有理数的乘法教学设计
有理数的乘法教学设计1
教学目标
1、会把有理数的加减法混合运算统一为加法运算;
2、会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想
教学重点
把有理数的加减法混合运算统一为加法运算
教学难点
省略负数前面的`加号的有理数加法,运用运算律交换加数位置时,符号不变
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算
1、完成下列计算:
(1)3+7—12;(2)(—8)—(—10)+(—6)—(+4)
归纳:根据有理数的减法法则,有理数的加减混合运算可以统一为运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和后的形式是______________________;
读作____________________或_______________________
展示交流
1、把下列运算统一成加法运算:
(1)(—12)+(—5)—(—8)—(+9)=_____________________________;
(2)(—9)—(+5)—(—15)—(+9)=_____________________________;
(3)2+5—8=_________________________________;
(4)14—(—12)+(—25)—17=_____________________________________
2、将下列有理数加法运算中,加号省略:
(1)12+(—8)=________________;
(2)(—12)+(—8)=_________________________________;
(3)(—9)+(—5)+(+15)+(—20)= ____________________________
3、将下列运算先统一成加法,再省略加号:
(—15)—(+63)—(—35)—(+24)+(—12)=_________________________
=_________________________
4、仿照本P37例6,完成下列计算:
(1)—4—5+6;(2) —23+41—24+12—46
5、仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12。5 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升4。5千米,下降3。2千米,上升1。1千米,下降1。4千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39习题2 .5第6题(1)、(3)、(5),第7题。
有理数的乘法教学设计2
第1课时
三维目标
一、知识与技能
(1)理解并掌握有理数的减法法则,能进行有理数的减法运算
(2)通过把减法运算转化为加法运算,让学生了解转化思想
二、过程与方法
经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力
三、情感态度与价值观
体会有理数加法运算律的应用价值
教学重、难点与关键
1.重点:掌握有理数减法法则,能进行有理数的减法运算
2.难点:探索有理数减法法则,能正确完成减法到加法的转化
3.关键:正确完成减法到加法的转化
四、教学过程
一、复习提问,新课引入
1.计算.
(1)(—2.6)+(—3.1)(2)(—2)+3
2.填空.
(1)__+6=20(2)20+______=17
(3)___+(-2)=5(4)(-20)+___=-6
五、新授
实际问题中有时还要涉及有理数的减法,例如,某地一天的.气温是—3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4—(—3),这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索)
可以先从温度计看出4℃比—3℃高7℃
另外,我们知道减法和加法是互为逆运算。计算4—(—3),就是要求出一个数x,使x与—3的和等于4,因为7+(—3)=4,所以
4—(—3)=7①
另外4+(+3)=7,②
比较①、②两式,你发现了什么?
发现:4—(—3)=4+(+3)
这就是说减法可以转化为加法,如何转化呢?
减—3相当于加3,即加上“—3”的相反数
比较上面的式子,计算下列各式:
50—20=50+(—20)=
50—10=50+(—10)=
50—0=50+0=
50—(—10)=50+10=
50—(—20)=50+20=
这些数减—3的结果与它们加+3的结果仍然相同
归纳:通过上述讨论,得出:
有理数的减法可以转化为加法来进行,“相反数”是转化的桥梁。有理数减法法则:
减去一个数,等于加上这个数的相反数
用式子表示为:a—b=a+(—b)
注意:减法在运算时有2个要素要发生变化。
1减号变加号
2减数变相反数
例4:计算:
(1)—3—(—5)(2)7。2—(—4。8)
(3)0 – 8(4)(—5)—0
分析:以上是有理数的减法,按减法法则,把减法转化为加法
11—3(——5)2411113例3:计算:(1) —0.257—4.47(4)(—3)—5=(—3)+(—5)=—8 24244例2:计算:(1)(—2.5) – 5.9(2)
强调:减号变加号、减数变相反数,必须同时改变,(4)题中减数的符号为“+”号,省略没有定
综合运用:课本25页,6题
六、课堂练习
1:计算:
(1)6—9(2)(+4)—(—7)
(3)(—5)—(—8)(4)0—(—5)
(5)(—2.5)—5.9(6)1.9—(—0.6)
2、列式计算:
(1)比2 ℃低8 ℃的温度
(2)比—3 ℃低6 ℃的温度
3、课本26页7、8、10题略
2.差数一定比被减数小吗?
提示:不一定,例如(—7)—(—5)=(—7)+(+5)=—2,—2>—7
七、课堂小结
引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),学习有理数减法,关键在于处理好两个“变”字;
(1)改变运算符号──即把减法转化为加法
(2)改变减数的符号──即减数变为它的相反数,这两个“变”要同时进行,而被减数不变
八、作业布置
1.课本第25页至第26页,习题1.3第3、4、11、12题。
九、板书设计:
有理数的乘法教学设计3
教材分析
“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。
学情分析
1、让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
2、通过观察、归纳,提高学生的理性认识。
3、培养学生学会表达、学会倾听的良好品质。
教学目标
1、知识技能:
(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。
(2)掌握有理数乘法法则,能解决简单的的实际问题。
2、数学思考:
通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。
3、问题解决:
通过自主探索和合作交流,发展学生逆向思维及化归思想。
4、情感态度价值观:
通过经历探索有理数乘法运算的过程感受数学与生活的`紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。
教学重点和难点
教学重点是:有理数的乘法法则的理解和运用.
