小升初生活中的数学问题

时间:2019-05-13 13:04:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小升初生活中的数学问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小升初生活中的数学问题》。

第一篇:小升初生活中的数学问题

新概念学校

小升初生活中的数学问题

1、大头儿子和小头爸爸共同开了一家麦当劳店,他们晚上一起计算当天的营业额,发现账面上多出32.13元钱,后来发现是一笔钱的小数点点错了一位,原来这笔钱是()

2、请你用1~9这九个数字,每个数字只能用一次,拼凑出五个自然数,让第二个是第一个的2倍,第三个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍。那么,这五个自然数分别是_______、_________、________、_________、__________。

3、笑笑喝一瓶果汁,分四次喝完。第一次喝了一瓶果汁的六分之一,然后加满水;第二次喝了一瓶的三分之一,然后再加满水,第三次喝了半瓶,又加满水;第四次一饮而尽,笑笑喝的果汁是(),喝的水是()。

4、某小学为每个学生编号,设定号码未尾为1表示男生,为2表示女生。如96410252表示“96年入学,在四年级一班,025号同学,该同学是女生”。那么,01110101表示的学生是()年入学,在()年级()班,学号是()的一名()同学。假若你是六年级三班的36号同学,请用以上方法编出自己的学号。新概念学校

5、某地区小灵通移动电话的交费方式有以下两种:(1)免交月租费。通话每分钟0.25元,每月基本消费15元;(2)交月租费,每月交月租费18元,通话每分钟0.1元。请算一下,每月通话时间为100分钟和200分钟,选择那种方式比较划算?如果你爸爸也有小灵通,你认为他用那种方式交费比较好?为什么?

6、某城市自来水收费是这样规定的:每户每月用水15吨(含15吨)按0.9元一吨收费,超过15吨的,其超出部分按3元一吨收费。某户四月份用水21吨,应交多少元水费?

7、一次,甲、乙、丙三位朋友合乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊。甲在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方下车,丙付了36元的车费,请问他们三人各应承担多少车费才比较合理?

8、一农妇提着一篮子鸡蛋去卖,第一次卖掉了全部鸡蛋的一半又多半个,第二次卖掉剩下的一半又多半个,第三次卖掉剩下的一半又多半个,最后篮子里还剩一个鸡蛋,问:农妇原来有多少个鸡蛋?

新概念学校

9、某食品店有5箱饼干,如果从每个箱子里取出15千克,那么5个箱子里剩下的饼干正好是原来的两箱饼干,原来每个箱子里装多少千克饼干?

10、小亮和爸爸坐出租车去郊游,10千米以内收费5元,超过10千米时,每千米收费0.3元,下车时小亮共交出租车费9.2元,求出租车行了多少千米?

11、六

(一)班52名同学去海洋馆游玩,中午时老师让贝贝给大家买饮料。由于买的多,阿姨给以买一箱送一盒的优惠,共付了4箱的钱,正好每人一盒。你知道每箱饮料有多少盒吗?

12、某小学要买60个足球,现在有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同:

甲店:买10个足球免费赠送2个,不足10个不赠送; 乙店:每个足球优惠5元;

丙店:购物每满200元,返还现金30元。

为了节省费用,希望小学应到哪个商店购买,为什么?

新概念学校

13、爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索应多长才能确保安全?

14、某中学图书馆购买了3种精装本和5本平装本《汉语词典》,共用去27.8元。如果用一个精装本调换两本平装本还得再付1元钱,精装本词典每本多少元?

15、六年级有甲、乙、丙三个班,已知甲、乙两班共有50人,乙、丙两班共有70人,甲、丙两班共有60人,问甲、乙、丙三个班各有多少人?

16、小王用140元买了一件外衣,一顶帽子和一双鞋。外衣的价钱比帽子贵90元,外衣和帽子一共比鞋贵120元,问一双鞋的价钱是多少元?

