第一篇:多孔介质 - 技术总结
12.4.3 可压缩流动的求解策略 可压缩流动求解中速度、密度、压力和能量的高度耦合以及可能存在的激波导致求解过程不稳定。有助于改善可压缩流动计算过程稳定性的方法有 (仅适用于基于压力求解器)以接近于滞止条件的流动参数进行初始化(即,压力很小但不为零,压力和温度分别等于进口总压和总温)。在迭代过程的最初几十步不求解能量方程。设置能量方程的亚松驰因子等于1,压力的亚松驰因子0.4,动量的亚松驰因子0.3。求解过程稳定后再加入能量方程的求解,并将压力的亚松驰因子提高到0.7。
设置合理的温度和压力限制值以避免求解过程发散。
必要时,先以较低的进、出口边界压力比进行求解,然后再逐步升高压力比直到预定工况。对于低Mach 数流动,也可以先求解不可压缩流动,然后以所得到的解作为可压缩流动的迭代初值。
某些情况下,也可以先求解无粘性流动作为迭代初值。
2.5 无粘性流动
在高Re数流动中,惯性力相对于粘性力而言起支配作用,可忽略粘性的影响。例如高速飞行器在空气动力学方案分析阶段可以采用无粘性流动计算初步确定外形,然后进行粘性计算,将流体粘性和湍流粘性对升力和阻力的影响计入。无粘性流动计算的另一个用途是给复杂的流动提供好的迭代初值。对于特别复杂的问题有时这是唯一能使求解过程进行下去的方法。
无粘性流动的计算求解 Euler 方程。其中质量方程与粘性流动的相同:
其动量方程与粘性流动的相比,没有粘性应力项
粘性耗散项能量方程与粘性流动相比,式(2.34)~ 式(2.36)中符号的意义与粘性流动控制方程的相同见(2.1.1 ~ 2.1.3 节)。
2.6 多孔介质模型
多孔介质(Porous Media)模型可用于模拟许多问题,包括流过填充床、滤纸、多孔板、布流器、管排等的流动。多孔介质模型在流体区上定义(见17.2.1 节)。此外,一个被称为多孔阶跃面(porous jump)的多孔介质模型的一维简化可用于模拟已知速度−压降特性的薄膜。多孔阶跃面在界面区上定义。多孔阶跃面比多孔介质模型更健壮,收敛性更好.应 ANSYS FLUENT 参考手册 12首选采用。
2.6.1 基于表观速度的多孔介质动量方程
对于单相介质和多相介质,多孔介质模型可以使用表观速度或物理速度形式的公式。
基于表观速度的多孔介质模型根据多孔介质区中的体积流量率计算表观相速度或混合物速度。基于表观速度的多孔介质模型能够较好模拟多孔介质区内部的压力损失。但是在多孔介质区与非多孔介质区的交界面处的表观速度与的速度是相同的,不能反映实际速度变化所引起的动量变化,对计算精度不利。
多孔介质模型通过在动量方程中增加源项来模拟计算域中多孔性材料对流体的流动阻力。该源项由两部分组成即 Darcy 粘性阻力项和惯性损失项
其中,D 和 C 分别为粘性阻力和惯性损失系数矩阵。这个负的动量源项导致多孔介质单元中的压力降。同时,在全部变量的输运方程和连续性方程中,瞬态项变为,其中 γ 为孔隙率。
对于简单的均匀多孔介质,分别在系数矩阵D和C中对角线项代入1/α和 C2,而其它项为零,则有:
其中ɑ为渗透率C2为惯性阻力系数。也可以用速度大小的幂函数来模拟阻力:
式中C0和C1为经验系数,且 C0的单位为SI制。采用幂函数时压力降为各向同性的。
2.6.2 Darcy 粘性阻力项
多孔介质中流动为层流时,典型情况下压力降与速度成正比, 即多孔介质模型简化为 Darcy 定律:
于是,在三个坐标方向上的压力降为
式中1/αij为系数矩阵D 的项Δni为多孔介质在三个坐标方向上的厚度。2.6.3惯性损失项
当速度比较高,或模拟多孔板和管排时,有时可忽略渗透项.只保留惯性损失项,则多孔介质方程简化为
或写成三个坐标方向上的压力降:
式中,C2,ij为系数矩阵C中的项Δni为多孔介质在三个坐标方向上的厚度。2.6.4 多孔介质中能量方程的处理