教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。
有理数的乘法教学设计4
一、教材分析
有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。
二、学情分析
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)
1、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、初步培养学生发现问题、分析问题、和解决问题的能力。
3、通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣。
4、传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点
重点:有理数的乘法法则。
难点:有理数乘法的符号法则
五、教学策略
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)
1、复习导入创设情境
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。
2、师生互动探究新知
要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)
这样设计的目的是
1、构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。
2、通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。
3、分析法则掌握实质
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
4、解决问题综合运用
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数—乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
5、体验成功享受快乐
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的`积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。
6、总结收获畅谈体会
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
7、布置作业巩固深化
七、课后反思
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!
有理数的乘法教学设计5
《有理数的惩罚》教学设计
一、学情分析:
1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察“水位的变化”,运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。
二、教材分析:
教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。
本节课的数学目标是:
1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;
2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:
三、教学过程设计:
本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节:问题情境,引入新课
问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。
(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的`表示法和乙水库水位变化量的表示法。
设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。
第二环节:探索猜想,发现结论
问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式
(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。
教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。
(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。
第三环节:验证明确结论
问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合
一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。
教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
第四环节:运用巩固,练习提高
活动内容:
(1)1。计算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。计算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?
(4)计算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.
教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;
(2)例2讲解之后,要启发学生完成“议一议”的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。
第五环节:感悟反思课堂小结
问题
1.本节课大家学会了什么?
2.有理数乘法法则如何叙述?”
3.有理数乘法法则的探索采用了什么方法?
4.你的困惑是什么
教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。
教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。
第六环节:布置作业
巩固作业:教科书知识技能1、2;问题解决1;联系扩广1
预习作业;略
四、教学反思:
1、设计条理的问题串,使观察、猜想、验证水到渠成
2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。
3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。
有理数的乘法教学设计6
一、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的'理解。
三、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
有理数的乘法教学设计7
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的.乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1、有理数的乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘___________________________________
(3)0与任何自然数相乘,得____
2、有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3、有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
有理数的乘法教学设计8
1.4.1有理数的乘法(第一课时)
1.教材分析
1.1教材的地位与作用
教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。
1.2教材的重难点分析 1.2.1教学重点
运用有理数乘法法则正确进行计算。 1.2.2教学难点
有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;
2.2过程与方法
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观
通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析
本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。
附:板书设计
“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则
前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养
有理数乘法两步骤 练习处
和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。
“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的'探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。
“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。
在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。
在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维
方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。
参加全国“教学中的互联网搜索”优秀教案评选
《有理数的乘方》教学设计
——陕西省渭南市实验初中
马
珂
一、教材分析
《有理数的乘方》是北师大版七年级上册的内容。该单元主要涉及了十二部分内容,“有理数的乘方”作为第十部分内容,作为学生接触的一种新运算,就显得尤为重要。教学有理数的乘方不但是“有理数加、减、乘、除的引申,而且是后面有理数混合运算的基础,如果这节没有把握好,就会给后面的教学造成障碍。教材这部分设计注意到了使学生在亲身经历中发现问题、探索规律,促进对知识的理解和掌握。我在执教时,在遵循教材的基础上,力求体现新课标的新理念、新思想。
根据学生已有知识水平,能力和《课标》及单元的要求,我确定了本课的教学目标、重点、难点。
(一)教学目标
知识目标:在现实背景中,理解有理数乘方的意义。
能力目标:能进行有理数盛放的运算;能够在实例中探索出正负数幂的特点。
情感目标:激发学生探索新知识的兴趣。
(二)教学重、难点:
重点:理解有理数乘方的意义;会进行有理数乘方的运算。
难点:探索正负数冥的特点。
二、教法、学法的选择运用
根据《课标》及教材《说明》中培养学生自学能力,创新能力的要求。我确定的教法是:情境创设法、激趣法、类比法、讲解法、引
导法。
学法是:以自主学习为主的小组合作学习、学生口头阐述、纠正补充、观察探究等多种方法相结合,使学生在自主合作中提高合作能力,培养合作意识。
三、本课运用的教具:
教学挂图 小黑板 彩色粉笔
四、教学程序设计:
(一)创设情境,提出问题
设置邀请学生当生物学家和老师一起探讨生物学问题的情境,激发学生解决问题的兴趣。
(二)解决问题 导入新课
指导学生解决 生物学问题,引出乘方概念。
(三)探究新知 讲练结合
1.讲解有关乘方的知识:(1)乘方是一种运算;(2)讲解各部分的名称;(3)写法;(4)读法;
2.根据乘方的概念引导学生独立完成例
1、例2 3.小组讨论:
(1)正负数幂的特点;(2)10的n次方的特点。
(四)互助合作 巩固新知
组织学生小组合作完成随堂练习,新一步巩固,培养学生的小组合作能力。
(五)总结全课,开拓延伸
引导学生口述“本节课的收获”,培养学生的口头表达能力和总结能力,布置作业,开拓延伸,使本节课余味萦绕,令人回味无穷。
一、创设情境,提出问题:
师:同学们,今天老师想请大家当一回生物学家,和老师一起探讨一个生物学问题,不知道同学们愿不愿意?