新概念学校

17、甲、乙、丙三个共出27元合伙买了一批练习本,每人出了9元。由于乙和丙分别比甲多拿15本,因此,乙和丙每人都要给甲1.5元,问三人合伙买了多少本练习本?

18、某小学组织325名师生去春游,已知大客车限乘40人,每天每辆1000元,小客车限乘25人,每天每辆650元,问怎样租车才合适?

19、有两则招聘启事,A公司的工资采用年薪制,起薪为每年10000元,以后逐年增加,每年增加600元;而B公司采用半年薪制,起薪为每半年5000元,以后每半年增加200元,问那个公司的条件更优厚?

20、A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一人24天的食物和水,如果不准将部分食物存放于途中,问:其中一个人最远可以深入沙漠多少千米?如果可以将部分食物存放于途中以备返回时取用呢?

新概念学校

21、小强、小伟和小华三个人帮助李奶奶把装有相同重量的两个行李箱送到相距1.5千米处的车站,三人决定平均负担运行李的任务,每人每次只能背一箱,问平均每人背多少千米?

22、甲、乙、丙三个进行60米赛跑,当甲冲过终点时,比乙领先10米,比丙领先20米,假如每人的速度不变,问当乙到过终点时,比丙领先多少米?

23、李阿姨拿120元钱到市场上买肉,由于肉价降低了五分之一,所以,她买的肉比上次拿同样的钱多买到5千克,问:原来的肉价是每千克多少元?

24、电影票原价若干元,现在每张降价3元,观众增加了一半,收入也增加了五分之一,一张电影票原来是多少元?

25、甲、乙两人在银行存款共9600元,如果两人分别取出自己的存款的40%,再从乙的存款中取出120元给甲,这时两人存款数相等,乙原来存款多少元?

新概念学校

第二篇:小升初数学专项题 鸡兔同笼问题

第九讲

鸡兔同笼问题

【基础概念】:鸡兔同笼问题也称置换问题:这类应用题常常把问题中的一个未知数假定为已知的,然后根据题目中的已知条件推算,其结果常与题目对应的已知数不符,再加以适当调整,就可以求出结果。此类应用题也称为假定法或比较法。基本数量关系式:(1)假设全是鸡,兔的只数=(总腿数-总头数×2)÷2,鸡的只数=总头数-兔的只数;(2)假设全是兔,鸡的只数=(4×总头数-总腿数)÷2,兔的只数=总头数-鸡的只数。

【典型例题1】:鸡兔同关在一只笼里,共48个头,100只脚.问:鸡有多少只?兔有多少只?

【思路分析】:假设全是兔子,那么就有48×4=192只脚,这就比已知的100只脚多出了192-100=92只脚,因为1只兔比1只鸡多4-2=2只脚,由此即可求得鸡的只数,进而求得兔的只数。解答:假设全是兔子,则鸡就有:(48×4-100)÷(4-2)=92÷2 =46(只)

则兔子有48-46=2(只)答:鸡有46只,兔子有2只。

【小结】:解决这类问题关键是假设之后,多出脚数与对应的鸡的只数的关系。此题也可以这样解答:设兔有x只,那么鸡有(48-x)只,由等量关系:鸡和兔共有100只脚,可得方程:4x+2(48-x)=100,解答即可。

【巩固练习】

1、张洪正好用20元钱买了2元的邮票和5角的邮票,一共16张,问这两种邮票各有多少张?

2、鸡兔同笼,鸡和兔的数量相同,两种动物的腿加起来共有168条,鸡和兔各有多少只? 【典型例题2】:鸡兔同笼,鸡比兔多10只,但鸡脚却比兔脚少60只,问鸡兔各多少只?

