第一篇:奥数精讲与测试 三年级 奥数 逆推问题
EET国际教育内部资料
三年级数学
EET国际教育三年级数学 第十讲 逆推问题
知识点,重点,难点
逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,有后向前逆推计算。逆推问题还被称为逆推法,主要包含一下两层意思。
1.要根据题意的叙述顺序,从最后一组数量关系逆推至第一组的数量关系,这就是逆推法中运算顺序的逆推含义。
2.原题相加,逆推用减;原题用减,逆推用加;原题相乘,逆推用除;原题用除,逆推用乘,这就是逆推法中计算方法的逆运算含义。
例1:某数如果先加上3,再乘以2,然后除以3,最后减去2,结果是10,问原数是多少?
分析:我们用代替原数,则□经过一系列运算后是10,这一系列过程,我们可以用下图来表示:
图1
观察图1可以发现,从最后结果10往回推,第第个横线上的数是12×3=36,第个横线上的数应该是10+2=12,个横线上的数应该是36÷2=18,则 就是18-3=15.例2:小明从家到学校去,先走了全场的一半后,又走了剩下路程的一半。这时离学校还有1千米,问小明家到学校共多少千米?
分析:如图2,采用倒退的方法,可以发现1千米是第一次剩下路程的一半,所以第一次剩下的路程就是1×2=2(千米),而第一次剩下路程2千米又是全程长的一半,所以全程长为2×2=4(千米)。
图2
例3:做一道整数加法题时,一个同学把个位上的数6看是9,把十位上的数8看作3,结果得出和为123,问正确的和是多少? 分析:学生把个位上的数6看是9,使和增加了9-6=3,把十位上的数8看作3,使和减少了80-30=50,将多增加的部分去掉,加上少加的部分,就能得出原来的和。
另外,根据题意可知原来的加数应为86,而这个学生误认为是39,所以只要将错误的和123减去错误的加数,得出原来的另一个加数,再重新加上正确的加数 EET国际教育内部资料
三年级数学
86,也能得出正确之和。
例4:小朋友做一批纸花,第一天做个总数的一半多10朵,第二天又做了余下的一半多10个,还有25朵没有做,问这批纸花一共有多少朵?
图3 分析:按照题目中的条件与图3,可推出如下算式 25+10=35(朵),35×2=70(朵),70+10=80(朵),80×2=160(朵).例5:某水果店运进一批苹果,运进的苹果是原有苹果的一半,原有的西瓜卖掉一半以后,恰好和现在的苹果一样多。已知原有苹果800千克,问原有西瓜多少千克?
分析:如图4可一步步推算出运进苹果是800÷2=400(千克),现有苹果800+400=1200(千克),原有西瓜1200×2=2400(千克)。
图4
例6:小丽用4元钱买了一本《好儿童》,有用剩下的钱的一半买了一本《儿童画报》,买钢笔有用了剩下钱的一半多1元,最后还剩下4元钱,问小丽原来有多少钱?
图5 分析:如图5,用倒推法,第二次剩下的一半时4+1=5(元),第二次剩下5×2=10(元),第一次剩下10×2=20(元),原来有20+4=24(元)。
A 卷 EET国际教育内部资料
三年级数学
1.某数加上3,乘以5,再加上7,除以8,减去9,再用4乘,恰好等于100,这个数是?
2.1997是香港回归祖国的一年,张老师说:“把我的年龄乘以4减去17,再乘以10后加上7,正好等于1997.请同学们算一算,我今年几岁?
3.仓库里有一批大米,第一天运出150袋,第二天又运出了180袋,第三天又运进了220袋后仓库里还剩下310袋大米,仓库里原有大米多少袋?
4.百货商店出售彩色电视机,上午售出总数的一半又3台,下午售出余下又7台,还剩4台。商店里原来有电视机多少台?
5.有一袋苹果,甲取出其中的一半少1个,乙取出余下的一半多1个,丙又取出了余下的一半,这时还剩下1个。如果这袋苹果共5元,那么每个苹果多少钱?
6.一辆公共汽车出发时,车上有一些乘客。到了第一站,下去了2个乘客,上来了6个乘客;到了第二站,下去了3个乘客,上来了4个乘客。这时车上共有28个乘客,这辆公共汽车出发时车上有车上有几个乘客?
