第一篇:初中数学课程教学设计案例
初中数学课程教学设计案例
胡小华 课题名称:
完全平方公式(1)
一、内容简介 本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。
(三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。
四、教育理念和教学方式:
1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。3.教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。
五、教学媒体:多媒体
六、教学和活动过程: 〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。〈二〉、分析问题
1.[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2.[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。3.[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2.判断:
()①(a-2b)2= a2-2ab+b2()②(2m+n)2= 2m2+4mn+n2()③(-n-3m)2= n2-6mn+9m2()④(5a+0.2b)2= 25a2+5ab+0.4b2()⑤(5a-0.2b)2= 5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)2 3.小试牛刀
①(x+y)2 =______________;②(-y-x)2 =_______________;③(2x+3)2 =_____________;④(3a-2)2 =_______________;⑤(2x+3y)2 =____________;⑥(4x-5y)2 =______________;⑦(0.5m+n)2 =___________;⑧(a-0.6b)2 =_____________.〈四〉、学生小结
你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2 =__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。〈七〉[作业] p34 随堂练习
p36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。. 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性; 3 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理; 4 . 教学媒体使用适时、适量、适度、有效。5 . 教学结构组合优化,优质高效。
第二篇:数学课程的教学设计
数学课程的教学设计
数学课程的设计是保证此次课程改革顺利实施的重要途径。数学课程的学设计主要从以下几方面着手。
⑴对数学课程作整体性、贯通式设计。本次课程改革在义务教育阶段数学课程中,将九年的学习时间划分为三个学段:第一学段(1~3年级),第二学段(4~6年级),第三学段(7~9年级)。这种划分淡化了传统意义上的小学与初中的区分,也淡化了多年来关于“五四制”“六三制”的一些争议,使得整个九年的课程安排更加均衡、协调。当然数学课程结构上的这种新变化对数学课程目标、内容、实施等多个方面也带来了影响。
⑵关于数学课程目标的设计。首先,要使教师理解课程目标的定位。其次,要使教师理解《课程标准》中的数学课程目标是一个具有层次结构的目标体系,即:由总目标与学段目标构成,在总目标中,又由总体表述与四个方面(知识技能、数学思考、问题解决、情感态度)具体阐述组成。而且四个方面的每一个方面,也是有层次的,它是由更加具体到4~5个小点来表述的。再次,要使教师理解数学课程目标陈述的基本方式,即目标表述的4个基本要素(行为主体(学生)、行为动词、行为条件和达成的程度)组成,结果性目标表述常用行为动词有“了解、理解、掌握、运用”等,过程性目标常采用“经历、体验、探索”等目标行为动词,主要用于数学活动、情感态度等方面的表述。
⑶关于数学课程内容标准的设计。以数学课程的基本理念和课程目标为依据,根据多学段的划分,《课程标准》安排了“数与代数”“图形与几何”“统计与概率”“综合与实践”四个部分内容。《课程标准》特别对“综合与实践”内容设置的目的予以强调,指出其目的“在于培养学生综合运用有关的知识与方法解决实际问题,培养学生的问题意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。”这就使得该部分内容设置的目标指向更加具体明确。注意综合运用知识,培养学生问题意识,积累数学活动经验更是成为“综合与实践”这一内容的落脚点。
第三篇:初中数学课程说课稿
要说好课,就必须写好说课稿。认真拟定说课稿,是说课取得成功的前提,是教师提高业务素质的有效途径。下面我们一起来看看初中数学课程说课稿,希望对大家有所帮助。
《有理数的乘方》说课稿
在以学生发展为本的教育理念的指导下,为提高学生的学习兴趣及效率,提高教学质量,结合新课程标准的要求,对初一年级第一章第五节作如下的设计。
一、说教材
1、地位作用:
有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
2、教学目标:
(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
(3)让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。
(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作 交流的重要性。
3、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
4、教学难点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
二、说教学方法
启发诱导式、实践探究式。
三、说学法
根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”。
四、说教学手段
利用多媒体教学,目的之一是使课堂生动、形象又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。
第四篇:初中地理教学设计案例
初中地理教学设计案例:中国水资源空间分布不均
上饶县六中:蔡祥有
教学目标
1、知识与技能:运用资料,说出我国水资源空间分布的特点;运用实例,说出我国为解决水资源分布不均而建设的大型工程。
2、过程与方法:通过图像对比,探究华北地区缺水的原因;通过计算和数据分析,寻找解决北方水资源短缺的方法。
3、情感态度与价值观:培养学生节约用水、保护水资源的意识。
教学重点
中国水资源空间分布南丰北缺
教学难点
华北地区缺水的原因;某种意义上说,节约用水、保护水资源比调水更重要。
教学方法
读图法、讨论法。
教学准备
多媒体课件
教学过程
导入:展示珠江图片和甘肃某地干涸土地图片,同时声情并茂地使用描述性的语言。看,图片上蔚蓝的江水在阳光的映射下泛着点点波光,同学们知道这么美的地方在哪里吗? 但同在祖国大地上,有的地方又是怎样的景象呢?干涸的土地张开了干裂的嘴唇,期待着甘霖的滋润,人们每天要走好几公里甚至十几公里去挑来日常的生活用水。猜猜,这般景象最可能出现在我国什么地方?东南?西北?东北?青藏?
