行程问题说课稿5篇

时间:2019-05-13 01:48:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《行程问题说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《行程问题说课稿》。

第一篇:行程问题说课稿

行程问题说课稿

各位老师: 大家好!

今天我说课的内容是青岛版小学数学四年级上册第单元《》中的信息窗一-----行程问题。我将从以下三方面进行我的说课:分析教材,理清思路;优选教法,注重学法;优化程序,突出整体。

一、分析教材,理清思路

1、说学情分析

在学习这部分内容之前,学生已经掌握了乘除法各部分间的关系,具备了除数是两位数除法的计算能力,能独立解答求每分钟行多少米的应用题,在已有的生活实践中,经历了初步感知路程、时间、速度的生活经验,能模糊地感觉到它们之间可能存在的一定关系,这些知识、能力及经验为学生掌握本节课的教学内容,建构行程问题中的数量关系模型,解决相应的应用题提供了前提条件,并为以后学习较复杂的行程问题奠定了基础。

2、说预期效果

根据教材结构与内容的分析,考虑到学生已有的认知结构和心理特征,本节课预想达成的教学效果如下:

(1)知识目标:通过对生活材料的分析,帮助学生理解速度的含义,掌握路程、时间与速度之间的关系。

(2)能力目标:根据路程、时间与速度的关系,会解决生活中简单的实际问题,培养学生思维的灵活性。

(3)情感目标:养成学生积极关注、收集、处理生活中数学信息的习惯,体验用数学知识解决问题的快乐。

说教学重、难点

要想达成预期的效果,教学中必须解决本课的重、难点。

本节课的教学重点是:理解路程、时间与速度的数量关系,会运用数量关系解决生活中的实际问题。

教学难点是理解速度的含义,掌握速度单位的表示方法。

对个九、十岁的孩子来说,“速度”的概念比较抽象,不像路程那么明确,不像时间那么常见,并且速度的单位是由两部分组成的,它的表示形式学生们从未见过,因此,教学关键是让学生从大量的生活实例中感知并理解速度的含义,归纳出行程问题中的数量关系,掌握路程、时间与速度之间的内在联系。

二、说教学方法

1、教法:本节课我运用了迁移法、复合的现实数学教学法、多媒体辅助教学等手段。

2、学法:教学中运用了分析综合法、经验归纳法以及小组合作探究法指导学习。

三、说教学过程

为了更好的达成预期效果,我准备从以下四个环节展开教学。

(一)再现生活情境,导入新课。

教育心理学认为:教学时应设法为学生创设逼真的问题情境,唤起学生思考的欲望。因此本节课一开始就再现了同学们都非常熟悉和喜爱的运动会场景,“今年10月,我校举行了第八届运动会,学校打算选出一位运动员参加省‘径赛明星’的比赛,你会怎么选?”同学们当然会选跑的快的运动员。由此自然地进入第二环节。

(二)主动探究模型,探究新知。

观察运动员的两张比赛成绩表,从表中你能得出哪些数学信息?谁跑的最快呢?学生根据已有的生活经验,通过观察、分析、比较、思考,从表1中得出200米径赛中张方最快,因为他用的时间最少,而1分钟定时往返跑中丁勇跑的路程最长,所以他跑的最快,从而领会“路程一定时,时间越短速度越快;时间一定时,路程越长速度越快。”在上面的两组快慢比较中,表面上看是比较路程或时间,实质上比的就是速度。怎样让学生透过表面看实质呢?于是我创设了一个问题情境:现在学校要在这两名运动员中选出一名参加省‘径赛明星’的比赛,该选谁呢?一石激起千层浪!是啊,路程、时间都不相同,又怎么比呢?情境条件和已有知识的矛盾、冲突,点燃了学生的好奇心和发现欲,也激发了他们畅谈选择理由的愿望,积极调动原有知识和经验来解决问题----那就是要找一个统一的标准:他们每秒钟各跑了多少米?速度的概念应运而生。