7.小亮在做一道两部计算题时,把乘以3误以为除以3,接着又把加上4错计算为减去4,这样得到的结果是1,正确的结果应是多少?
8.一袋糖用去一半多50克,还剩下200克,问原来这袋糖中多少克?
9.三个金鱼缸共有15条金鱼,如果从第一只缸里取出3只放到第二只缸,在从第二只缸中取出3条金鱼放入第三只缸中,那么三只金鱼缸里的金鱼条数一样多,原来第一只缸有金鱼几条?第二只缸有金鱼几条?第三只缸有金鱼几条? EET国际教育内部资料
三年级数学
10.商店里原来有煤若干吨,第一天上午运出总数的一半,下午运出5吨;第二天上运出余下煤的一半,下午也运出5吨;第三天又运出剩下煤的一半,下午运出5吨。这时仓库里的煤正好运完,这个仓库原有煤多少吨?
11.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这时第一堆中还有48个,问原来第一堆中有梨多少个?
12.亮亮,宁宁,晶晶三人共带了30元钱,宁宁给亮亮2元,亮亮用去3元,晶晶给宁宁2元后三人的钱数正好相等,问原来亮亮有多少钱?宁宁有多少钱?晶晶有多少钱?
B 卷
1.某数加上8,除以8,除以8,结果还是8,这个数是几?
2.徒弟问师傅的年龄,师傅说:”把我的年龄加上5,除以3,再减去7就是你今年岁数的一半。“已知徒弟今年20岁,师傅今年多少岁?
3.芳芳在做一道加法题时,把一个加数个位上的5错写成6,又把另一个加数十位上的8错写成1,最后得到的和是472,这时正确的答案应是多少?
4.一桶油,第一次用去全部的一半,第二次用去余下的一半,还剩下12千克,这桶油原来重多少千克?
5.某人去银行取款,第一次取了存款数的一半还多30元,第二次取了余下数的一半还少10元。这时还剩115元,他原来存了多少钱?EET国际教育内部资料
三年级数学
6.有一捆绳子,第一次用去全部的一半少3米,第二次用去余下的一半多5米后绳子正好用完,原来这捆绳子长多少米?
7.妈妈买来一些橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多一个,第三天吃掉第二天剩下的一半多1个,还剩一个橘子,妈妈买得橘子一共有多少个?
8.甲,乙两个仓库共存粮95吨,从甲仓库调8吨粮食到乙仓库,又从乙仓库调35吨粮食支援灾区,这时甲仓存粮多少吨?义仓库存粮多少吨?
9.甲,乙两篮水果,个数不等,从甲篮里拿出一些苹果放到乙蓝里,使乙篮的苹果个数增加一倍;再从乙蓝拿出一些苹果放回甲蓝,使甲篮里的苹果个数都是20只,原来甲蓝里有苹果多少只,乙蓝里有苹果多少只?
10.从第一堆梨中拿一半放入第二堆,拿35个放入第三堆,再拿出剩下的一半放入第四堆里,最后又吃掉第一堆中的2个梨,这是第一堆中还有48个,原来第一堆中有梨多少个?
11.小朋友分一堆苹果,先分它的一半多3个给年龄较小的,然后把其余的一半多2个给年龄较大的。这时还剩4个苹果,问原来有苹果多少个?
12.甲,乙,丙三个同学共有铅笔30支,甲给乙6支,乙给丙5支,丙给甲2只。这时三人的苹果数相等,问他们各有铅笔多少只?
C 卷
1.老爷爷说:“把我的年龄加上12,再用4除,然后减去15,再乘以10,恰好是100岁。”这位老爷爷现在又多少岁?EET国际教育内部资料
三年级数学
2.甲,乙,丙三个共有图书120本,乙向甲借3本后,又送给丙5本,结果三个人图书数相等,甲,乙,丙三人各有图书多少本?
3.植树节学校要栽102棵树苗,小强和小明两人挣着去栽。小强先拿了若干树苗,小明见小强拿的太多,就抢了10棵,小强不肯,用从小明那里抢回来6棵,这是小强拿的棵树是小明的2倍,最初小强拿了多少棵树苗?