【思路分析】:设兔有x只,则鸡有(10+x)只,根据等量关系:兔的脚数-鸡的脚数60只列方程解答即可。

解答:解:设兔有x只,则鸡有(10+x)只,4x-2(10+x)=60

4x-20-2x=60

2x=80

x=40 40+10=50(只)

答:鸡有50只,兔有40只。

【小结】:解决此类问题关键是找到等量关系:兔的脚数-鸡的脚数=60只,再根据等量关系列方程就可以了。

【巩固练习】

3、现在有相同只数的鸡、兔同笼,已知兔脚比鸡脚多56只,问鸡、兔各有多少只?

4、鸡、兔共60只,鸡脚比兔脚多60只.问:鸡、兔各多少只?

【知识梳理】问题类型与解决方法:

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数;或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数,或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

【典例精讲3】典出《孙子算经》:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

思路分析:假设都是鸡,则脚数为35×2=70只,比实际少94-70=24只,因为每只鸡比每只兔少4-2=2只脚,所以兔的只数是24÷2=12只,再进而用减法即可求出鸡的只数。

解答:假设全是鸡,兔有:(94-35×2)÷(4-2)=(94-70)÷2 =24÷2 =12(只);

鸡有:35-12=23(只). 答:鸡有23只,兔有12只

小结:解决这类题的关键是用假设法进行分析,进而得出结论。

【举一反三】5.李明小红有1分、5分的硬币共35枚,一共是9角5分,问两种硬币各多少枚? 6.在我区举行的“希望杯”数学竞赛中,供15道题,每做对一道题得8分,不没、做错一道题倒扣4分,玛丽把15道题全做了,共得了72分,她做错了多少道题?

【典例精讲4】鸡、兔共30只,鸡脚比兔脚多30只.问:鸡、兔各多少只? 思路分析:假设30只都是鸡,没有兔,那么就有鸡脚60只,这样鸡脚比兔脚多60只,而实际上只多30只,这说明假设的鸡脚比兔脚多的数比实际上多60-30=30只,现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6只,而30÷6=5只,因此有兔子5只,鸡30-5=25只. 解答:兔子:(30×2-30)÷(4+2)=30÷6 =5(只)

鸡:30-5=25(只)

答:兔子有5只,鸡有25只。

小结:解决这类问题关键是假设之后,要弄清楚脚的变化情况。

【举一反三】7.鸡、兔共有150只,兔脚的总只数比鸡脚的总只数多60只,鸡、兔各有多少只?

8.汇丰机床产要运一批钢材,用小卡车装载要90辆,用大卡车装载只要72辆。已知每辆大卡车比每辆小卡车多装8吨,那么这批钢材有多少吨?

答案及解析:

1.【解析】假设全是2元的邮票,则一共用2×16=32元,比实际多用32-20=12元,因为5角=0.5元,一张2元的比一张0.5元的多用2-0.5=1.5元,所以5角的共有:12÷1.5=8张,进而用减法即可求出2元的邮票张数。【答案】5角=0.5元 5角的有:

(16×2-20)÷(2-0.5)=12÷1.5 =8(张)

2元的有:16-8=8(张)

答:2元的有8张,5角的有8张。

2.【解析】根据鸡和兔的数量相同,两种动物的腿加起来共有168条,可知本题的数量关系:鸡的腿数+兔的腿数=168,据此等量关系可列方程解答。【答案】解:设鸡有x只,根据题意得: 2x+4x=168

6x=168

x=168÷6

x=28 答:鸡和兔各有28只。

3.【解析】可以设鸡兔各有x只,根据兔的只数×4-鸡的只数×2=56条腿,列出方程就可以解决问题。

【答案】:解:设鸡兔各有x只,根据题意可得方程: 4x-2x=56

2x=56

x=28 答:鸡兔各有28只。

4.【解析】假设60只都是鸡,没有兔,那么就有鸡脚120只,这样鸡脚比兔脚多120只,而实际上只多60只,这说明假设的鸡脚比兔脚多的数比实际上多120-60=60只,现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6只,而60÷6=10,因此有兔子10只,鸡60-10=50只。

