物体都有容积。②计算容积一般就用体积单位,液体的容积常用单位是升和毫升也可以写成L和ml。1升=1立方分米1毫升=1立方厘米1升=1000毫升③同一容器,体积大于容积。
六、分数除法
1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。将除法转化为乘法的要点:(1)被除数不变(2)除号变乘号(3)除数变成它的倒数
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
(1)一个数(0除外)除以一个真分数,所得的商大于它本身。
(2)一个数(0除外)除以一个假分数,所得的商小于或等于它本身。(3)一个数(0除外)除以一个带分数,所得的商小于它本身。
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c = a÷(b×c)
a÷b÷c = a÷c÷b
二、分数除法解决问题
(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。)
1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1加或减分率)=分率对应量
2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量
3、求一个数是另一个数的几分之几:就用 一个数 ÷ 另一个数
4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1-小数÷大数
列方程
解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。10个数量关系式:
加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
七折线统计图
①折线统计图:用一个单位长度表示一定的数量,根据数据的大小描出各点,然后把各点用线段顺次连接起来,这样的统计图叫做折线统计图。②折线统计图的特点是不仅可以反映数量的多少,还可以反映数量的增减变化情况。③连接两点的线段越陡,说明变化幅度越大,线段越平缓,说明变化幅度越小。④绘制折线统计图步骤:先确定横轴和纵轴,确定单位长度并画出方格图,再描点(标上数据)、连线。⑤复式折线统计图不仅可以看出数量增减变化情况,而且便于对几组相关数据进行分析比较。⑥复式折线统计图要用不同折线表示不同类别,要用图例说明。