4.百货商店出售彩色电视机,上午售出总数的一半多20台,下午售出余下的一半多15台,还剩75台。店里原有彩色电视机多少台?
5.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原有多少米?
6.今有苹果不知其数,如果把苹果数减去50,加上3,得数123,有多少个苹果?
7.有一个数除以4,再乘以5,减去35,加上10等于100,这个数是?
8.小文在计算两个数相加时,把一个加数个位上的1错误的当做7,把另一个加数十位上8错误的当做3,所得的和是1995.原来两数相加的正确答案是多少?
9.有砖26块,甲乙两人争着搬,甲看乙搬得太多,就抢过来一半,乙不服,又从甲哪儿抢走一半,甲不肯,乙只好再给甲5块,这时甲比乙多搬2块,问最初乙准备搬多少块?
10.有甲,乙两堆小球各若干个,按下面的规律挪动小球:第一次从甲堆拿出与乙堆同样多的小球放到乙堆,第二次从乙堆拿出与甲堆剩下的同样多的小球放到甲堆。。如此挪动4次后,甲,乙两堆的小球恰好都是16个,问甲,乙两堆小球最初各是多少个? EET国际教育内部资料
三年级数学
11.有三堆棋子共48颗,第一次从第一堆中拿出与第二堆颗数相同的棋子放入第二堆,第二次又从第二堆中拿出和第三堆相同的颗数放入第三队,第三次从第三堆中拿出和这时第一堆颗数相同的棋子放入第一堆。这时三堆棋子颗数相同,问原来每堆棋子各有多少颗?
12.有一堆糖果,慢慢将它三等分后还多一块糖,妈妈留下其中的一份和多出的那块糖,其余的分给了哥哥;哥哥把所得的糖三等分,也多出一块。哥哥留下其中的一份和多出的那块糖,其余的分给了我;我也学他们将糖三等分,还是多出一块。你知道妈妈开始至少有几颗糖吗?
第二篇:三年级奥数
发到
三年级奥数--年龄问题
教学目标
1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.
知识点说明:
一、年龄问题变化关系的三个基本规律:
1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变
二、年龄问题的解题要点是:
1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.
3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。
年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;
年龄问题的解题正确率保证:验算!
例题精讲
【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:
方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).
列式:(366)(66)421
230(岁)
方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.
列式:36630(岁)
答:再过6年,小卉读初中时,妈妈比小卉大30岁.
【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?
【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?
【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.
爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?
【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).
【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.
母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).
【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.
【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).
【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).
【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:
小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).
【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?
【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到
弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).
【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?
【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).
【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?
【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)
【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?
【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.
【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?
【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.
5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?
【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:
儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).
【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是
18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).
第三篇:三年级奥数 盈亏问题
第4讲盈亏问题
教学目标
本讲主要学习三种类型的盈亏问题: 1.理解掌握条件转型盈亏问题: 2.理解掌握关系互换性盈亏问题;3.理解掌握其他类型的盈亏问题,本节课要求老师首先上学生理解盈亏问题其本公式的含义,在通过例题让学生掌握解答应困问题的其本技巧,培养学生的思维分析能力。经典精讲
盈亏问题,故名思意有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。盈亏问题的关键是专注两次分配时盈亏总量的变化。我们把盈亏问题分为三类:“一盈一亏”、“两盈”“两亏”。1.“盈亏”型
例如:学而思学校四年级基础班的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?
【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为15115(位),糖果的粒数为:415969(粒)。2.“盈盈”型
例如:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:717(只),老猴子有710979(个)桃子。3.“亏亏”型
例如:学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差9本,第二次就只差2本了呢?因为两次分配数量不一样,第一次分配时每人少发一本,也就是共有717(人)书有710961(本)。
根据以上具体题目的分析,可以得出盈亏问题的基本关系式:
(盈+亏)两次分得之差=人数或单位数
(盈-盈)两次分得之差=人数或单位数
(亏-亏)两次分得之差=人数或单位数
条件转化型的盈亏问题
这种类型的题目不能直接计算,要将其中的一个条件转化,使之成为普通盈亏问题。
【例1】 军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人住一个房间,现在每间住10人,可以空出多少个房间?