【答案】:兔子:(60×2-60)÷(4+2)=60÷6 =10(只)

鸡:60-10=50(只)

答:兔子有10只,鸡有50只。

5.【解析】假设这35枚都是1分的,那么总钱数就应该是35分,比实际95分少了60分,这是因为把其中5分的硬币都当成1分了,一枚5分硬币,少算4分,少算的60分中有几个这样的4分,就有几个5分硬币,从而得出1分硬币的枚数。

【答案】:9角5分 =95分,95-35×1=60(分),5分:60÷(5-1)=15(枚),1分:35-15=20(枚),答:5分硬币有15枚,1分硬币有20枚.

6.【解析】:根据“每做对一道得8分,不做错一道题扣4分,”可知:不做与做错一题比做对一题少得8+4=12分;全部做对15道题共得8×15=120(分);假设全部做对得分是120分,比72分多得120-72=48(分),那么她做错了:48÷12=4(道)。

【答案】:假设她全做对了,做错:(15×8-72)÷(8+4)=48÷12 =4(道);

答:他做错了4道题。

7.【解析】如果补上鸡脚少的60只的话,就要增加60÷2=30只鸡,这样鸡兔共有150+30=180只,这样鸡兔的脚数一样多,那么1只鸡脚是1只兔脚的一半,而现在它们脚的总数相同,可知鸡的只数是兔的2倍,根据和倍问题即可解决。【答案】:兔:(150+60÷2)÷(2+1)=180÷3 =60(只)

鸡:150-60=90(只)

答:鸡共有90只,兔共有60只。

8.【解析】利用假设法,假设只用72辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装8吨,所以要剩下8×72=576(吨)。根据条件,要装完这576吨钢材还需要90-72=18(辆)小卡车。这样每辆小卡车能装576÷18=32(吨)。由此可求出这批钢材有多少吨。

【答案】:8×72÷(90-72)×90=2880(吨)。

答:这批钢材有2880吨。

第三篇:小学六年级数学工程问题(小升初)

第4讲

工程问题

一、基础篇

工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

工作量=工作效率×工作时间

工作时间=工作量÷工作效率

工作时间=总工作量÷(甲工作效率+乙工作效率)

变通后可以利用上述数量关系的公式。

例1、一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,在两队合作,需要几天完成?

例2、一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

例3、某项工程,可由若干台机器在规定的时间内完成,如果增加2台机器,则只需用规定时间的就可做完;如果减少2台机器,那么就要推迟小时做完,现问:由一台机器去完成这项工程需要多少时间?

例4、一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

随堂练习

1、一件工作,甲干6天,乙接着干5天可以完成;或者甲干2天,乙接着干7天也可以完成,甲乙合作多少天可以完成?

2、加工同种零件,甲干6小时,乙干9小时可以完成任务,如果甲干2小时,乙干6小时两人只能完成任务的一半,如果甲乙单独完成任务各需多少小时?

3、一步书稿,甲先打10天后,由乙接着打10天可以完成,如果甲先打4天后余下的乙接着打25天可以完成,这边书稿,如果由甲单独打要多少天?

4、一项工程,甲独做24小时完成,乙独做36小时完成,现要求20小时完成,并且要求两人合作的时间尽可能的少,那么甲乙合作多少小时?

5、有甲乙两项工作,张单独完成家工作要10天,单独完成乙工作要15天,李单独完成甲工作要8天,单独完成乙工作要20天,如果;两项共组都可以由两人合作,那么两项工作都完成最少要多少天?

6、有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天,王师傅单独完成甲工作要3天,单独完成乙工作要15天,如果每项工作都可以由两人合作,那么两项工作都完成最少要多少天?

巩固练习

1、单独干某项工程,甲队需20天完成,乙队需30天完成。甲、乙两队合干8天

后,剩下的工程乙队干还需多少天?

2、单独完成某工程,甲队需10天,乙队需20天,丙队需30天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?