要比快慢,先求速度,通过列式,计算出他们每秒钟跑多少米。(板书:每秒各跑多少米?200÷40=5(米)360÷60=6(米))这些数量各表示什么?一起听智慧老人说说吧!(智慧老人讲解路程、时间与速度的定义)路程、时间与速度这三个相关联的量,学生原来只能模糊地感知,不能清晰地表达,所以,我借助智慧老人之口,直截了当地揭示概念,多媒体的演示,既能形象地帮助学生建立概念,又节省了时间,建立了速度的概念,我进一步引导学生观察速度的单位,每秒跑5米,每秒跑6米,用另一种形式说是5米/秒,6米/秒。那么速度单位可以写成„„(板书速度单位)通过提问:速度单位与我们学过的单位有什么不同?剖析出速度的单位是由长度单位和时间单位共同组成的,帮助学生进一步理解速度的含义,知道速度是单位时间内所行驶的长度,这样就架构起行程问题中三个数量之间联系的桥梁。接着提问:你还知道哪些速度单位呢?引导学生创造出其他的速度单位,并进行板书。接下来展示生活中常见的速度,同学们想知道你写的这些速度哪里会用到吗?让大家读一读,它们分别表示人、飞机、声音、光的速度。以上的“说一说、读一读”能让学生联系生活,从大量的生活实例中感知并理解速度的含义,掌握速度单位的表示方法,并让学生认识了更多的速度单位,突破难点。在学生充分理解路程、时间与速度这三个量的基础上,提出问题:这些数分别表示什么?根据回答进行板书。那怎样求速度呢?在这个教学重点环节里,我留给学生充分的时间探究,通过小组讨论总结、归纳数量关系,进而得出:路程÷时间=速度,这里围绕“总结---归纳”二个环节进行学法指导,帮助学生深刻领会路程、时间与速度之间的密切联系。

为了让学生体验生活数学,我充分借助现代教育技术,开始情境的延伸:(课件)用线段图表示题中数量,能使它们之间的数量关系更只管、更形象,解答问题后,通过提问:每道算式分别表示什么?让学生总结归纳出路程和时间的关系式:路程÷速度=时间,速度×时间=路程,仔细观察这三道数量关系式,它们有什么相同,有什么不同?通过对比,让学生进一步理解路程、时间、速度这三个数量之间的紧密联系。

(三)多元分层训练,巩固内化。

在巩固练习中,我遵循由易到难的规律,设计了分层训练。第一层:基本训练,通过练习明确,已知路程、时间、速度中的任意两个数量,就可以求出第三个数量。第二层:综合训练,这三道图文结合题,通过学生观察、分析,从纷繁复杂的条件中获取有价值的信息解决问题。第一题求时间,第二题求速度,提别是第三题,它的解答方法多样化,可以比路程,也可以比时间,还可以比速度。在练习中选取一些学生熟悉的事物,能让他们积极地思考,轻松地练习,感受着数学的魅力,体验解决问题的乐趣。

(四)联系实际应用,拓展提高。

通过前面的学与练,学生对路程、时间与速度的含义及它们之间的关系有比较深刻的理解,到底学的这些知识有什么作用呢?生活中还有哪些方面应用这些数学知识呢?

(1)限速标志我知道

这是高速公路上限制速度快慢的标志牌。看看生活中还有哪些地方用到限速牌?

(2)为什么人们总是先看到闪电再听到雷声呢?

其实光的速度比声音的速度快得多,所以我们总是先看到闪电,再听到雷声。

(3)气象台预测台风到达的时间

台风给人们带来了严重的灾难。

①今年8月,台风“泰利”在西太平洋生成,沿西北方向在我国登陆,台风距离大陆2160千米,中心最大风速60米/秒,你能预测台风到达的时间吗?

②现在台风距九江约900千米,预计24小时后到达九江,你能估计台风的速度吗?

这一环节充分利用数学学科与信息技术的整合,让学生看到自己学到的知识在生活中处处可见,增强了数学应用意识,从而激发了学生学习数学的愿望!

四、板书设计

路程、时间与速度

路程=时间×速度

速度=路程÷时间

第二篇:一元一次方程说课稿-行程问题

各位评委,各位老师大家晚上好,我今天说课的内容是实际问题与一元一次方程中的行程问题。我将从教材分析、教学目标、教法学法、教学过程以及板书设计五个方面进行今天的说课。

首先一,教材分析

教材内容,实际问题与一元一次方程是人教版七年级上册第三章第四节的内容,教材分别介绍了一元一次方程在配比配套问题,工程问题,行程问题,销售问题,和差倍分问题等几大方面的应用,而行程问题是其中较为重要以及常见的内容之一。

