第一篇:“有理数的乘法”教学目标
《有理数的乘法》教学目标
1.经历探索有理数乘法法则及运算律的过程,发展学生的观察、归纳、猜想能力; 2.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则;
3.了解倒数概念,会求给定有理数的倒数;
4.会进行有理数的乘法运算,能运用乘法运算律简化计算;
5.本节课通过蜗牛在直线上运动说明有理数乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活.
第二篇:有理数乘法教学设计
有理数的乘法
一、学情分析
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标 掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标 经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标 通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米? 学生:26米。教师:能写出算式吗? 学生:…… 教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。a.2 ×3 2看作向东运动2米,×3看作向原方向运动3次。结果:向 运动 米 2 ×3= b.-2 ×3-2看作向西运动2米,×3看作向原方向运动3次。结果:向 运动 米-2 ×3= c.2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米 2 ×(-3)= d.(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米(-2)×(-3)= e.被乘数是零或乘数是零,结果是人仍在原处。(2)学生归纳法则 a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得 b.积的绝对值等于。c.任何数与零相乘,积仍为。(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。(1)教师按课本P75 例1板书,要求学生述说每一步理由。(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。(3)学生做 P76 练习1(1)(3),教师评析。(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为。
4、讨论对比,使学生知识系统化。有理数乘法 有理数加法 同号 得正 取相同的符号 把绝对值相乘(-2)×(-3)=6 把绝对值相加(-2)+(-3)=-5 异号 得负 取绝对值大的加数的符号 把绝对值相乘(-2)×3=-6(-2)+3=1 用较大的绝对值减小的绝对值 任何数与零 得零 得任何数
5、分层作业,巩固提高。
六、教学反思
节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。
【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。
第三篇:《有理数乘法》教学反思
20xx年9月19日,我上了第一节进入中学后的汇报课,虽然完成的不够好,但是我还是比较满意的。本节课是从以下几个方面完成的:
1、利用多媒体演示水位的变化,引出有理数的乘法。
2、学生分组活动探究有理数乘法法则,并进行简单的应用
3、由列举的例子得出有理数乘法的符号法则及时地进行简单的应用。并把所学的知识进行适当的拓展。
4、在例题、习题的选择上,兼顾不同层次的同学,力求使每个学生在数学课上都能学到有价值的数学。
成功:
1、在教学设计中教学目标明确,重点突出。认真钻研教材与大纲,掌握教材的基本要求,从学生的认知水平和知识基础出发,利用多媒体演示动画引出课题,使学生在观察、体验中学习数学,激发学生学习数学的兴趣。
2、通过对特里的归纳,鼓励学生自己总结有理数的乘法法则,并用自己的预言家一描述。
3、鼓励学生通过观察,用自己的语言表达所发现的规律并学会与他人交流。
4、在结果符号的确定上,教会学生根据具体问题,首先确定积的符号,然后进行计算。让学生明确有关有理是乘法的问题,记得符号一旦确定,其他的运算与小学乘法相同。
5、以小组为单位,分组练习。各组展开评比,不仅给更多同学展示的机会,还激发了学生的热情。让学生最大限度地暴露出在计算过程中出现的问题,及时纠正,为每一位同学着想。
不足:
1、学生在灵活应用方面欠佳。在以后的教学中加强学生能力培养。
2、在分组活动中,学生互相把存在的问题解决,即采用“兵教兵”方法,培养学生的讲解能力。
3、应根据学生的个体差异,有效地进行分层次训练和技能培养。
第四篇:第一章有理数教学目标
第一章有理数教学目标
1.知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小. 2.过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.
3.情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言. 重、难点与关键
1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.
2.难点:准确理解负数、绝对值等概念.