3、某工程由甲单独做10天,再由乙单独接着做15天可以完成,如果甲乙两人合作需12天完成,现在甲先单独做8天,然后再由乙单独接着做,还需多少天可以完成?

4、单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?

5、一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?

6、甲工程队每工作6天休息一天,乙工程队每工作5天休息两天,一件工程,甲队单独做需经97天,乙队单独做需经75天,如果两队合作,从2013年8月10日开工,几月几日可完工?

7、水池上装有甲、乙两个大小不同的水龙头,单开甲龙头3小时可注满水池。现在两个水龙头同时注水,60分钟可注满水池的,如果单开乙龙头需要多长时间注满水池?

8、项工程,甲单独完成需10天,乙单独完成需15天,丙单独完成需20天,三人合作3天后,甲有其他任务而退出,剩下乙、丙继续工作直至完工。完成这项工程共用多少天?

9、有甲、乙两项工作,张单独完成甲工作要8天,单独完成乙工作要20天;李单独完成甲工作要

12天,单独完成乙工作要15天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

10、搬运一个仓库的货物,甲需要30小时,乙需要36小时,丙需要45小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

11、某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、……的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?

二、提高篇

例1、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

例2、修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

例3、一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

例4、一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?

例5、师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?

例6、一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?

例7、一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

随堂练习

1、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

2、两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?

3、明明和乐乐在同一所学校学习,一天班主任老师问他俩各人的家离学校有多远。明明说:“我放学回家要走10分钟”,乐乐说:“我比明明多用4分钟到家”。老师又问:“你俩谁走的速度快一些呢?”乐乐说:“我走得慢一些,明明每分钟比我多走14米,不过,我回家的路程要比明明多1/6

”。班主任根据这段对话,很快算出他俩的路程。你会算吗?

4、有一堆围棋子,其中黑子与白子个数的比是4:3从中取出91枚棋子,且黑子与白子的个数比是8:5,而剩下的棋子中黑子与白子个数的比是3:4。那么这堆围棋共有多少枚?

5、一项工程,甲独做需12小时,乙独做需18小时,若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时……,两人如此交替工作,问完成任务时共用多少小时?

6、一件工作,甲、乙、丙三人合作需要1小时,甲、乙合作需要1小时20分,甲、丙合作需要1小时30分.问甲独做需要多少时间?

7、甲、乙两人同做一项工程,需8天完工,若甲一人独做8天后,再由乙独做10天完工,问甲、乙独做各需几天完工?

8、一件工作,甲独要20天完成,乙独做要12天完成,现在先由甲做了若干天,然后乙断续做完,从开始到完工共用了14天,问甲、乙两人各做了多少天?

9、一项工程,甲单独完成需12天,乙单独完成需9天,若甲先做若干天后乙接着做,工用10天完成,问甲做了几天?

10、一份稿件,甲、乙、丙三人独打字需要的时间分别是20小时,24小时,30小时。现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时?

巩固练习

1、一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?

2、一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?

3、某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?

4、制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?

5、A、B两项工程分别由甲、乙两个队来完成。在晴天,甲队完成A工程需12天,乙队完成B工程需15天;在雨天,甲队的工作效率要下降40%,乙队的工作效率要下降10%。现在,两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?

6、某水箱有三个同样的进水管,和另一个在底部的出水速度不变的排水管。如果打开一个进水管,需要60分钟将水箱注满:如果打开两个进水管,则注满水箱的一半需要10分钟。如果将二个进水管都打开,那么注满水箱的三分之一需要多少分钟?

7、一件工作,甲做完一半后,再由乙、丙合作做另一半,共需138天;若由乙做完一半后,再由甲、丙合作做另一半,则共需92天;若由丙做完一半后,再由甲、乙合作做另一半,则共需69天。若每人单独做这项工作,各需多少天?