由干涸的土地图片获得心灵的冲击,并猜测这么缺水的地方在哪里。
通过身边事物导入,引发学生的兴趣。而且,将珠江充盈的江水和甘肃某地干涸土地进行对比,强烈的视觉冲击,让学生对我国水资源空间分布不均产生感性认识。
展示中国水资源分布图
承转:刚才我们从两个具体的地点初步认识到我们国家有的地方水多,有的地方水少。俗话说“窥一斑可见全豹”,由此可见,我国水资源空间分布并不均匀。这种分布不均在整体上是如何体现的呢?请看水资源空间分布图。提问:你能用简短的语言归纳出我国水资源空间分布的特点吗?南北方水资源总量上有多大的差距?
提问:为什么我国水资源南丰北缺呢?能联系之前学过的年降水量分布规律解释一下吗?(课件相应展示中国年降水量分布图)
提问:同学们觉得我国什么地方缺水最为严重?为什么? 展示全国、南方、北方、华北、东北等地的人均水资源数据。
提问:华北年降水量并没有像西北那么少,为什么人均水资源量这么低呢? 展示中国人口密度图,让学生解释原因。
通过读图,归纳中国水资源空间分布特点,结合年降水量分布规律,解释其原因。
通过数据和人口密度图,探究出我国西北、华北地区缺水最为严重,而且原因并不相同。
对我国水资源分布不均的认识由感性上升为理性,同时培养学生读图能力和数据分析的能力。
过渡:下面我们通过一段视频真实感受一下,北方由于缺水,生活是多么艰难。观看视频
加强学生对北方缺水地区境况的认识,激发学生情感。
提问:原来我们国家竟有这么缺水的地方。作为祖国温暖大家庭的一员,我们要如何解决他们面临的实际困难呢?
学生提出解决北方缺水问题的方法。
将学生之前积聚的对北方缺水忧虑的情感体验释放出来,为解决北方缺水问题献计献策。
展示南水北调路线示意图,提问:
1、从哪条江调的水?
2、调水线路主要有哪三条?分别把水调到哪里去?
读图回答问题。
培养学生读图能力。
展示南水北调各地开工图片,表明南水北调这项跨世纪大工程已经开工了。完工后将很大程度缓解北方水资源短缺的问题。
欣赏图片。
加强时代感,让学生体会到通过地理课能触摸时代跳动的脉搏。
承转:除了跨流域调水,还有哪些方式能缓解北方的水危机呢?
自由讨论,回答问题。
让学生认识到除了调水,解决水资源短缺还可以节约用水,保护水资源。
小结:我们南方地区是否就没有缺水的烦恼了呢?你知道吗?由于降水的季节性变化,我们南方的某些农村在少雨季节也出现了严重的干旱,造成农作物的减产。在某些地方由于水污染严重,甚至“守着大江没水喝”,还好我们闽江水质目前还是比较好的,所以我们每个人都要从自身做起,节约用水,保护水资源!至于节约用水,保护水资源有哪些具体的方法,我们留待下节课学习。
酝酿节约用水、保护水资源的具体方法。
激发学生的社会责任感。
第五篇:初中数学教学设计案例
初中数学教学设计案例
课题 正比例函数
一 教学目标
1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力
二 教学重点
理解正比例函数的概念
三 教学难点
利用正比例函数解决生活实际问题
四 教学过程 【提出问题】
1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。(1)阿甘大约平均每天跑步多少千米?
(2)阿甘的行程y(km)与时间x(天)之间有什么关系?(3)阿甘一个月(30天)的行程是多少千米? 【生】 列算式回答 【师】 点评总结
2.写出下列变量间的函数表达式
(1)正方形的周长l和半径r之间的关系
【进一步抽象问题让学生思考】(2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?(3)下列函数关系式有什么共同点?(小组合作)
【分析共同点和不同点,找出规律】(1)y=200x
(2)l=2∏r(3)m=7.8V 【生回答,师点评】 【引入新课】
1.正比例函数的概念:
一般地,形如y=kx(k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】 2 【例题讲解】
例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】
【掌握函数图像的画法:列表,描点,连线】 3.练习
(1)已知正比例函数y=kx.当 x=3 时 y=6。求 k的值
(2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?
四 小结 五 课外作业
【反思】
由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。