其次,教材的地位与作用:一元一次方程的应用是在学生已经初步具备代数知识,并且已经掌握了一元一次方程及其解法这些内容之后安排的。教材这样的安排既为列一元一次方程解应用题做了必要的准备,也分解了一元一次方程解应用题的难点。

学生在小学已经学过了简单的行程问题,已经掌握了路程、速度、时间三个基本量之间的基本关系,初中,运用一元一次方程这一手段再次对行程问题进行分析,既巩固了小学的知识,又为后面学习二元一次方程组及分式方程奠定了坚实的基础。本节课在整个中学数学学习中起到了一个承上启下的重要作用。教学重难点

根据对学生以及教材的一个分析,我确立本节课的教学重点是:正确寻找相等关系 难点为:正确理解相等关系,并把关系中的各个量用未知数表示。

二、教学目标

知识与技能方面的目标是:会将实际问题抽象成线段图并找到等量关系列出方程。

过程与方法方面的目标是:通过对一元一次方程解行程问题的探究,渗透数形结合的数学思想,学生提高了观察、归纳、抽象的能力力及推理论证能力.

情感态度价值观方面的目标是:创造活跃有趣的情境,让他们在活动中获得成功的体验,培养探索精神,树立学习的信心。

三、教法学法

按照新课标的要求,教室只是课堂中的组织者引导者以及合作者。而有效教学的唯一评价就是学生所发挥的主观能动性,所以我确立本节课的教法为开放式探究法、启发式引导法,小组合作讨论法以及反馈式评价法。确立学法为:自主探究法,观察发现法合作交流法以及归纳总结法。整堂课创设一种有利于他们主动学习和发展的环境和条件。

四、教学过程 1.创设情境

首先,播放一个狮子捕食斑马的小视频,让学生看到追击的这一个过程,从而自然而然的想到今天所学习的内容即行程问题。其次,通过回忆小学所学过的简单的行程问题强调三个基本公式,路程=速度*时间。速度=路程/时间,以及时间=路程/速度 2.探索新知

第三篇:小学行程问题

.小学行程问题的经典应用题(附答案)

在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

答案为两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间

2.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。

3.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

4.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

5.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?

答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程

第四篇:行程问题 1

行程问题

1.小王汽车从家去县城,原计划每小时行12千米,由于有事晚出发半小时,要想按时到达,必须比原计划每小时多行4千米。县城距小王家___________千米。

2.某人开车从A地到B地要行200千米,开始时他以56千米/时的速度行驶,但因中途汽车故障修车半小时,为了按原定计划准时到达,他必须把速度增加14千米/小时来跑完以后的路程,他修车的地方距A地有___________千米。

3.在一圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙环形一周各需要______,_____分钟。

4.一条山路从山下到山顶是40分钟还差1000米,从山顶下山35分钟可以走完,已知下山速度是上山的1.6倍,这条山路长___________米。

5.妹妹走着去上学,出发10分钟后,哥哥骑车去追妹妹,5分钟就追上了妹妹,这时哥哥发现东西忘了,立刻返回,取了东西又去追妹妹,再次追上妹妹时,妹妹已走了___________分钟。

6.小张、小王、小李同时从湖边同一地点出发绕湖行驶,小张速度是5.4千米/小时,小王速度4.2千米/小时,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是___________千米。

7.甲、乙两车同时从A、B两地出发,相向而行,3小时后相遇。相遇后甲车继续行驶2小时到达B地,乙车每小时行24千米,AB两地相距___________千米。

8.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后慢车以40千米/小时的速度从乙站向甲站开出,两车相遇时,相遇点距两站的中点70千米。甲、乙两站相距___________千米。

9.甲步行、乙骑车从同一地点出发沿同一条公路前进。如果甲先出发40分钟,乙用30分钟追上甲,如果甲先出发30分钟,乙追上甲要___________分钟。

10. 某人由山底A上山经过山顶B下山到达山底C,共行30千米,共用7.6小时,已知他上山3千米/小时,下山5千米/小时,求上山AB长___________千米。如果从C点原路返回到A,要用___________小时。

第五篇:行程问题(一)

行程问题

(一)引入:甲乙两人相距200米,甲每小时走45米,乙每小时行55米。几分钟后两人相距500米?

完成“相遇问题”填空1~3;“追及问题”填空1~3。

讲解例1~例4。

例1: 妹妹放学回家,以每分钟80米的速度从学校步行回家,6分钟后,哥哥骑自行车以每分钟200米的速度从学校回家,当妹妹到家时,哥哥正好追上妹妹。问哥哥经过多少分钟追上妹妹?(求追及时间)

【跟进】完成(一)(二)中的其余填空。

甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可追上甲?

甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的1.2倍。现在甲在乙的后面400米,问:乙追上甲还需多少时间?

该题把“现在甲在乙的后面400米”改为“现在乙在甲的后面400米”,这么做?

有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米。两车同向而行,从第一列车追及第二列车到两车离开需要几秒?

例2 :一辆摩托车追赶比它先出发的一辆汽车。已知这辆汽车每小时行驶28千米,摩托车每小时行驶40千米,摩托车出发后7小时追上了汽车,汽车比摩托车早出发几小时?(求提早时间)分析 :

【跟进】

1、妹妹以每分钟50米的速度从家出发去学校,哥哥发现妹妹忘记带学具盒,于是哥哥骑自行车以每分钟200米的速度从家出发追赶妹妹,12分钟后追上妹妹。妹妹比哥哥早出发多少分钟?

2、妹妹从家出发去学校上学,以每分钟50米的速度步行,6分钟后哥哥也从家出发去同一所学校,经过12分钟哥哥追上妹妹。问哥哥每分钟走多少米?

例3:两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场。问:(1)第二辆追上第一辆的地点距仓库多远?

(2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远?

【跟进】

甲、乙两车同时从A地出发去B地,甲车每小时行12千米,乙车每小时行9千米,途中甲车停车4小时,结果甲车比乙车迟到1小时到达目的地,问AB两地之间的路程是多少千米?(求全程)分析:

例4 :小明在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时从他后面开过来一列火车,从车头到车尾经过他身旁共用了21秒,已知火车全长336米,求火车的速度。

【跟进】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。求小强骑自行车的速度。

小华在前面以不变的速度前进,小明在后要去追赶,如果速度是每分钟60米,要15分钟才能追上;如果速度是每分钟70米,要10分钟才能追上;问小华的速度是多少?

分析:小华先行的路程是一定的,即小明比小华多行的路程不变。

追及问题与相遇问题的区别在于运动的方向,及由此而引出的速度和与速度差;共同点是双方所用的时间是相等的。在解答追及问题时,关键是抓住速度差去分析和思考,同时画线段图辅助解题是一种行之有效的方法。

练习

(一)一、填空。

(1)甲、乙两列火车同时从两城相对开出,甲车每小时行54千米,乙车每小时行53千米,经过5小时相遇,两城间的铁路长()千米。

(2)甲、乙两城相距342千米,两列客车分别从甲、乙两城同时相对开出,一列客车每小时行58千米,另一列客车每小时行56千米,()小时相遇。

(3)甲、乙两列火车同时由相距792千米的两地相向而行,9小时后相遇,甲车每小时行45千米,乙车每小时行()千米。

(4)甲、乙两辆汽车同时从东、西两地相向出发,甲车每小时行56千米,乙车每小时行48千米,两车离中点32千米处相遇,那么东、西两地间的路程是()千米。

(5)小明的家在学校南边,小芳的家在学校北边,两家之间的路程是1410千米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校,已知小明每分钟能走70米,小芳每分钟能走80米,小明的家离学校()米。

(6)两列火车从某站相背而行,甲车每小时行52千米,甲车先开出2小时后,乙车才开出,乙车每小时行48千米,乙车开出5小时后,两列火车相距()千米。

(7)甲乙两人在周长是400米的圆形跑道上锻炼身体,两人朝相反方向跑,甲、乙两人第一次相遇和第二次相遇之间经过40秒,已知甲每秒跑6米,那么乙每秒跑()米。

(8)甲在A城,乙、丙在B城同时相向而行,甲时速14千米,乙时速11千米,丙时速9千米。已知甲、乙相遇后,又经过2小时甲、丙相遇,那么两城间的路程是()千米。

(9)A、B两站相距440千米,甲、乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米。一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又返回飞向乙车,这样一直飞下去,燕子飞了()千米,两车才能相遇。

(10)一辆汽车从甲地到乙地去,如果每小时行驶45千米,就要延误1小时到达;如果每小时行驶50千米,就可提前1小时到达,甲乙两地的路程是()千米。

(11)甲队以每小时行进15千米的速度去正前方120千米外的A镇侦察,与甲队同时出发的乙队以每小时9千米的速度前进,那么甲队完成任务后折返原路行()小时和乙队相遇。

(12)甲、乙两辆汽车同时分别从A、B两地相对开出,甲每小时行40千米,乙车每小时行45千米,甲乙两车第一次相遇后继续前进,甲、乙两辆汽车各自到B、A两地后,立即按原路原速返回,两车从开始到第二次相遇共用6小时,那么A、B两地相距()千米。

二、解答。

甲乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立即返回,第二次相遇在离B地55千米处,求 AB两地相距多少千米?