生:愿意!
(出示“细胞分裂图”和问题)
师:我们来看这个问题:每种细胞每过30分便有1个分裂成2个,经过5时,这种细胞由1个能分裂成多少个?
二、解决问题 导入新课:
师:请大家看这是“细胞分裂图”,我们来分析一下:
1个细胞30分后
→
2个
1小时后
→
1.5小时后→2×2×2个
……
一个细胞30分钟后分裂一次,分裂成2个,一个小时分裂两次成了2×2个;1.5小时分裂三次,成了2×2×2个;那么,5小时后分裂多少次?就是几个2相乘?
生:10次,10个2相乘。
师:同学们回答的真好!为了简便其间,我们把2×2×2×2×2×2×2×2×2×2 记作:210.同理:(板书)
也就是说:求n个相同因数a的积得运算叫做乘方。我们这节课就来专题研究:(板书)
有理数的乘方
三、探究新知,讲练结合:
(一)讲解有关乘方的知识:
1、乘方是一种运算。
师:乘方从概念上来看和加、减、乘、除一样也属于一种运算,它是一种特殊的乘法运算,同学们能不能理解?
生:能。
2、乘方各部分的名称与写法。
师:下面我们来看乘方各部分的名称:n个相同因数a相乘,记作:an ,相同因数a写在下面叫做底数,n写在a的右上角叫做指数,an 作为乘方运算的结果,如同加、减、乘、除运算的结果:和、差、积、商一样,叫做幂。(边讲解边板书)
师:底数为正数,比如:4个2相乘该怎么表示? 生:24 师:很好,那么底数为负数或者分数呢?比如:3个-3相乘,3个1/2相乘,分别该怎样表示?
生:-33,13/2 师:对吗?-33它表示-3×3×3,13/2它表示1×1×1/2和我们表示的一样吗?
生:不一样
3师:3个-3相乘应表示为:(-3);3个1/2相乘应表示为(1/2)3。请同学们注意负数和分数做底数时应带上括号。
3、读法
师:an读作:a的n次幂或者a的n次方,22可以怎样读?23可以怎样读?28可以怎么读?
生:22读作:2的2次幂或者2的2次方还可以读作2的平方;
生:23读作:2的3次幂或者2的3次方还可以读作2的立方;
生:28读作:2的8次幂或者2的8次方。
师:同学们回答得棒极了!会读了吗?会写了吗?下面我们来做几个有关乘方的计算题。
(二)根据乘方的概念引导学生独立完成例
1、例2
(学生口述,教师板书)例1:计算:
(1)53;
(2)(-3)4;
(3)(-1/2)3.解:(1)53=5×5×5=125;
(2)(-3)4=(-3)×(-3)×(-3)×(-3)=81;
(3)(-1/2)3=(-1/2)×(-1/2)×(-1/2)=-1/8 例2:计算:(1)10 2、103、104;
(2)(-10)
2、(-10)
3、(-10)4; 解:(1)10 2=10×10=100 103=10×10×10=1000 104=10×10×10×10=10000(2)(-10)2 =(-10)×(-10)=100
(-10)3 =(-10)×(-10)×(-10)=-1000
(-10)4 =(-10)×(-10)×(-10)×(-10)=10000
(三)组织学生小组讨论冥的特点:
师:看来同学们已经掌握了乘方运算,那么请同学们回过头来仔细观察例2,小组讨论:底数为正数时幂的特点;
底数为负数时幂的特点;
可结合指数的奇偶考虑。(开始)
【学生展开讨论 教师巡视点拨】
师:讨论好了吗?谁来说说?你来说。
生:正数的任何次幂都是正的;
生:负数的奇次幂是负数,偶次幂是正数。
师:同意吗?
生:同意。
师:同学们真了不起!我们再来看看这三个算式(教师手指例2的第一小题)102等于给1的后面添两个0;103等于给1的后面添三个0;104等于给1的后面添四个0;10n呢?
生:10n等于给1的后面添n个0.师:说得很好!其实这就是“10n的特点”,现在我们已经总结了三条规律,请同学们一块口述,老师把他们写出来,行吗?
生:行!
(教师用彩色粉笔板书三条规律,学生集体口述)
四、互助合作 巩固知新
下面我们来做练习,请同学们以小组为单位,结合今天所学的知识,完成随堂练习。
集体订正。
五、总结全课
开拓延伸
师:这节课同学们表现的都很棒!那么谁来谈谈你这节课的收获?
生1:我明白了什么是乘方;
生2:我学会了正数的幂的特点;
生3:我懂得了负数的幂的特点;
生4:我还知道了10n的特点。
……
师:很好!既然大家有这么多的感慨,为什么不把它用到实际的解题过程中呢?
请听今天的作业:课本习题2.13第1、2、3题及试一试。