3.关键:正确理解负数的意义和绝对值的意义. 课时划分
1.1 正数和负数
2课时
1.2 有理数
5课时
1.3 有理数的加减法
4课时
1.4 有理数的乘除法
5课时
1.5 有理数的乘方
4课时
第一章有理数(复习)
2课时
第五篇:有理数乘法运算教学设计
2.9 有理数的乘法
第1课时 有理数的乘法法则
(设计者:李开聪)
授课时间:2010年12月26日 授课地点:保山市腾冲县荷花中学 授课教师:李开聪
教学模式:参与式教学
教学理念:以教材为依据 教学目标:
1.使学生经历有理数乘法这一知识的产生过程,规律的发现过程,了解有理数乘法的实际意义,探索有理数的乘法法则,培养学生独立自主学习知识的能力。
2.使学生理解掌握有理数的乘法法则,熟练进行有理数的乘法运算。
教学重点:有理数的乘法运算。
教学难点:确定积的符号。
设计思路:
本节课是在小学已接触到的乘法、初中刚学习过的有理数的加、减法的基础上进行的。通过观察乘法算式,引导学生探索有理 数的乘法法则。本次活动十分注重学生的自主探究、合作交流、归纳总结以及参与意识的培养,使其充分体会到知识的产生和规律的发现过程,让学生能够积极参与到数学活动中来,主动融入到数学学习中去。
教学用具:大白纸和彩色书写笔
教学过程:
一、教师导入:
1、提出问题:(口述提问)
(1)3个2是多少?(让学生用加法计算)学生回答:2+2+2=6(再让学生列出乘法算式)
(板书)3×2=6
(2)3个-2是多少?(让学生用加法计算)学生回答:-2+(-2)+(-2)=6(再让学生列出乘法算式)(板书)3×(-2)=-6(板书课题)§2.9-1有理数的乘法法则
2、总结归纳:(口述结论)
比较上面两个算式,我们发现:
若把一个因数变成它的相反数,则所得的积也变成原来的积的相反数。
3、变换练习:(板书)
对于3×2=6,若把因数3换成它的相反数,则积6也变成原来的相反数-6。即:-3×2=-6
以此类推则有:-3×(-2)=6
(引导学生观察算式,以便发现规律,得出乘法法则,让学生口述)
3×2=6
-3×(-2)=6
同号得正,并把绝对值相乘。-3×2=-6
3×(-2)=-6
异号得负,并把绝对值相乘。
二、学生活动:(组织学生分组,6—8人为一组,全班分成8个组)
根据法则分组计算下列各题,各小组把解题过程和发现的规律写在大白纸(第1组和第6组)
1、①-2/9×0
②-6/5×(-5/2)(先计算结果,再寻找规律)
规律:0因数的结论和带分数的计算方法和小学学过的一样。
(第2组和第5组)
2、①-1×8
②-9/8×(-1)(先计算结果,再寻找规律)
规律:一个数乘以-1等于它的相反数。(第3组和第8组)
3、①-6×(-1/6)
②-7/8×(-8/7)(先计算结果,再寻找规律)
规律:倒数问题和小学学过的一样。(第4组和第7组)
4、①-2×(-3)×4
②-2×(-3)×(-5)(先计算结果,再寻找规律)
规律:几个有理数相乘,积的符号由负因数的个数确定。
(在学生分组活动时写出法则)
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
三、师生互动:
1、每个小组按次序展示活动成果,各派一名发言代表进行讲述。
(每个小组的发言时间不超过2分钟)
2、教师点评。
四、巩固练习:
课本第52页练习的第1、2、3题。(让学生独立完成练习)
充分体现:参与的目的是为了提高学生独立自主学习知识的能力。
五、课堂小结:
1.本节课我们经历了有理数乘法法则的探索与发现,并且能够熟练进行有理数的乘法运算。
2.同时我们发现:倒数和0因数的结论,在有理数范围内仍然成立。
那么,我们以前所学的乘法运算律,在有理数范围内是否成立呢?
预知详情如何?下一节课再说!(设置悬念)
六、布置作业:课本第57页习题2.9 的第1、2、3题。
六、教学反思
本节课通过学生的自主探究、合作交流、归纳总结,充分体会到知识的产生和规律的发现过程,能够积极参与到数学活动中来,主动融入到数学学习中去。这样免去了教师苦口婆心的讲解却起不到好的效果,使得师生合作得到很好的诠释。
参与式教学设计
姓名:李开聪
学校:腾冲县荷花民族中学