8、A、B、C三人一天的工作量的比是3∶2∶1。现在,某工作三人用5天完成了全部的.然后A休息了3天。B休息了2天,C没有休息,最后把某工作做完了,试问:

(1)B一天完成全部工作的几分之一?

(2)这项工作,从开始算起,是第几天完成的?

9、一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?

10、有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要

8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

11、一项工程,甲单独完成要30天,乙单独完成要45天,丙单独完成要90天。现在由甲、乙、丙三人合作完成此工程,在工作过程中甲休息了2天,乙休息了3天,丙没有休息,最后把工程完成了,问完成这项工程前后一共用了多少天?

12、一项工程,甲、乙两人合做4天后,再由甲单独做6天才完成全部任务。已知甲比乙每天多完成这项任务的,则甲、乙单独完成各需多少天?

13、一件工作,甲单独做12完成,乙独做18天完成,丙独做24天完成。这件工作先由甲做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完这件工作,共用多少天?

14、修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇,这段公路长多少米?

(57中)

15、甲、乙两人分别从A,B

两地同时出发相向而行,甲走到全程的地方与乙相遇.已知甲1小时走4.5千米,乙每小时走全程的,求A,B的路程.(八中)

16、加工一批零件,甲独做需75小时,乙独做需50小时,已知每小时比甲多做12件.如果甲的工效提高50%,而乙每小时比原来多做8件,那么两人合做完成这批零件的需要多少小时?

17、加工一批零件,甲、乙合做24小时可以完成,现在由甲先独做16小时,然后乙再独做12小时,还剩下这批零件的没有完成.已知甲每小时比乙多加工3个零件,问这批零件共有多少个?

18、一批零件,由甲、乙两人合做30天完成,甲先干22天,两人再合做12天,剩下的乙单独还要干16天才能全部完成.又知甲每天比乙少生产4个零件,问照这样完成任务时,乙共做了多少个零件?

19、一件工程,甲单独做要6小时完成,乙单独做要10小时完成,如果按甲、乙、甲、乙……的顺序交替工作,每次一小时,那么需要多少小时完成?(铁二)

20、某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,要10天完成;由一、四小队合干,需要15天完成。如果按一、二、三、四、一、二、三、四……的顺序,每个小队干一天轮流干,那么工程由哪个队最后完成?

21、一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成。如果先由甲打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时……两人如此交替工作,那么打完这部书,甲、乙共用了多少小时?

第四篇:小升初数学

31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费。每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

32.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1。20元。用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?乙种卡每张多少钱?

34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间。作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子。大家都说这样的分配公平合理,那么每间房子的价值是多少元?

35.小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍。原来小明和小燕各有多少本画册?

36.有红、黄、白三种球共160个。如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁。当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁。现在三人的年龄各是多少岁?

38.B在A,C两地之间。甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信。乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

39.甲、乙两个车间共有94个工人,每天共加工1998竹椅。由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。甲车间每天竹椅产量比乙车间多几把?

40.甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

第五篇:小升初数学

小升初数学模拟试题

一 填空题1、2008年我国在校小学生128226200人,读作(),改写成“亿“作单位,并保留一位小数是()亿人。

2、化成最简整数比是(),比值是()。

3、一个两位数,十位上的数字是5,个位上的数字是a,这个两位数是()。

4、今天是6月30日星期一,北京奥运会8月8日举行,是星期()。

5、小丽发现:小表妹和读初三哥哥的岁数是互质数,积是144,小表妹和读初三哥哥的岁数分别是(岁,岁)。

6、六(2)班男生占全班人数的,这个班女生是男生人数的()%。

7、一次口算比赛,小明4分钟完成80道,正确的有78道,他计算的正确率是()%。

8、小伟在计算有余数的除法时,把被除数128错写成182,这样商比原来多了6,而余数正好相同。这道题的余数是()。

9、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有()升水。

10、如果Y=,那么X和Y成()比例。

11、一批本子分发给六年级一班学生,平均每人分到12本。若只发给女生,平均每人可分到20本,若只发给男生,平均每人可分得()本。

12、在一个比例式中,两个比的比值等于2,这个比例的两个外项分别是和这个比例是

()。

13、小明身高1.6米,在照片上她的身高是5厘米。这张照片的比例尺是()

