第一篇:四年级奥数鸡兔同笼问题
鸡兔同笼问题
例【1】 鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只?
例【2】 盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。盒中大钢珠、小钢珠各有多少个?
例【3】 一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
例【4】 学校买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?
例【5】 买2支钢笔的价钱等于买8支圆珠笔的价钱。如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?
小结 解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。通常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算,直到求出结果。概括起来,解“鸡兔同笼问题”的基本公式是:
鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数
一.练练你的基本功。
1.有鸡兔关在一个笼子里,数头共有6个头,数脚共有20只,那么鸡和兔个有多少只?
2.笼子里有鸡和兔,一共有9个头,26只脚,那么鸡和兔个有多少只?
二.试试你的综合能力
3.有三轮车和摩托车共15辆,数一数一共有38个轮子,那么三轮车和摩托车各多少辆?
4.有10分和20分的邮票共30张,总面值5元,两种邮票各多少张?
5.一只蛐蛐有6条腿,一只蜘蛛8条腿。现有蜘蛛和蛐蛐共10只。共有68条腿。那么蛐蛐有几只?蜘蛛有几只?
练习:
1、鸡、兔共50只,共有教160只。鸡、兔各多少只?
2、某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题?
3、某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。结果运到目的地后结算时,玻璃杯厂共得运费920元。求打碎了几个玻璃杯?
4、学校买来4个篮球和5个排球,共用了185元。已知1个篮球比1个排球贵8元,那么篮球每个多少元?排球每个多少元?
5、某场球赛赛售出40元、30元、50元的门票共400张,收入15600元。其中40元和50元的张数相等,每种门票各售出多少张?
6、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?
7、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟个有多少只?
8、有甲、乙、丙三种练习薄,价钱分别为7角、3角和2角,三种练习薄一共买了47本,付了21元2角。买乙种练习薄的本数是丙种练习薄的2倍,三种练习薄个买了多少本?
9、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有这三种小虫16只,共有110条腿和14对翅膀。问:每种小虫各几只? 10、1分、2分和5分的硬币共100枚,价值2元,如果其中2分硬币的价值比1分硬币的价值多13分,那么三种硬币各多少枚?
第二篇:四年级奥数——鸡兔同笼问题
第6讲 鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
【例题讲解及思维拓展训练题】
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。
【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
例2 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只)。
答:有鸡70只,兔30只。
【思维拓展训练二】
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
【思维拓展训练三】
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了
12×(2+3)=60(下)。
可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
【课堂巩固训练题】
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
第三篇:四年级奥数鸡兔同笼问题
鸡兔同笼问题
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
【例题讲解及思维拓展训练题】
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?
【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?
2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
例2 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?
【思维拓展训练二】
学习,就是努力争取获得自然没有赋予我们的东西。1 / 5
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?
2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?
【思维拓展训练三】
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
【课堂巩固训练题】
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
学习,就是努力争取获得自然没有赋予我们的东西。2 / 5
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?
学习,就是努力争取获得自然没有赋予我们的东西。3 / 5
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只?
学习,就是努力争取获得自然没有赋予我们的东西。4 / 5
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?
学习,就是努力争取获得自然没有赋予我们的东西。/ 5
第四篇:奥数四年级鸡兔同笼问题
习题练习一
1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?
2、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?
3、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?
4、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?
5、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?
6、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?
7、在知识竞赛中,有10道判断题,评分规定:每答对一道题的两分,答错一道题要倒扣一分。小明答了全部题目,但最后只得了14分,他答错几题?
8、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。问损坏了多少暖瓶?
9、鸡兔同笼,头共20个,脚共62只,求鸡兔各有几只?
10、小华买了2元和5元邮票一共34张,用去98元钱。求小华买了2元和5元的邮票各多少张?
11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?
12、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,汽车和摩托车各多少辆?
13、红旗小学举行数学竞赛,共10题,做对一题10分,做错一题倒扣两分。小明得了52分,他做错了几道题? 14、100名师生绿化校园,老师每人栽3课,学生每两人栽1棵,共栽树100棵。求老师和同学各栽树多少棵?
15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?
习题练习二
1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?