对多孔介质修正了扩散项和瞬态项的能量方程为
其中Ef为流体总能;Es为多孔介质基体固体总能r为孔隙率;为流体焓的源项,keff为多孔介质的有效导热系数,采用流体导热系数(包括湍流有效导热系数)kf与多孔介质中固体材料的导热系数ks的体积加权平均:
采用 UDF 可以定义各向异性的有效导热系数。
孔隙率 γ 定义为多孔介质区中流体的体积分数,也就是介质中空的部分所占的比例。孔隙率影响传热计算、输运方程中的非稳态项、以及介质中的化学反应和体积力。如果希望模拟介质为全空(即没有固体介质)的情况,应给定孔隙率等于1。
2.6.5 多孔介质中湍流的处理 在多孔介质中,当介质的渗透性很大且介质的几何尺度与湍流涡的尺度不发生相互作用时,可以认为固体基体对湍流的生成和耗散率没有影响。但其它情况下应降低多孔介质中湍流的影响。当采用湍流模型时(LES 除外),可通过将多孔介质指定为层流区(Laminar Zone)。而使湍流粘性μt为零来抑制多孔介质区中湍流效应。此时,进口湍流量被输运穿过多孔介质区,而其对流体混合及动量的影响被忽略,同时介质中湍流生成被置为零。
2.6.6 粘性阻力系数和惯性阻力系数
阻力系数一般是基于流体在多孔介质中的表观速度定义的。
阻力源项的计算可以采用相对速度或绝对速度。选择 Relative Velocity Resistance Formulation(相对速度阻力公式),选项可以更精确计算有动网格和运动参考坐标系时的源项。对于高度各向异性的多孔介质,当使用基于压力求解器时,选择 Alternative Formulation非常规公式,选项可以使求解过程更稳定。采用非常规公式时,通过多孔介质的压力损失取决于速度矢量第i 个方向分量的大小
计算粘性阻力系数和惯性阻力系数的方法如下:(1)已知压力降,计算基于表观速度的阻力系数
使用多孔介质模型时,FLUENT假定单元中没有多孔介质的固体基体,即单元是100%开孔的(100% open),且所给定的阻力系数值是基于这一假设的。在已知流体流过实际设备中多孔介质的压力降Δp与速度的关系时,可计算 C2。流体流过开孔率为open%的多孔板时,基于实际流动速度的压力损失系数 KL定义为
式中V%open为流过多孔板的实际流速。
对于 100%开孔时的压力损失系数值,有
式中 V100%为流过开孔率 100%多孔板时的流速。而在相同流量下,速度与开孔率成反比,将 KL折算为100%开孔时的压力损失系数值
阻力系数 C2为单位厚度多孔板的压力损失系数
式中Δn为多孔板厚度。
(2)使用 Ergun 公式计算通过层床的阻力系数
在湍流时,层床用渗透率和惯性损失系数模拟。对于多种类型的层床,在较宽的 Re 数范围内阻力系数可以采用半经验的Ergun 公式计算:
当层床中为层流时,忽略式(2.51)中的第二项,可得 Blake-Kozeny方程:
式中μ为粘性系数,Dp为平均颗粒直径,L为床厚度,ε 为孔隙率,其定义为孔隙体积与层床总体积之比。
比较式(2.40)、式(2.42)和式(2.51),可得各方向粘性阻力系数和惯性损失系数
(3)使用经验公式计算流过多孔板湍流的阻力系数
流过锐边孔多孔板的压力损失系数可以采用 VanWinkle 等的公式计算(适用于孔呈等边三角形布置的情况):
式中,为通过板的流量;Af为孔的总面积;Ap为板的总面积;C为适用于不同Re数范围和不同孔径厚度比D/t情况下的系数,t/D > 1.6且Re > 4000 时(Re 数的特征尺寸为孔径,特征速度为孔内的速度)C≈0.98。利用式(2.55)和
式中v为表观速度而非孔内的流速。与式(2.42)比较可得在垂直于板方向的阻力系数 C2:
(4)用实验数据计算流过纤维状材料层流的阻力系数