14、在一张长80厘米,宽62厘米的铁皮上剪下一个最大的圆。这个圆的半径是()。

15、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮()平方厘米。(得数保留整百平方厘米)

16、一块长方形草地的周长是270米,长与宽的比是5︰4,这块地的面积是()平方米。

17、把一个高6分米的圆柱的底面分成许多相等的扇形,然后通过切、拼的方法得到一个近似的长方体。长方体的表面积比圆柱的表面积增加48平方分米。原来圆柱的体积是()。

18、若2△3=2+3+4=9,5△4=5+6+7+8=26。按此规律,5△5=()。

二、仔细推敲,认真辨析。(对的打“√”,错的打“×”)6%

1、ab-8=17.25, 则a和b不成比例()

2、林场种100棵树苗,死了3棵,又补中了3棵,共成活

100棵,成活率为100%。()

3、下图中三个面积相等的平行四边形,它们阴影部分的面积一样大。()

4、圆的面积和半径成正比例关系。()

5、甲、乙两桶水,甲用去,乙用去一半,剩下的水一样多,甲、乙两桶中水的质量比是4:

3。()

6、按1,8,27,(),125,216的规律排,括号中的数应为64。()

三、反复比较,慎重选择(把正确答案的序号填在括号内)6%

1、如果一个圆的半径是a厘米,且2:a=a:3,问这个圆的面积是()平方厘米。

A、πB、6 πC、6D、无法求出

2、小丽每天为妈妈配一杯糖水,下面四天中,()的糖水最甜。

A、第一天,糖与水的比是1:9。B、第二天,20克糖配成200克糖水。

C、第三天,200克水中加入20克糖。D、第四天,含糖率为12%。

3、若a÷b=8„„3 , 那么(100a)÷(100b)= 8„„()。

A、3B、300C、100D、0.034、一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米。

A、36B、30C、28D、245、小明由家去学校然后又安原路返回,去时每分钟行a米,回来时每分钟行b米,求小明来回的平均速度的正确算式是()。

A、(a+b)÷2B、2÷(a+b)C、1÷(+)D、2÷(+)

6、甲乙两个容积相同的瓶子分别装满盐水,已知甲瓶中盐、水的比是2︰9,乙瓶中盐、水的比是3︰10,现在把甲、乙两瓶水混合在一起,则混合盐水中,盐与盐水的比是()。

四、一丝不苟,巧妙计算。26%

1、直接写出得数。5%

0.875÷0.125=1÷(1÷)=756-(256+99)

÷2÷ =小时:120分==

2、怎样算简便就怎样算。8%

4÷ - ÷4-4×2003+2005×25%+2004×0.7

5[1-(+)]×24÷[(+)× ]

3、求未知数。4%

(6+3)÷2=18(X-0.4):8=3:

24、列式计算。9%

(1)0.375除以 的商加上11,再乘以,积是多少?

(2)42的 减去32所得的差去除,商是多少?

(3)一个数的2倍加上3,再除以1.8,商等于2.8。这个数是多少?

五、动动巧手,灵活计算。6%

下面是用1:4000的比例尺画出的一块水稻试验田的平面图。请你:

(1)量一量:它的上底是()厘米,下底是()厘米。(取整厘米数)

(2)算一算:它的实际面积是()公顷。

(3)画一画:以上图的高为直径画一个圆。

(4)算一算:你画的这个圆的面积是()平方厘米。

六、活用知识,解决问题。36%

1、今天是爷爷60岁大寿。明明准备了很多鲜花,他准备把这些鲜花送给爷爷、奶奶、爸爸和妈妈。明明将全部的献给了爷爷,祝爷爷寿辰快乐;将全部的25%献给了奶奶,祝奶奶寿比南山;将全部的献给了爸爸,祝爸爸事业顺利;将全部的献给了妈妈,祝妈妈身体健康;最后剩下6朵鲜花,明明把它留给了自己,祝自己越来越聪明,学习进步!多好的祝福啊!请你算一下明明准备了多少朵花

2、王师傅加工一种零件,由原来的每个用12分钟降低到每个8分钟,原来每天加300个,现在每天加工多少个?

