第一篇:人教版小学数学五年级上册《平行四边形的面积》反思
《平行四边行的面积》的教学反思
本节课的教学模式遵循学校的本色课堂教学法,先出示一组图片,长方形、平行四边形,让学生比较大小,学生很茫然而导致不知怎样比,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
首先:结合我班的实际情况,先出示画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
其次:我出示两只手拼成的长方形,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,平行四边形的面积与什么有关呢?
第三步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。第四步:让学生测量平行四变形,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,这样学生也了解了数学来于于生活,应用与生活。
第二篇:小学五年级数学《平行四边形面积》教学反思
《平行四边形面积》
——课堂教学所思,所想……
通过平行四边形面积的教学过程,我认为应该注重以下三方面问题,才能使学生不仅获得数学思想和方法,能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”,这才是我们的价值追求。
一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。
“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。
我首先出示几个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,不能满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。
二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。
现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。
课堂中采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且对学生探究发现知识的方法给予指导。比如:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。用多媒体演示平移和拼的过程。剪——平移——拼。:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。然后问学生我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么? 小组讨论后,根据学生回答情况出示讨论题目给学生。拼出的长方形和原来的平行四边形相比,面积变了没有? 拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? 能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?最后小组交流汇报,归纳叙述出自己的推导过程。我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行
四边形的面积等于什么?
因为:长方形的面积=长×宽,所以:平行四边形的面积=底×高 这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学
思想方法的启蒙。
三、要留给学生足够的思维空间,让学生做学习的主人。
以前一说道给学生足够的思维空间,好象就要放手放大块给学生进行小组研讨,我认为以前的感觉有些片面了,其实数学课上老师需要设计许多数学问题,而这些问题不是学生自己都能提出来的,很多的时侯是让老师亲自提出来的,在 这种情况下,就需要老师给学生独立的思考空间,或者引导大家去思考;再每一小节总结规律之类的活动时,要多问问学生你们发现了什么?先让学生自己提炼,然后老师在此基础上进行总结、概括,不是每节数学课上,学生都能到自我提高的程度,很多的需要老师的引导、引领,如果能处理好以上俩点,整个课堂就能顺畅的多,自然的多。
基于以上三个问题的思考,我认为把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法,这才是我们最终的教学追求。
第三篇:五年级数学上册平行四边形面积课件
教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感
教学重点:
让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。
教学难点:
让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。
教学准备:
平行四边形卡片、剪刀、三角板
教学过程:
一、课前复习,回顾旧知
1、长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习习近平行四边形面积公式做铺垫)
2、生:长方形面积=长×宽。
二、提出问题,导入新课
1、出示主题图:(看课本第86页的图)
(1)、发现了哪些图形?你会求哪些图形的面积?
(2)、故事引入
学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。
师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)
比较方法:
1、叠起来比;(比不了,形状不一样)
2、数方格比。
师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)
三、探索发现、推导公式
1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)
2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。
课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)
现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。
小组根据导学提纲进行合作学习
(1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)
(2)讨论:平行四边形转化成长方形后面积变了吗?
(3)讨论:转化成的长方形的长和平行四边形的底是否相等?
(4)讨论:转化成的长方形的宽和平行四边形的高是否相等?
3、学生操作验证
师:这个剪拼的任务就交给你们了。
4、交流汇报
(1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。
生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。
师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。
(2)面积没变,只是形状变了。
(3)长方形的长和平行四边形的底相等。
(4)长方形的宽和平行四边形的高相等。
(5)平行四边形的面积怎样算?
5、集体推导
齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)
一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。
板书:长方形的面积 = 长 X 宽
↓ ↓ ↓
平行四边形的面积 = 底 X 高
6、字母表示公式
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)
7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。
师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。
8、运用公式:学习88页例
1师:让我们回到学校门前的花坛吧。
出示题目,学生读题,学生口答,老师板书过程。
9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。
三、巩固拓展
1、课本89:第1题。(学生在练习本中解答)
2、口答:下面的平行四边形的面积是多少平方厘米?
3、选择题:(区分对应的底和高)
4、实际应用:课本89:第4题第1个图(先量出底和高,再计算)求楼梯扶手的面积。
5、口答
(1)平行四边形的底不变,高扩大2倍,面积就()。
(2)平行四边形的高不变,底缩小2倍,面积就()。
(3)平行四边形的底扩大2倍,高也扩大2倍,面积()。
四、总结全课,提高认识
1、通过今天的学习,你有那些收获?还有那些遗憾的地方?
2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。
板书设计:
平行四边形的面积
长方形的面积 = 长×宽
↓ ↓ ↓
平行四边形的面积= 底×高
S = a×h
第四篇:五年级数学上册《平行四边形的面积》教学反思
五年级数学上册《平行四边形的面积》教学反思
神木县第十小学 贾海军
《平行四边形的面积》是北师大版五年级上册第四单元的内容,通过教学感触很多,我总结了以下几点。
一、要注重数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”。在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。因此,要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。
在这节课中,我开始引入情境,引导学生如何解决问题,那就是求面积,使学生一下子就明白了,面积测量的方法有两种,这两种方法不仅适用于长方形,同样还适用于其它的平面图形。这不仅为学生接下来研究平行四边形的面积,提供了方法,还为学生的研究提供了思路。
二、要注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在我这节课中,我设计了猜一猜、剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、要注重师生互动、生生互动
整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
例如:验证完猜想后,师问:两种猜想,两个结果,到底哪一个才是正确的,哪一个才是我们要的间接测量的先进方法呢?还有当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
第五篇:五年级数学上册《平行四边形的面积》的教学反思
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习习近平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
渗透“转化”思想,让所积累的经验为新知服务“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。