在已知任意排列的纤维材料的无量纲渗透率 B 与纤维体积分数之间关系的情况下,粘性阻力系数1/α可由无量纲渗透率的定义
a 为纤维直径确定。
(5)用压力降与速度关系实验数据计算阻力系数
可以用通过多孔介质的压力降 Δp与速度 v 关系的实验数据确定阻力系数。设实验数据用二次多项式拟合为
式中a1和a2为拟合系数。动量方程源项为单位长度的压力降,即
式中Δn 为多孔介质厚度。则比较式(2.38)和式(2.58)及式(2.59),可得阻力系数
和
该方法也可以用于多孔阶跃面。2.6.7基于物理速度的多孔介质模型
FLUENT 默认情况下,在多孔介质中使用按体积流量率计算的表观速度。表观速度(Superficial Velocity)与物理速度(Physical Velocity)即真实速度的关系为式中γ为介质的孔隙率。
由于孔隙率小于1流体流入多孔介质中物理速度会提高,而表观速度不反映出来。为精确模拟多孔介质中的流动,应求解物理速度,而不是表观速度。
(1)单相多孔介质模型,单相流动情况下各向同性多孔介质中的通用标量输运控制方程为
体积平均质量方程和动量方程为
式(2.65)中最后一项代表多孔介质对流体的粘性阻力和惯性阻力。
采用物理速度求解时,式(2.65)中的两个阻力系数仍以表观速度计算(见本节2.6.6)FLUENT将其转换为与物理速度公式相应的值。
入口质量流量亦是以表观速度计算的。对于相同的入口质量流量和阻力系数对于表观速度或物理速度均应得到相同的压力降。
(2)多相多孔介质模型
可以使用物理速度多孔介质公式模拟包含有多孔介质区的多相流。关于多相流理论见第5章。各向同性多孔介质中第 q 相的通用变量的控制方程取如下形式:
其中γ为孔隙率;pq为第q相的物理密度;ɑq为第 q 相流体体积分数;为第 q 相的速度;为第q 相通用扩散系数;为源项。质量方程和动量方程为通用变量控制方程(2.66)适用于 Euler 多相流模型的所有输运方程。质量方程和动量方程为
式中最后一项为多孔介质中的动量阻力源项。该项由两部分组成粘性损失项和惯性损失项。K 为渗透率,C2为惯性阻力系数,二者均为(1 − γ)的函数。能量方程为
式中Qsp为多孔介质中固体表面与第 q 相的传热量。默认情况下,FLUENT 假定多孔介质的固体与多相流体之间处于热平衡,则
且
但也可以用求解用户定义标量(UDS)的方式单独求解多孔介质固体的导热方程:
这时如仅考虑对流换热,有
式中hq,eff为有效传热系数,Ts为多孔介质固体表面温度。2.6.8 多孔介质模型的限制和求解策略
多孔介质模型的假定和限制条件
多孔介质对湍流影响的模拟是近似的。当在运动坐标系中应用多孔介质模型,多孔介质采用相对速度形式的阻力公式时,动量方程可以采用相对速度形式或绝对速度形式。
当多孔介质区中在流动方向上压力降较大时(例如渗透率 α 较小或惯性系数 C2较大),收敛速度较慢。解决收敛性问题的最好方法是估算多孔介质压力降的合适的迭代初值,并以分块(Patch)的方式初始化,使多孔介质区上、下游的初始压力差满足该压力降值。另一个方法是暂时停用多孔介质模型求解获得没有多孔介质的流场的初步解,然后再启用多孔介质模型继续求解(此方法对于高流阻多孔介质不适用)。高度各向异性的多孔介质模型可能有收敛困难的问题可将各方向多孔介质系数(1/α ij和 C2,ij)的相差倍数限制在2—3 个数量级以内来解决这一问题。如果某一方向的介质阻力为无限大,只需将其置为主流方向阻力的1000倍。
第二篇:介质安全管理制度
介质安全管理制度
为加强**县政务服务局移动存储介质管理,确保国家秘密的安全,根据《中华人民共和国保守国家秘密法》,结合实际,制定本制度。
第一条