【分析】每间住6人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,也就是第二次分配少62210(人),那么两次分配方案人数相差20+10=30(人),即可以空出10-50105(间)房间。【铺垫】学校给一批新入学分配宿舍。如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。求学生宿舍有多少间,住宿学生有多少人?
【分析】把“每个房间住14人,则空出4个房间”转化为“每间住14人,则少14456(人)”这样两种方案就可以比较了。
第一种方案多出34人,第二种方案少56人,90245(间),学生数为:124534574(人)
[例2]妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6人,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全加共有多少人? 【分析】由“其中两人分4个,其余每人分2个,则多出4个,”转化为全家每人都分2个,这分4个的两人每人都拿出2个,共拿出4个,结果就多了4+4=8个:由“一人分6个,其余每人分4个,则缺少12个”转化为全家每人都分4个,分6个的人拿出2个。结果就少了12-2=10个,转变成了盈亏问题的一半类型,则:
全家的人数:[422(122)](42)1829(人)
橘子的个数:29826(个)
【铺垫】实验小学的少先队员去植树。如果每人种5棵还有3棵每人种;如果其中2人各种4棵。其余的人各种6棵,这些树苗正好种完,问有多少少先队员参加植树,一共iozhong多少课树苗?
【分析】这是一道较难的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各种4棵,其余的人各种6棵,就恰好种完,这组条件中包含着两种种树的情况——2人各种4棵,其余的人各种6棵。如果我们把他们统一成一种情况,让每人种六棵,那么,就可以多种树(6-4)24(棵)。因此,原问题就转化为:如果每人各种5棵树苗,还有3棵没人种;如果每人种6棵数树苗,还缺4棵。问有多少少先队员,一共种多少树苗? 人数:[3+(6-4)2](65)7(人),棵树:57338(棵)或67438(棵)【小结】盈亏问题必须是将一定数量的物体平均分给固定对象,而本题中两次分橘子均不是每人分别的橘子数相同。碰到此类似情况时,不需将其调整成两次都是平均分,然后解答。
【例2】 学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
【分析】小明每分钟走60米,可提早10分钟到校,即到校后还可多走6010600米,如果每分钟走50米,可提早8分钟到校,即到校后还可多走508=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以夺走600-400=200(米),从而可以求出小明由家道校所需时间。(1)10分钟走多少米?6010600(米),(2)8分钟走多少米?508400(米)
(3)需要时间:(600-400)(6050)20(分钟),所以小明7时40分离家刚好8时到校。(4)由家到校的路程:60(2010)600(米)或50(208)600(米).【铺垫】童童从家到学校,如果每分钟走50 米,上课就要迟到3分钟;如果每分钟60米,就可以比上课时间提前2分钟夺走60-50=10(米),就可以夺走150+120=270(米),童童从家到学校所用时间是:2701027(分钟),加到学校的距离是:50(273)50301500(米)。
【例4】(第二届“华杯赛”试题)有一个半同学去划船。他们计算以下,如果增加一条船,正好每条船作6人;跑如果减少一条船,正好每条船坐6人。如果减少一条船,正好每条船坐9人。问:这个班共有多少学生 【分析】先增加一条船,那么正好每条船坐6人。然后去掉两条船,就会余下6212(名)同学。改为每条船9人,也就是说,每条船增加9-6=3(人),正好可以把余下的12名同学全部安排上去,所以现在还有1234(条)船,而全班同学的人数是9436(人)。【巩固】增加两条船,正好每条船坐6人,然后去掉四条船,就会余下6424(人),改为每只船9人,即每条船增加9-6=3(人),正好可以把余下的24人全部安排上去,所以现在船数为2438(条),这个班的人数为9872(人)。【小结】这部分的题目不能直接运用公式计算,首先需要将一定的条件转化,使之成为跟第一步分相似的题型,在运用公式计算。关系互换型的盈亏问题