3、王大伯参加我县农村合作医疗保险。条款规定:农民住院医疗费设起付线,县级医疗机构为400元,在起付线以上的部分按45%补偿。今年4月份王大伯患了急性肠炎,在定点医院住院治疗了20天,医疗费用共计8260元。按条款规定,王大伯只要自付多少元?

4、美术课上,美术老师给每个小组(4人一组)准备了25.12立方厘米的橡皮泥,要求每人捏出一个底面直径是2厘米的圆锥。请问:这个圆锥的高是多少厘米?

5、甲乙两车同时从东、西两城出发,甲车在超过中点20千米的地方与乙车相遇,已知甲车所走的路程与乙车所行路程的比是7∶6,东西两城相距多少千米?

6、在社会主义新农村建设中,某建筑公司承担大沙地村公路硬化工程,甲工程队单独做需要15天,乙工程队单独做需要10天。甲、乙两队合修5天后,因其它地方发生冰灾,道路被毁,公司需抽调一个工程队参加抢修会战,你认为会抽调哪个工程队?说出理由。留下的工程队还需几天才能把这项工程做完?

下载小升初生活中的数学问题word格式文档
下载小升初生活中的数学问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    生活中的数学——存款利率问题应用题

    生活中的数学——存款利率问题应用题 1、理解与掌握以下概念;本金、利息、年(月)利率、存款年(月)数、本利和。 2、理解并掌握以上概念之间的联系,并能准确在数量之间进行转换。 3......

    浅谈生活中的数学DOC

    浅谈生活中的数学 合肥市东升小学:吴义杰 内容摘要:数学来源于生活、扎根于生活,且反过来又应用、服务于生活,将学生应用于数学过程兴趣化、生活化,为学生在生活中应用数学知识、......

    生活中数学 教案

    生活中的数学 教学目标 挖掘生活中的数学小趣事,让孩子们认识到数学的用处,提高孩子们对数学的兴趣。 教学过程 师:同学们,你们是不是认为,数学嘛,这么难学,出来在学校和书本上,在......

    假如生活中没有数学

    假如生活中没有数学 今天,数学老师给我们布置了一个写作任务——写一篇数学小论文。拿到题目。左思右想、无从下手,感觉数学方面的文章有什么可写的呢?我们生活中与数学相关的......

    生活中的数学[范文模版]

    生活离不开数学,数学离不开生活,数学知识源于生活而高于生活,最终服务于生活。的确,学数学就是为了能在实际生活中应用。数学就是人们用来解决实际问题的,其实数学问题就产生与生......

    生活中的数学

    生活中的数学 同心县第一小学六年级(2)班宋亚楠 指导老师:杨东波 数学家笛卡儿曾这样说过:“对我来说什么都可以变成数学。”“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日月......

    小升初考试相关问题

    小升初考试相关问题 新课堂最近三年小升初考试回顾 2011,黄嘉辛,詹姗姗考上东华光明公办班,2012年颜世杰,谭斯琪,欧阳斯,马雅婷,考上光明公办班,2013年,袁欣彤,周安颜,徐瑞琪,王文昊,刘......

    小升初面试问题汇总

    面试问题汇总:(1)介绍自己。这是常规第一步。介绍自己或介绍自己的父母,介绍父母的时候可能随便说,也可能要求只用一个或几个词来说。(2)根据孩子介绍自己的内容,比如说孩子奥数突......