保密委员会办公室负有建立健全使用复制、转送、携带、移交、保管、销毁等制度以及对单位所执行本制度的监督、检查职责。保密工作领导小组界定涉密与非涉密移动存储介质(包括硬盘、移动硬盘、软盘、U盘、光盘、磁带及各种存储卡),并由保密委员会办公室登记造册。
第二条
各单位必须指定专人负责涉密移动存储介质的日常管理工作。涉密移动存储介质必须妥善保存。日常使用由使用人员保管,暂停使用的交由指定的专人保管。
第三条
涉密移动存储介质严禁在互联网外网上使用。确因工作需要携带涉密移动存储介质外出,须报分管领导批准,履行相关手续和采取严格的保密措施。严禁将涉密移动存储介质借给外单位使用。
第四条
涉密移动存储介质需要送外部维修时,必须到国家保密工作部门指定的具有保密资质的单位进行维修,并将废旧的存储介质收回。涉密移动存储介质在报废前,应进行信息清除处理。
第五条
涉密移动存储介质的销毁,经分管领导批准后,到自治区国家保密局指定的销毁点销毁或送交自治区国家保密局统一销毁,不得擅自销毁。禁止将涉密移动存储介质作为废品出售。
第六条
工作人员不按规定管理和使用涉密移动存储介质造成泄密事件的,将依法依规追究责任,构成犯罪的将移送司法机关处理。
第七条
本制度由校保密委员会办公室负责解释。
第八条
本制度从下发之日起执行。
第三篇:粉末冶金基础教程之多孔性材料
粉末冶金基础教程之多孔性材料
1145562129
张杰
冶金一班
前言
在大多数粉末冶金应用中,由金属粉末冶金通过压制与烧结的材料都是多孔性的。作为结构零件,要求孔隙度低,但在其他应用中,对于有特殊功能需要的产品则要求孔隙度可控。粉末冶金多孔性材料中应用最广泛的是自润滑轴承、金属过滤器及金属电极。
多孔性材料的材质种类繁多,应用范围及其广泛,结构和使用特性涉及到很多方面,并且由于使用目的不同对材料的性能要求及其表征形式也各异,因此,在研究多孔性材料时,了解其检测方法就显得很有必要。
一般多孔性材料系是指孔隙度在15% 以上的材料。由于大量空隙的存在,使得它在性能方面与材质相同的致密材料有着很大的差别。比如较高的孔隙度将导致机械强度、导热、导电与耐腐蚀等性能的下降。但是,多孔性材料的广泛应用也正是由于空隙的存在。孔隙特性是多孔材料的基本特性之一。多孔隙材料的的其他一些重要性能都能直接或者间接的与其孔隙特性相关。因此正确地测定孔隙度是分析多孔材料性能的重要手段之一。①孔隙度的表征
粉末冶金产品孔隙度的重要特性包括:总孔隙容积、连通孔隙的数量、空隙大小和孔径分布。
A连通空隙度
对于连通孔隙数量,已经有标准的方法。这些测量方法基本上是测量联通孔隙的体积,用前者的测量值除以后者的测量值就得到了连通孔的体积分数。
1润滑剂的体积可以通过用空气中称量含润滑剂处理过的轴承质量B减去经过烧结和精整后的轴承的质量A,在除以润滑剂的密度可以算出,即(B-A)/S。
2轴承的总体积可以通过阿基米德法测出。
3两者相除即可得出连通孔的体积分数。
B总孔隙度
通过测定粉末冶金的质量和体积,并且把所测定的密度和化学组成相同的材料的理论密度进行比较,就可以确定其总孔隙度。
C孔隙的形状、大小和孔径分布
可以通过1,显微镜法,2冒泡法,3汞压入法来测定观察。
②产品、生产工艺以及性能
多孔性材料的用途有:自润滑轴承,金属过滤器,电极,截至分离器,控制气体的流动和声控的装置。
多孔性金属材料应用在过滤器的目的是去除流体如石油、汽油、制冷剂、聚合物熔体、水悬浮液、空气或其他气体流体中的小固体颗粒。过滤器要求要求材料具有合适的力学强度、能滤出规定尺寸的固体颗粒、流体的透过性、良好的环境耐腐蚀性。因此制作过滤器的多孔性金属材料时要充分研究对多孔性金属材料的影响因素。材料的性能取决于粉末的粒度和孔隙度,对于316L不锈钢粉末制成的过滤器,粒度越大、孔隙度越高材料的凝滞透过性系数越高,过滤器的级别也越高。可见过滤器的级别是通过控制过滤器的孔隙度和压制用的粉末的粒度级来确定的。