这种题型中会出现两种物品,一半两者之间还存在数量关系,如和差关系、倍数关系等,我们应该先利用数量关系将已知条件转化为一种物品的盈亏关系,再根据盈亏问题的 解法计算。
【例5】(2004“走进美妙的数学花园”数学邀请赛)
幼儿园老师把一袋糖果分给下朋友。如果分给打扮的小朋友,每人5粒就缺6粒。如果分给小班的小朋友,每人4粒。已知大班比小班少2个小朋友这袋糖果共有多少粒? 【分析】如果大班增加2个小朋友,大、小班人数就相等了,变为“每人5粒缺16粒,每人4粒多4粒”的盈亏问题。小班有(164)(54)20(人)。这袋糖果有420484(粒)。【拓展】(2007年湖北省“创新杯”决赛)
四(2)班举行“六一”联欢晚会,辅导员老师带着一笔钱取买糖果。如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元。已知每千克芒果比奶糖贵2元,那么,辅导员老师带了_____________元钱.[分析]这笔钱买了13千克芒果还差4元,若把13千克芒果换成奶糖就会多出13226元,所以这笔钱买13千克奶糖会多出26-4=22元。而这笔钱埋15千克奶糖会多出2元,所以每千克奶糖的价格为:(22-2)(1513)10(元)。辅导老师共带了10152152(元)
【例6】(2004南京市少年数学智力冬令营)
甲、乙两人各买了相同数量的信封与相同数量的信封与相同数量的信封,甲每封信用2张信纸信纸,乙每封信用3张信纸,一段时间后,甲用完了所有的信封还剩20张信封,乙用完所有信纸还剩下10个信封,则他们每人各买了多少张信纸? 【分析】由题意,如果乙用完所有的信封,那么缺30张信纸。这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所有的信封(20+30)(32)50(个),有信纸25020120)(张)【巩固】甲、乙两人的信纸一样多,信封也一样多,甲写一封信用一张信纸,乙写一封信用3张信纸。结果甲的信封用完时还剩50张信纸,乙的信纸用完时还剩50个信封,原来他们
各自有信封多少个?信纸多少张?
【分析】乙要想用完剩余的50个信封,还需再多503=150张信纸,也就是要用完同样多的信封,甲多50张信纸,乙少150张信纸。
信封的个数:(50350)(31)100(个)信纸的张数:100+50=150(张)
【小结】不同的人,相同的物品,假设都用完同样多的信封,这就是“盈亏”的关联点,问题便于解决了。【例7】体育中心将一些乒乓球分给若干人,每人5个还多余10个乒乓球,如果人数增加到3倍,那么每人分2个乒乓球还缺少8个,问有乒乓球多少个?
【分析】考虑人数增加3倍后,相当于按原人数每人给236(个),每人给5个与给6个,总数相差10+8=18(个),所以原有人数18(65)18(人),乒乓球总数是51810100(个)
【拓展】卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只大熊猫,那么每只大熊猫分2个还缺8棵竹子,问有大熊猫多少只,竹子多少课?
【注意】以上题型中会出现两种物品,一般两者之间还存在数量关系,如和差关系、倍数关系等,我们应该先利用数量关系将已知条件转化为一种物品的盈亏关系,再根据普通盈亏问题的解法计算。
【例8】幼儿园阿姨拿来水果糖和奶糖分给小朋友,且水果糖的个数是奶糖的2倍。如果每个小朋友分2个奶糖,就多余4个奶糖;如果每个小朋友分5个水果糖,则少2个水果糖。阿姨拿来了水果糖和奶糖个多少个? 【分析】水果糖和奶糖的个数不相等,不能将两者直接比较,如果本题中水果糖和奶糖一样多就好了。所以,我们可以假设水果糖和奶糖一样多,也就是假设奶糖是实际数量的2倍,那么,分给同样多的小朋友后,每个小朋友可以分到22=4个,而多余的奶糖是428(个)、分到太奶糖和水果糖相差8+2=10个,原因是每个小朋友多分了5-4=1个,这样就可以求出小朋友的人数,然后根据太烫和水果糖的实际分配情况,分别求出奶糖和水果糖的个数,然后根据奶糖和水果糖的实际分配情况,分别求出奶糖和水果糖的个数,即:
(422)(522)10110(个)小朋友的人数
102424(个)
奶糖的个数 105248(个)水果糖的个数
【注意】本题的解题关键在于通过假设,使两种糖的个数变得同样多在解答。其他类型的盈亏问题
盈亏问题有的题型不想普通的盈亏问题那么标准,它是经过普通盈亏问题的变形和拓展,解答这类问题也要利用其本盈亏问题解答方法,根据不同的题型作出相应的应对。
【例9】幼儿园老师给小朋友分糖果。若每人分8快,还剩10快;若没人分9块,左后一人分不到9块,但至少可分到一块。那么糖果最多有多少块?