练习

(二)一、填空。

(1)甲、乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后家追上乙,乙每小时行6千米,甲的速度是()。

(2)甲以每小时4千米的速度步行去某地,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙()小时可以追上甲。

(3)甲、乙二人由A地到B地,甲每分钟走50千米,乙每分钟走45千米,乙比甲早走4分钟,二人同时到达B地,那么A地到B地的距离是()米。

(4)有两列火车,一列长102米,每秒钟行20米;一列长120米,每秒钟行17米,两车同向而行,从第一列车追上第二列车到两列车离开需要()秒。

(5)某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。已知列车长90米,那么列车的速度是()。

(6)甲、乙两车同时、同地出发去统一目的地,甲车每小时行40千米,乙车每小时行35千米,途中甲车停车3小时,结果甲车比乙车迟1小时到达目的地,那么两地之间的距离是()。

(7)甲、乙两人沿运动场的跑道跑步,甲每分钟跑300米,乙每分钟跑280米,跑道一圈长400米,如果两人同时由同地向同一方向起跑,那么甲经过()分钟才能第一次追上乙。

二、解答。

1.一架飞机侵犯我国领空,我机立即起飞迎击。在两机相距50千米时,敌机调转机头,以每分钟15千米的速度逃跑,我机以每分钟22千米的速度追击,当我机追至距敌机1千米时,与敌机展开了激战,只用半分钟击落了敌机,敌机从逃跑到被我机歼灭这段时间共用几分钟?

2.甲乙两地之间 的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇。如果两车分别从两城向同一方向开出,慢车在前面,快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?

3.张明、李军和赵琪三人都要从甲地到乙地,早上6点钟,张、李二人一起从甲地出发,张明每小时走5千米,李军每小时走4千米,赵琪上午8点从甲地出发,傍晚6点,张、赵同时到达乙地,问赵琪什么时候追上赵军?

4.甲乙丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,10分钟再遇到甲,求两镇距离是多少千米?

下载行程问题说课稿5篇word格式文档
下载行程问题说课稿5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    行程问题教案(汇编)

    第七讲 行程问题(一) 今天,我说课的课题是:xx教育内部教材六年级《行程问题》。 一、首先我们来进行教材分析。 本节课的主要内容有:让学生理解并掌握路程、速度和时间三者之间......

    简单行程问题教案

    “简单行程问题”教学设计 金城江区第九小学 yinhaijin 【教学内容】 人教版四年级数学上册53页例5及相关练习【教学目标】 1、理解速度、时间、路程的意义和速度简便表示......

    行程问题教案

    行程问题 教学目标: 1. 知道“速度”的表示法,了解“速度”的内涵。从实际问题中总结出速度、时间和路程间的关系。 2. 能根据路程、时间与速度的关系,解决生活中的简单问题,提......

    行程问题三

    第三讲行程问题(三) 【专题导引】 本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解......

    六年级行程问题

    六年级《行程问题》教案 ◆教学内容:行程问题 ◆教学目标::理解路程、时间和速度这三者关系的问题,并能解答实际问题。◆重 难 点:掌握路程、时间和速度这三者关系。 ◆教学步骤......

    分式方程应用题行程问题

    宝剑锋从磨砺出,梅花香自苦寒来 沂源县历山中学数学导学案八年级上册( ) 16.3.分式方程的应用—行程问题 学习目标: 1、知识与技能:.分析题意找出等量关系,会列出分式方程解决实......

    四年级行程问题练习题

    四年级行程问题练习题 1、甲、乙两车同时从A、B两地相向而行,甲车每小时行75千米,乙车每小时行66千米,经过4小时两车在途中相遇。A、B两地公路全长多少千米?2 甲、乙两车从A、B......

    《行程问题 》教学设计

    《行程问题 》教学设计 教学内容:教材第54页的内容及练习八的5~10题。 教学目标: 1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个......