多孔性材料的另一个重要的利用是电极。通常是有镍粉制成。多孔性镍电极有两种用途:碱性电池和燃料电池。在不同的电池中,电极上发生的反应也是不同的,因此对电极材料的要求也是不同的。碱性电池必须拥有很高的孔隙度,在这些电极的多孔性结构必须能容纳下大量的电池活性物质,在正极为氢氧化镍,负极为氢氧化镉。燃料电池电极是由等轴状而不是纤维状羰基镍粉制成,这种电极需要较低的孔隙度和将孔径严格控制在3~8um范围以内。
多孔性材料的孔隙度特征在含油轴承,消声器设备等等设备的制造时都是要充分考虑的重要影响因素。未来的发展趋势
多孔性材料的制备是一种特殊的冶金技术,是一种制造高新材料的重要工艺,有时也是唯一办法。只从烧结金属含油轴承以来,随着汽车产业的发展,该技术的将材料的制备与发展结合在一起充分得到了发展。多孔性材料的应用很大程度上解决了日常生产中出现的很难解决或者不能解决的问题。随着科学技术的不断发展已经对粉末冶金的不断研究,多孔性材料的更多影响因素的控制也在不断的发展,推动了材料科学的发展。
第四篇:(讲课稿)网络传输介质
下面由我来讲一下由清华大学出版社出版沈鑫研、俞海英、伍红兵、胡勇强等编著的计算机网络技术及应用(第2版)的第二章的第二节网络传输介质,在组网的过程当中,网络的主要的功能呢就是资源共享和信息传递,那么如果我信息从一台计算机传递到另外一台计算机那么一定要有对应的传输介质才可以,我们知道我从西安的大雁塔走到钟楼,那么一定要选择一条道路才可以,如果在修地铁的过程当中呢,全部挖断了过不去,那这个时候呢,我们就成无路可走了。一样的在网络上如果一台计算机把信息传递到另外一台计算机上,那么一定要让这些数据有他的传输介质才可以,我们看一下,在组网的过程中,常用的数据数据传输介质有哪些。
一类呢就是有限传输介质,又叫传导型介质,另一类呢,叫做无线传输介质又叫辐射型介质。我在这里主要说的是有线网络介质。那么有线传输介质主要有电缆和光缆。那么电缆里面呢常用的主要有同轴电缆和双绞线。光缆呢主要是光纤所形成的光缆。那么无线传输介质呢,则主要有无线电,微波,激光 红外线,卫星,移动通信。这样的一些无线传输介质。那么他们分别用在不同的组网领域,用在不同的环境下进行建网。有不同的特点,好,这是我们常见的网络传输介质。
那么咱们首先来看一下有线传输介质,那么有线传输介质第一个咱们提到的就是同轴电缆,同轴电缆的样子呢是这样的,如果大家经常动自己家的电视线的话,应该可以看的到他和我们所用到的有线电视线呢,结构基本上是一样 的。那么同轴电缆的结构呢是由一根空心的外圆柱导体以及包围的单根内导线所组成的,那么大家可以看一下图,来了解一下同轴电缆的基本结构。同轴电缆含有线规较粗的单层实心导体。导体一般由铜或覆以铜的铝制成。中间的导体外面覆以一层绝缘材料,这有助于把中间的导体和外面的金属箔屏蔽层隔开来,这种绝缘材料有助于把传输数据的导体与屏蔽层隔离开来。外面通常会包一层金属网、再包一层电缆护皮加以保护。中间粗粗的导体可支持高频信号,几乎不会出现困扰。那么同轴电缆呢主要用于总线型网络的组建。
那么在计算机网络当中曾经广泛运用的同轴电缆,主要有两种型号,分别是RG11和RG58,他们的阻抗呢都是50欧姆,其中RG11 50欧姆的同轴电缆我们叫做粗缆,他的直径呢是0.5英寸。他的最大传输距离是500米。所遵循的标准是I3E标准也就是美国电气和电子工程师协会的标准,他的具体标准呢是10贝斯5的标准,而RG58也被我们叫做细缆他的线缆直径呢是0.18英寸,最大的传输距离是185米,网速呢也是10兆比特每秒他的标准呢,为10贝斯2的标准,同轴电缆传输系统目前在国内外有线电视网络仍占有主要地位,它是由多级干线放大器级联,1级桥接放大器和2级分配放大器组成。对于同轴电缆传输系统,虽然国内外各种放大器的性能已达到相当高的水平,而且在减少同轴电缆衰减、减少温度系数、提高同轴电缆寿命等方面做了不少的工作,从而在同样的电长度下能传输更远的距离和提高系统的可靠性,但是由于同轴电缆传输系统离不开放大器和同轴电缆,系统本身存在一些难以克服的缺陷,不能无限制地级联干线放大