2.例题: 鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?
3.例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?
4.例题:鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?
5.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?
6.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?
7.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?
8.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只? 9.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?
10.小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?
11.东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?
12.在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?
13.某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。问、共损坏了多少只暖瓶?
14.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?
15.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种小鸟各几只?
16.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?
17.小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?
18.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚? 有鸡兔同笼,共有38头,116只脚。鸡和兔各多少只?稚兔同笼,上有28头,下有68只,稚兔几何?
习题练习三
1.班主任张老师带五年级(2)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?
2.大油瓶每瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题?
4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?
习题练习四
1.龟鹤共有100个头,350只脚.龟,鹤各多少只
2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副
3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个
4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张
5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天
6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段
第五篇:四年级奥数 鸡兔同笼
学科:奥数
教学内容:第14讲 鸡兔同笼问题
知识网络
鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。
在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。
重点·难点
运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。
学法指导
用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。
经典例题
[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?
思路剖析
鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。
解答
☆解法一:
设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)
兔脚与鸡脚的差4-2=2(只)
实际兔数为40÷2=20(只)
那么实际的鸡数:50-20=30(只)
答:有鸡30只,有兔20只。
☆解法二:
利用方程求解:
设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。
列方程为2×x+4×(5-x)=140
解方程2×x+200-4×x=140
2×x=60 x=30
50-x=50-30=20
则鸡有30只,兔有20只。
☆解法三:
(不拘于传统的解法,让我们的思维发散,更具有创造性。)
农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。
☆解法四:
兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。
☆解法五:
农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。
☆解法六:
我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。
[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?
思路剖析
利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。
解答
设全为2分的,则共值2×40=80(分)
与实际相比少125-80=45(分)
由于假设造成的差值5-2=3(分)
则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。
答:有5分硬币15枚,2分硬币25枚。
点津
由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。
[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?
思路剖析
假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:
32÷8=4(道)。
解答
20-(5×20-68)÷(5+3)
=20-32÷8=20-4
=16(道)
答:小贝贝做对了16道题。
点津
由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。
[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?
思路剖析
题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。
解答
[20×(112÷14)-112]÷(20-12)
=(160-112)÷8=48÷8
=6(天)
答:张宁植树这些天总共有6个雨天。
[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?
思路剖析
假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。
解答
(3×100-100)÷(3×3-1)
=(300-100)÷8=200÷8
=25(人)
100-25=75(人)
答:大和尚有25人,小和尚有75人。
点津
本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。
[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?
思路剖析
前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。
那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。
解答
(68-4×14)÷(7-4)
=(68-56)÷3=12÷3
=4(组)
那么3人组与5人组的组数(14-4)÷2=5(组)
答:学习小组中3人组和5人组各有5组,7人组有4组。
[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?
思路剖析
依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。
解答
(8×18-118)÷(8-6)
=(144-118)÷2=26÷2
=13(只)„„6腿虫数
(2×13-20)÷(2-1)
=(26-20)÷1
=6(只)„„1对翅膀虫数
13-6=7(只)„„2对翅膀虫数
答:蜻蜓有7只。
点津
恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。
发散思维训练
1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?
2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?
3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?
4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?
5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?
6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?
7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?
8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?
9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?
10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?
参考答案
发散思维训练
1.解:
由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。
答:鸵鸟有10只,大象有8头。
2.解:
假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。
那么实际的兔数是:180÷6=30(只)
鸡数为:180-30=150(只)
答:养的鸡为150只,兔为30只。
3.解:
假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。
那么实际的象棋数为60÷4=15(副)
跳棋数为20-15=5(副)
答:象棋有15副,跳棋有5副。
4.解:
由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:
20+10=30(只)。
答:原有鸡30只、兔20只。
5.解:
假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。
那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。
答:没跳够8个的次数为2次。
6.解:
猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。
由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。
假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。
答:有6人全猜对。
7.解:
假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)
答:大桶有20个,小桶有30个。
8.解:
假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。
根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。
答:他车出的正品是48个。
9.解:
假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。
答:考25题的次数是2次。
10.解:
尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。
答:九尾鸟有60只,九头鸟有50只。