【分析】最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块。根据盈亏计算公式,人数有(1+10)(9-8)=11(人),糖果最多有911198(块);最后一人分不到9块,但至少可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有(8+10)(98)18(人),糖果最多有9188154(块);所以,这批糖果最多有154块。
【拓展】有若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 【分析】6078…4,6087…4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们每盒中加5张(8盒共加40张),每人就可以得到8864(张),现在时机每人得到60张,即每人需要退4张,其中要有4张式每人60张后多下来的,还有40张我们一开始借来的要还出去,即要退出44张,44411(人),说明有11人。
【例10 】妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1元,丙种卡片每张2元。用完这些钱买甲种卡要比乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?乙种卡每张多少钱?
【分析】“用这些钱买甲种卡要比买乙种卡多买8张,买乙种要比买丙种卡多买6张”所以盈亏总额是:182620(元),单价相加2-1=1(元),所以工可以买衣种卡20120(张),妈妈给红红的钱数是:
(20+8)1=28(元),乙种卡每张:2820=1元4角。
【拓展】乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币比2分币多4角;另外,还有36个1分币。乐乐共花了多少钱?
【分析】假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个二分币多3分,所(5-2)=28个 以5分币有:84 2分币有:28+22=50(个)
所以乐乐共存钱:5 2825013614010036276(分)。巩固精炼
1.小明读一本书,如果每天读6页,还剩20页没有读完,如果每天读10也,书还少24页,这本书共有多少页,小明打算几天读完? 【分析】在两种方法中,数的页数和打算读的天数没有改变,而第一种读法,书没读完,还剩20页;第二种读法,不仅可将余下的29页读完,如果书还有24页也能恰好读完。两种不同读法总页数相差20+24=44页,造成这个差异的原因就是每天多读天了 10-6=4页。每天多读4页就要多读44页,因此打算毒的天数是44 411天,即:
(20+24)(10-6)=444=11(天)61142086(页)
2.阳光小学学生乘汽车到香山春游。如果每车坐65人,则有5人不能乘上车;如果没车多坐5人,恰好多于一辆车,问一共有几辆汽车,有多少学生? [分析]每车多坐5人,实际是每车可坐5+65=70(人),恰好多余一辆车,也就是还差一辆汽车的人,即70人,因而原因问题转化为:如果没车坐65人,则多出5人无人乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是(5+5+65)515(辆)人数是65155980(人)或(5+65)(151)980(人)3.王老师由家里到学校,如果骑车每分钟每分钟500米,上课就要迟到3分钟;如果骑车每分钟600米,就可以比上课时间提前2分钟到校。王老师家到学校的路程是多少米? 【分析】迟到3分钟转化成米数:5003=1500(米),提前两分钟到校转化成米数:6002=1200(米),(1500+1200)(600-500)=27(分钟)500(273)15000(米)
4.王阿姨去买水果。如果买5千克橙子,就差10元钱;如果买6千克葡萄,则余2元钱。已知每千克橙子比每千克葡萄贵4元,每千克橙子和每千克葡萄个多少元? 【分析】本题涉及到两种水果,较难入手。但题中告诉我们每千克橙子比每千克葡萄贵4元,所以可以设法把两种水果转化为一种水果。
因为每千克橙子比每千克葡萄贵4元,所以将买5千克橙子换成买5千克葡萄,就要少用45=20(元),于是,“买5千克橙子差10元钱”就可以变成“买5千克葡萄余20-10=10元”,则题目乘为:王阿姨买水果,如果买5千克葡萄,就余下10元钱;如果买6千克葡萄就余2元钱,而每千克橙子比每千克葡萄贵4元,求每千克橙子和葡萄各多少元?解答这个问题就不难了。
每千克葡萄的价钱:(54102)(65)818(元)每千克橙子的价钱:8+4=12(元)
5.妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱。问:妈妈带了多少钱? 【分析】(法一)“多买3袋,”这三袋洗衣粉多花8324(元)又因为花的钱总数一样多多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24212(袋。)这样妈妈带的钱数是1012120(元)。(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3824(元),买碧浪洗衣粉的数量是:24(108)24212(袋)所以妈妈带的钱数是1210120(元)
第四篇:三年级奥数《重叠问题》
教学设计方案 XueDa PPTS Learning Center
第九讲:重叠问题
【知识要点】:
三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】 六一儿童节,学校门口挂了一行彩旗。小张从前数起,红旗是第8面;从后数起,红旗是第10面。这行彩旗共多少面?