器来增加传输的距离,因而,同轴电缆传输系统的发展受到了限制。以太网及其它LAN技术原先使用同轴线是因为它能支持高频信息,而且不受EMI干扰的影响。然而,面对迅猛发展的数据级UTP,成本高昂加上安装困难导致同轴线退居其后。
我们再来看一下双绞线,双绞线主要指的是两根导线之间互相藏绕,因为我们知道导线之间如果采用平行放置的话会存在比较强的电磁干扰而如果相互缠绕的话,那么正好可以吸收彼此之间的电磁信号那么双绞线呢是目前使用最广的,价格相对便宜的一种传输介质,他有俩根具有绝缘保护的传导线相互缠绕而组成,那么我们从图上可以看到,常见的双绞线是有多对的双绞线组成,像5类双绞线就是由4对八根双绞线组成的,而由若干对双绞线构成的电缆我们叫做双绞线电缆,而双绞线本身又被我们分为非屏蔽双绞线UTP和屏蔽双绞线STP,他们的区别在于非屏蔽双绞线没有用于屏蔽的屏蔽层,而屏蔽双绞线正好相反,屏蔽双绞线主要运用在一些有强烈电磁干扰的地方比如说我们在医院里面,如果要拍这个胸透,CT拍一些放线的照片的话,像那些地方的计算机呢一般采用的就是屏蔽双绞线,而一般不存在强烈电磁干扰的地方呢,像一般我们说见到的学校,企业,采用的都是非屏蔽双绞线就可以。
而再来看一下双绞线的结构,他是由俩两缠绕的带绝缘外皮的铜导线构成,然后呢,多对导线被分装在一个塑料分套里面是采用了怎样的一个结构
那么我们来看一下,常见的双绞线呢他有这样几类,其中屏蔽双绞线
呢有三类和五类,三类所能达到的带宽呢是16比特每秒,注意我们在描述网速的时候呢,一般都会用到带宽的概念他的意思是导体所能达到的一个最大频率和最小频率的差值,这就决定了他可以传播那种电磁信号再来看一下非屏蔽双脚线,常用的有3类,4类,5类,超5类,6类,甚至是7类,那么用的比较多的,主要是五类,超五类,六类,这是我们看到的双绞线的分类,额,在这里呢,我提一下在网络里面我更多的要讨论的不是一个最好的问题而是一个最合适的问题,最好和最合适是俩个不同的概念,有的时候我们需要的是尽善尽美,有的时候由于各种条件的限制你实际上是无法办到的,所以我在很多情况下我们要考虑的是怎么样找到一个适合我们的解决方案,所以我们在网络传输里面更多的讨论的不是最好而是最合适。来了解一下我们日常生活中最常用的非屏蔽双绞线有哪些优点,首先呢他没有屏蔽外套,这样呢,他的直径就要小一些,所以在组网布线的时候,如果要穿线管,大量的双绞线可以占用非常小的空间,第二个优点呢就是他的质量小,容易弯曲和安装,那么很多人在一开始接触网络的时候呢老觉的双绞线能有多重啊,那么想象一下,如果是一个中型的局域网,他有上百台,上千台的计算机最终汇集在一个地方,那么我们知道这样双绞线的质量就会非常大,第三,将串扰减致最小我们知道线缆是互相残绕的。第四个具有阻燃性,第五呢,具有独立性和灵活性,适用于结构化综合布线,另外一点呢就是UTP他的价格比较低,那么这是UTP的特点。
那么双绞线相关的标准呢,我们再来看一下主要就是10贝斯-T的一
些标准,那么这个10贝斯T主要指的是最大传输速度为10比特每秒。那么对应的还有100贝斯T塔的最大传输速度为100比特每秒,那么用10贝斯T网络的UTP也就是凯特普瑞3,就是三类双绞线,然后来由4类5类超五类六类,其中五类双绞线就是我们最常用的组建100贝斯T的网络他的速度就是百兆比特每秒左右,也就是我们说的百兆局域网。
大家看一下图,那么在组网的过程当中呢,经常要碰到的问题就是为双绞线制作水晶头,因为我们只有在两头安装水晶头才能使用相应的网络传输硬件。那么它所连接的这个接口呢,我们把他叫做RJ45接口,RJ45接口分两种接法 一类叫T586A,T586B。主要是因为相应的电子电器的标准,一般来说我们在日常使用的时候采用的是B类接法。好我们来看一下,568A,和568B的线序是怎么排列的。排序的作用就是能更好的保证数据传输质量和减少信号衰竭。
那么我在制作网线的过程当中,如果把一个网线变成一摸一样的线序比方说我在一个网线的俩端都采用B类或者A类的接法我们把这种线缆呢叫做直通线缆,与之相反的是,两边线序不一样,一头采用A类接法。另一头采用B类接法的叫做交叉电缆,那么直通线与交叉线是用于不同位置的计算机连接和网络终端连接,额,作为计算机网络的学习来说,这个线序标准非常重要,大家有必要花点时间把他记下来。好这是双绞线的布线标准。
接来来我们看一下什么是光纤,除了同轴电缆和双绞线,另外一种主要的网络传输介质呢就是光纤,那么光纤呢他所传输的型号不是电信
号,而是光信号。那么光纤是一种通过光信号将信息从一端传送到另外一端的传输媒介,他的材质呢一般是采用玻璃或者是塑料纤维。那么一般我们常常把光纤和光缆混淆,非常相似啊。实际上他们是不一样的。多数光纤在使用前必须由基层保护结构包覆,包覆后的光纤才能叫光缆,光纤是光缆的组成部分,他和缓冲层以及披覆组成了光缆。光纤的优点还是很多的,第一,他和电缆相比,一般来说的电缆就是同轴光缆和双绞线他具有更大的频带带宽。线损更低。他对于电磁辐射来说能更好的屏蔽,而且他的质量比较轻,对于数据的安全性可靠性具有更好的隐秘性。因为如果电缆传输,使用一些电磁接收设备很容易在线缆外侧通过一些技术侦听到一些线缆数据,好这是使用光纤的优点。
我们来看一下光纤的结构。光缆主要是由光纤,保护套,加强芯,加强芯主要是为了提升光纤整体的硬度和韧度,在加强芯的周围呢有填充物,通常我们常见的一根光缆中包含了多根光纤,这也是为了整体成本的考虑。再来看一下光传输系统,我们知道来自计算机设备他发送的是电信号,电信号传过来以后呢通过1个驱动器一般来说就是光纤收发器,然后再光纤中传输,那么这个工程中需要有光源。然后再接受端需要有光检测器,进行放大回复,最后呢再转变成计算机等设备可以识别的电信号,那么我们看到就是典型的光传输系统。那么在整个过程中呢,我们在光源上有,发光二极管,或者是激光二极管。,在接受端呢需要有光电二极管。这就是光传输系统的构成。那么光信号在光纤中传输呢需要用到光脉冲,那么光脉冲在光纤中的
传输是利用了光的反射原理,就像这样,光源所发出来的光,整个光纤导体内呢反射传播。
而光纤按照参数不同我们可以分为多模光纤和单模光纤,这主要是因为光在光纤中传输方式来区分的。那么一般来讲,多模光纤可以其内部同事传输多种光束,而单模光纤呢只能传播单模光束。那么多模光纤呢在传播光信号的时候呢是以反射的方式来传输的。而单模光纤呢以近乎直线的方式来进行传输。单模光纤呢他的光源是一个激光二极管,产生的单色光,这时光纤应该足够细,光在光纤内以直线传输,多模光纤他的光源呢是一个发光二极管,产生的是复色光,光在光纤里以全反射射传输。
他们两个相比呢,单模光纤传输频带更宽,传输量更大,与之相比多模光纤的传输性能要差一些。使用单模光纤常用语长距离高速度的传输,而多模光纤用于短距离,低速度的传输。那么单模光纤呢他的制造成本比较高,单模光纤比较低。另外一个单模光纤端接较难,多模光纤比较容易,我们知道光纤接口的制作呢不像双绞线的水晶头那么容易。他们需要专业人员使用的是光纤焊接机,从这个光纤的平整度和周围灰尘的要求,等等。比如说,电信,网通,移动等一些国内网络运营商,他们在维护光纤的时候总是要搭一个小帐篷。搭一帐篷干什么,就是为了防止灰尘进入等等,在一个单模光纤是窄线芯,激光源。多模光纤是宽线芯,二极管。在耗能上,单模光纤耗极小,更高效,多模光纤耗散大,比较低效。所以只能用于短距离的通讯。那么在很多地方呢,布线非常的不方便。比如说我们经常看到的一些