【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】
1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。这队小朋友共有多少人?
2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。这一行座位有多少个?
教学设计方案 XueDa PPTS Learning Center
【例2】 同学们排队做操,每行人数同样多。小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。做操的同学共有多少个?
【思路导航】根据题意画出下图。
由图可看出:
小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;
从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。所以做操的同学共有:[ ]×[ ]=[ ]人。
【课堂反馈2】
1、同学们排队跳舞,每行、每列人数同样多。小红的位置无论从前数从后数,从左数还是从右数起都是第4个。跳舞的共有多少人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例3】 把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是____ _厘米,所以这两块木板的总长度是[ ]+[ ]=[ ]厘米,每块木板的长度是[ ]÷[ ]=[ ]厘米。
【课堂反馈3】
教学设计方案 XueDa PPTS Learning Center
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
2、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。另一根木棍长多少厘米?
【例4】 一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。问两道聪明题都做对的有几人?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得[ ]+[ ]=[ ]人,这____ _人比全班总人数____ _多出了[ ]-[ ]=[ ]人,这多出的____ _人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
【课堂反馈4】
1、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、两块木板各长75厘米,像下图这样钉成一块长130厘米的木板,中间重合部分是多少厘米?
教学设计方案 XueDa PPTS Learning Center
【例5】
三(1)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸。三(1)班有学生多少人?
【思路导航】根据题意,画出下图:
从上图可以看出,中间重叠部分表示两份报纸都订的____ _人,这10人既被包括在订《数学报》的____ _人内,又被包括在订《阅读报》的____ _人内,重复算了____ _次,所以要算出全班人数,必须从[ ]+[ ]=[ ]人中去掉被重复算过的____ _人。所以全班人数应是[ ]-[ ]=[ ]人。
【课堂反馈5】
1、三(4)班做完语文作业的有37人,做完数学作业的有42人,两种作业都完成的有31人,每人至少完成一种作业。三(4)班共有学生多少人?
2、两块木板各长90厘米,像下图这样钉成一块木板,中间重合部分是15厘米,这块钉在一起的木板总长多少厘米?
教学设计方案 XueDa PPTS Learning Center
【课后作业】
1、同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。这一排共有多少个同学?
2、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
3、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。中间重合部分长11厘米,这两块木板各长多少厘米?
4、三(5)班有42名同学,会下象棋的有21名同学,会下围棋的有17名,两种棋都不会的有10名。两种棋都会下的有多少名?
5、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
第五篇:三年级 奥数 教学计划
小学低段奥数教学计划
何 忆
一、指导思想: 三、四年级的奥数学习是小学奥数最重要的基础阶段,尤其三年级更为重要,学生只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。
二、整体思想:
从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,为以后的学习做好准备,好多五六年级专题知识学习比较差的学生正是因为三四年级基础知识没有学好的缘故。
三、具体内容
1、计算是基础,基础要打牢:
三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。
就教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。
2、应用题,重中之重:
从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。所以每次教学安排相应学段的数学知识,以专题的形式呈现,每课一个专题,每次配备相应的课后练习供学生课后复习巩固。
3、学习方法很重要:
在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的奥数信息量,学生可以有意识的培养自己复习,总结等良好的学习习惯;每次的教学根据学生的实际情况调整教学进度,讲授相应的解题方法,使学生部盲目机械记忆方法,让他们知道方法来自自己不断的探索和总结。
基于这些思考,这学期先制定12次专题教学,再根据学生学习的实际效果再灵活调整教学内容和进度。
四、总体目标:
通过一学期的学习,让学生培养自己的奥数学习方法,开启学生的思维,养成认真勤奋,勇与探究的学习习惯,掌握必要的解题方法。为以后的各种比赛升学做好准备。