名胜古迹。再有就是野外的一些施工地点。他的布线非常的不方便。比如说我们要在江河上面搭桥。两端的这个施工指挥中心,他不可能跨江,跨河再去布线。另外再举个例子,比如说一些餐厅,一些购物中心,我们就不可能拿根网线去上网,那么在这样的情况下我就需要使用无线通信。无线介质主要是指通过空气传输,不会被约束在一个物理导体呢,无线介质实际上就是无线传输系统。他主要包括下列这么几个方面。那么咱们来简单看几个在网络上运用比较广的介质。无线电主要就是利用无线电就是利用地面发射的无线电波通过电离层的反射,或电离层与地面的多次反射而到达接收端的一种远距离通信方式,那么无线电的特点就是覆盖范围广,容易穿过建筑物,全方位的传播。例如说广播电台,电视,电话,等等
在我们的网络传输里主要运用在无线网络和无线局域网上。先来看一下无线网络的解释,所谓无线网络,既包括允许用户建立远距离无线连接的全球语音和数据网络,也包括为近距离无线连接进行优化的红外线技术及射频技术,与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份。
很多人容易把无线网络和无线局域网搞乱,实际上,他们是不一样的,无线网络是一个统称。举个例子,我们利用手机上网,这就是无线网络,我们用笔记本通过无线路由器上网,这是无线局域网络,也属于无线网络,无线网络在计算机网络的应用上总的来说大体分三类,就是无线区域网,无线个人网,无线城域网。
好再来看一下,目前运用比较多的无线局域网,无线网络是利用无线电里的微波频带进行信息传播的一种无线网络,目前主要有三种组网方式。他们的原理是很简单的就是通过无线路由器工作于2.5GHz或5GHz频段,以无线方式构成的局域网。
连接至WEB网的局域网。对于局域网络管理主要工作之一,对于铺设电缆或是检查电缆是否断线这种耗时的工作,很容易令人烦躁,也不容易在短时间内找出断线所在。再者,由于配合企业及应用环境不断的更新与发展,原有的企业网络必须配合重新布局,需要重新安装网络线路,虽然电缆本身并不贵,可是请技术人员来配线的成本很高,尤其是老旧的大楼,配线工程费用就更高了。因此,架设无线局域网络就成为最佳解决方案。
第五篇:计算机网络原理无线通信介质
计算机网络原理无线通信介质
无线传输介质与有线传输介质的最大不同之处是:它不使用电能或光能作为导体传输信号,而是利用电磁波通过空间来传输。无线介质非常适合于那些难于铺设电缆的边远邮区和沿海岛屿等。目前最常用的无线传输介质有微波通信和卫星通信。
1.微波通信
微波通信是把微波信号作为载波信号,用被传输的模拟信号或数字信号来调制它。微波沿直线传输,由于受障碍物的影响大,所以,微波的收发器必须安装在建筑物的外面,最好放在建筑物顶部。
微波通信的优点是调制技术成熟,通信容量大,传输频率宽,受外界干扰小,初建成本低;缺点是保密性差,误码率高。
2.卫星通信
为了增加微波的传输距离,应提高微波收发器或中继站的高度。当将微波中继站放在人造卫星上时,便形成了卫星通信系统,可见,卫星通信是一种特殊的微波中继系统。用卫星上的中断站接收从地面发来的信号后,加以放大整形后再发回地面。一个同步卫星可以覆盖地球三分之一(120度)以上的地表,这样,利用三个相距120度的卫星便可覆盖整个地球上的全部通信区域。
卫星通信的优点是:覆盖面积大,可靠性高,信道容量大,传输距离远,传输成本不随距离的增加面增大,主要适用于远路离广域网络的传输。缺点烛卫星成本高、传播延迟时间长,受气候影响大,主要适用于远距离广域网络的传输。缺点是卫星成本高、传播延迟时间长、受气候影响大,保密性较差。